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ABSTRACT
While sparsity has been exploited in many inference accelerators,
not much work is done for training accelerators. Exploiting sparsity
in training accelerators involves multiple issues, including where
to find sparsity, how to exploit sparsity, and how to create more
sparsity. In this paper we present a novel sparse training archi-
tecture that can exploit sparsity in gradient tensors in both back
propagation and weight update computation. We also propose a
single-pass sparsification algorithm, which is a hardware-friendly
version of a recently proposed sparse training algorithm, that can
create additional sparsity aggressively during training. Our experi-
mental results using large networks such as AlexNet and GoogleNet
demonstrate that our sparse training architecture can accelerate
convolution layer training time by 4.20∼8.88× over baseline dense
training without accuracy loss, and further increase the training
speed by 7.30∼11.87× over the baseline with minimal accuracy loss.

1 INTRODUCTION
While sparsity has been amply explored to improve the efficiency
of neural network hardware [5, 12, 13, 15], most of it is confined
to inference hardware as opposed to training hardware. Neural
networks must be first trained, which is to find the optimal set of
synaptic weights for a given dataset, before making predictions
for new data, which is called inference. Computationally, training
includes the inference computation, plus finding the optimal weight
adjustment, which happens to put greater demands on compute,
memory, and arithmetic precision than inference. Hence, inference-
only accelerators of neural networks appeared first [1, 2, 5, 12, 13,
15], and a much less number of training accelerators [3, 7, 8, 16, 19].
Training accelerators exploiting sparsity are even fewer.

In this paper we present a novel training accelerator architecture
called SparTANN, which addresses three key problems of sparse
training: where to find existing sparsity, how to exploit sparsity effi-
ciently in hardware, and how to create even more sparsity. Though
the problems have been partially addressed by previous work, no
previous work addresses all three. SparTANN exploits sparsity in
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Figure 1: Computation flow of DNN training.

gradient tensors in both back propagation and weight update com-
putation, which partly explains the superb efficiency of our accel-
erator compared with previous work [7]. Another ingredient is the
efficient sparsity handling by SparTANN. On the algorithm level,
it is similar to some sparse inference hardware such as [15], but
details differ due to ours having to support training dataflow, which
is definitely more complicated than that of inference.

Creating additional sparsity goes beyond simple zero skipping.
Zero skipping doesn’t alter the outcome of training, which is thus
conservative, having neither quality degradation nor additional
speed gain. On the other hand, sparse training algorithms [10, 11]
can reduce the computational complexity of training by skipping
even some non-zero elements without compromising the quality of
training. The challenge is implementing them in hardware. Thus
we propose a hardware-friendly algorithm, which is a single-pass
algorithm that can be implemented with minimal hardware.

Our experimental results using large CNNs such as AlexNet and
GoogleNet demonstrate that our sparse training architecture can
accelerate convolution layer training by 4.20∼8.88× over baseline
dense training without accuracy loss, and further increase the train-
ing speed by 7.30∼11.87× over the baseline with minimal accuracy
loss (1.16%p or less).

2 BACKGROUND AND RELATED WORK
2.1 Training Computation
Fig. 1 illustrates the computation flow of training, which can be
divided into three phases. The first phase is forward propagation
(FP), which is identical to inference, except that some intermediate
results are also saved in the case of training (e.g., max index for max-
pooling layer). FP applies the pre-defined operation (also known as
the forward operation) of a layer such as convolution and ReLU to
the input activation 𝐴𝑛 of layer 𝑛, generating the output activation
𝐴𝑛+1, which becomes the input activation for the next layer.

The second phase is back-propagation (BP). Let 𝐺𝑎
𝑛+1 denote the

loss gradient w.r.t. output activation of layer 𝑛. BP computes 𝐺𝑎
𝑛

from 𝐺𝑎
𝑛+1, where the former, the loss gradient w.r.t. output activa-

tion of layer 𝑛 − 1, is also the loss gradient w.r.t. input activation of
layer𝑛. This is repeated for all layers except the first in the backward

https://doi.org/10.1145/3370748.3406554
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for 𝑚 in range (M) :
for 𝑟 in range ( R ) :
for 𝑐 in range (C ) :
for 𝑧 in range ( Z ) :
for 𝑘𝑟 in range (K ) :
for 𝑘𝑐 in range (K ) :
i f FP : 𝐴𝑜

conv [𝑏,𝑚, 𝑟, 𝑐 ] +=
𝐴𝑖
conv [𝑏, 𝑧, 𝑟 + 𝑘𝑟 , 𝑐 + 𝑘𝑐 ] ∗ 𝑊 [𝑚,𝑧, 𝑘𝑟 , 𝑘𝑐 ]

e l i f BP : 𝐺𝑖
conv [𝑏, 𝑧, 𝑟 + 𝑘𝑟 , 𝑐 + 𝑘𝑐 ] +=

𝐺𝑜
conv [𝑏,𝑚, 𝑟, 𝑐 ] ∗ 𝑊 [𝑚,𝑧, 𝑘𝑟 , 𝑘𝑐 ]

e l i f WU: 𝐺𝑤
conv [𝑚,𝑧, 𝑘𝑟 , 𝑘𝑐 ] +=

𝐺𝑜
conv [𝑏,𝑚, 𝑟, 𝑐 ] ∗ 𝐴𝑖

conv [𝑏, 𝑧, 𝑟 + 𝑘𝑟 , 𝑐 + 𝑘𝑐 ]
i f WU: Update𝑊 using𝐺𝑤

conv according to SGD rule

Figure 2: Definition of hyperparameters (top); Pseudo code
showing the training computation of a convolution layer
(bottom).
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Figure 3: Computation complexity of each phase as mea-
sured by the number of arithmetic operations (Using all lay-
ers of the AlexNet, for 1 iteration; batch size is 256).

direction. For convolution and fully-connected layers, BP amounts
to multiplying the weight transpose𝑊𝑇

𝑛 to 𝐺𝑎
𝑛+1; for element-wise

layers, it can be done simply by multiplying the derivative.
The third phase, weight gradient and update (WU), is performed

for all parametered layers. WU first computes the loss gradient w.r.t.
weight, 𝐺𝑤

𝑛 , from 𝐺𝑎
𝑛+1 and 𝐴𝑛 , and then updates the weight using

a learning rule (e.g., SGD, Adam).
Sometimes it is convenient to refer to tensors as input/output.

We use superscript 𝑖 / 𝑜 to denote the input / output activation side,
respectively. Thus, for conv layer𝑛, the following holds:𝐴𝑛 = 𝐴𝑖conv
(input), 𝐴𝑛+1 = 𝐴𝑜conv (output), 𝐺𝑎

𝑛+1 = 𝐺𝑜
conv (input to BP/WU),

𝐺𝑎
𝑛 = 𝐺𝑖

conv (output of BP), and 𝐺𝑤
𝑛 = 𝐺𝑤

conv (output of WU).

2.2 Tensor Operations in Convolution Layers
Fig. 2 is an example pseudo code showing the computation of the
three phases for a convolution layer. For brevity, stride and padding
are assumed to be 1 and 0, respectively. As can be seen, at least for
convolution layers, there is very high similarity among all three
phases of computation, in terms of both computation complexity
and computation pattern. On the network level, Fig. 3 shows the
computation complexity of the three phases divided into two cat-
egories: tensor operations in convolution layers vs. all the other
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Figure 4: Cumulative distribution of gradient values in
AlexNet Conv5 layer, which is followed by max-pooling.
Red triangles show a normal distribution with the same
mean and variance.

operations, with the latter including tensor operations in fully-
connected layers as well as all element-wise operations. The result
shows that the former dominates in training phases as well as in in-
ference. For more recent CNNs that dispense with fully-connected
layers, the portion of the former is even higher. Thus in this paper
we focus on tensor operations in convolution layers.

2.3 Related Work
While no previous training hardware features sparsification, that
is creating additional sparsity by skipping nonzero elements, it is
shown on the algorithm level [10, 11] that sparsification in training
can lead to significant reduction in computation complexity without
compromising training quality, i.e., without degrading accuracy
or increasing the number of training iterations. The algorithm is
rather simple; it removes all but the top 𝑘 elements in a gradient
tensor, which is called top-k method. However the top-k method is
inefficient for hardware implementation, since (i) it requires many
comparison operations in the order of 𝑂 (𝑛 log𝑘), where 𝑛 is the
number of elements in the tensor, and (ii) it must traverse the
gradient tensor twice, which can increase BP computation’s latency
and memory access significantly.

Previous sparse training hardware architectures [7, 19] do es-
sentially zero skipping, removing only what is known to be inef-
fectual, but the mechanism to achieve it may vary. In particular,
[7] exploits ineffectual computation in BP due to ReLU layer, i.e.,
negative operands need not be even created, which makes 𝐺𝑖

conv,
the result tensor in convolution layers, about 50% sparse effectively.
Contrarily we exploit sparsity in operand tensor,𝐺𝑜

conv, which can
be far sparser, enabling much higher speedup than the previous
work (4∼10× vs. 2∼3× over dense) for certain CNNs. Also whereas
the previous work’s method is applicable to BP computation only,
ours is equally effective to both BP and WU.

3 SPARSE TRAINING
3.1 What is Sparse and What to Sparsify
Similar to inference, sparsity may be found in many tensors during
training. For instance, the result of BP in ReLU, 𝐺𝑖

ReLU, is bound
to have about 50% zeros. A max-pooling layer gives a far better
deal;𝐺𝑖

MP has only one-in-𝐾2 nonzero elements where 𝐾 ×𝐾 is the
pooling size, assuming pooling windows don’t overlap.

Consequently the sparsity in gradients varies greatly among
layers. In the case of convolution layers of AlexNet, 𝐺𝑖

conv ≜ GI,
which is the result of BP, is hardly sparse whereas 𝐺𝑜

conv ≜ GO,
which is the result of BP in the following layer (max-pooling or
ReLU), is very sparse as shown in Fig. 4. Since GO is input to
both BP and WU (see Fig. 2), it seems very natural to develop a
hardware architecture that utilizes zeros of GO (i.e., sparsity in
operand tensor), which will make both BP and WU efficient.
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Figure 5: Dynamic threshold scaling algorithm.

Now that GO is already very sparse, we can apply sparsification
to other tensors. One good candidate is GI, which is not sparse
even when GO is 88% sparse as shown in Fig. 4, but it has many
near-zero values, which may be amenable to sparsification. Doing
so would lower memory traffic and reduce effectual operations in
subsequent layers, as well as possibly increasing the sparsity in the
next 𝐺𝑜

conv (in another convolution layer).
However, since too much sparsification can backfire, defeating

the purpose of sparsification, we must maintain the right spar-
sity level across all layers at all iterations, hopefully with as little
hardware overhead as possible.

3.2 HW-friendly Sparsification Algorithm
The main lesson from the top-𝑘 sparse training algorithm [10] is
that it is not absolute or relative value but ranking that matters most
in determining whether to skip a nonzero element. For hardware
implementation, we choose to use a threshold-based approach for
its very low hardware overhead and little impact on latency. The
threshold value, which we set per tensor per layer, is updated at run-
time to ensure that the intended sparsity is achieved. To determine
the right threshold, we use the statistics of a tensor in the previous
iteration, based on the observation [6] that the distribution of a
tensor’s values changes gradually over time.

Our first attempt was to find the threshold value from a Gaussian
function. If we assume that the mean and variance do not change
significantly over one iteration, a Gaussian function can give the
exact threshold for any target sparsity ratio. But there is one prob-
lem: data do not always follow Gaussian. Fig. 4 shows that the same
tensor data can be perfectly Gaussian at one point, but deviate
significantly (up to about 20%p in terms of sparsity in Fig. 8a) at a
later point in time.

Thus we propose an iterative linear interpolation method, which
does not require the Gaussian assumption. To illustrate the idea,
let’s say the target sparsity is 𝑠∗ = 0.3, but the current threshold
(𝜃𝑖 = 5E-7) yields the sparsity of 𝑠𝑖 = 0.42 (see Fig. 5a). Since CDF
(cumulative distribution function) is likely symmetric, we use the
CDF of absolute values, i.e., 𝑓 ( |𝑥 |). We see that 𝑠𝑖 is quite off from 𝑠∗,
but learn that (𝜃𝑖 , 𝑠𝑖 ) coordinate is on the CDF. Assuming the CDF
doesn’t change, and if the CDF can be linearized, we only need the
coordinate of another point on the CDF to find the right threshold.
Any coordinate will do, but one that is free is (0, 0). By drawing a
line crossing (0, 0) and (𝜃𝑖 , 𝑠𝑖 ), we can calculate the threshold for
the next iteration 𝜃𝑖+1 as follows.

𝜃𝑖+1 ← 𝜃𝑖 ·
𝑠∗

𝑠𝑖
(1)
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Interestingly, even if CDF is not linear, our method works well.
This is because our prediction on the direction of threshold change
is always correct. Also the fact that sparsity deviation (𝑠𝑖 − 𝑠∗), and
thus threshold change (𝜃𝑖+1 − 𝜃𝑖 ), is usually very small, helps too.
Our further analysis shows that our method under-compensates
when 𝑓 ′′ < 0 (where 𝑓 is CDF), which is almost always the case.
Our method is not only cheaper, but also more robust, than using
two sparsity values from two previous iterations, because it is
affected less by sampling noise. Also compared with the Gaussian
distribution method, we only need to compute the sparsity value in
each iteration, which is much cheaper than computing mean and
variance.

Fig. 5b shows the flow chart of our algorithm, called Dynamic
Threshold Scaling (DTS). Since good training performance is impor-
tant, we slowly increase threshold during the first iterations. (The
iterations are training iterations; our algorithm is not iterative.)
Initially we set 𝜃1 = 0, which means no sparsification. At the second
iteration we need an initial value, since (1) is useless when 𝜃𝑖 = 0.
Any small number would do, or an easy-to-compute formula is
even better, e.g., max𝑗 ( |𝐺𝑖 ( 𝑗) |)/100. From the next iteration on,
threshold is updated using (1). In order to prevent rapid change due
to sampling noise or otherwise, we limit the threshold change per
iteration to 20%. The hardware requirement of our DTS algorithm is
a multiplier, a comparator, a divider, a counter and a few registers.

4 SPARSE TRAINING ARCHITECTURE
4.1 SparTANN Overview
Fig. 6 shows the block diagram of the SparTANN architecture for
convolution layers. Inference typically requires much lower preci-
sion, which can be best done using a separate datapath. The diagram
shows only the datapath for tensor operations, which account for
the majority of computation in CNN training (see Fig. 3).

SparTANN does sparse-dense operations, meaning that in Fig. 2,
𝑊 and 𝐴𝑖 are treated as dense matrices while 𝐺𝑜 is sparse. This
decision is motivated by the fact that currently there is no known
method of doing sparse-weight and/or sparse-activation training
from scratch.

4.2 Sparse-Serial Dense-Parallel Architecture
A recurring problem in sparse handling architectures is low utiliza-
tion of PEs (processing elements) [12], or alternatively, powerful
but complex and large routing (i.e., non-computing) modules [5],
both of which can significantly offset the efficiency of an architec-
ture (colloquially called sparsity tax). We minimize sparsity tax, by
employing sparse-dense operation and a dataflow where sparse
input is consumed serially and dense input in parallel.
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Figure 7: Sparse format and indexing example.

Our datapath, supporting both BP and WU, is centered around a
MAC array. TheMAC array has𝑇 multipliers and adders, where𝑇 is
a design parameter, and performs scalar-vector multiplication and
vector addition (𝛼 ®𝑥 + ®𝑦). In order to best utilize the MAC array, we
parallelize BP and WU along the input channels (along the 𝑍 -loop
in Fig. 2). Under this dataflow, each element of 𝐺𝑜 is multiplied
to 𝑍 elements of𝑊 (or 𝐴𝑖 ) in BP (or WU), respectively, meaning
that 𝐺𝑜 data are reused in 𝑍 number of MAC operations. Thus by
storing𝑊 and 𝐴𝑖 as 𝑇 -dimensional vectors in Dense Buf A and 𝐺𝑜

as scalar values in the sparse buffer (see Fig. 6), we can exploit the
data reuse very efficiently, resulting in perfectly even utilization
among PEs assuming 𝑇 divides 𝑍 .

4.3 Sparse Format and Indexing Scheme
Specifically we use the CSC (compressed sparse column) format
for 𝐺𝑜 , where the compressed column corresponds to the output
channel dimension (𝑀-loop in Fig. 2). As illustrated in Fig. 7, at each
cycle one element of 𝐺𝑜 pops out, for which we need to provide
the corresponding𝑇 -dimensional input vector of𝑊 for BP, or store
the 𝑇 -dimensional output vector in the corresponding location of
𝐺𝑤 for WU. This requires irregular indexed access at the dense
buffer in which𝑊 or 𝐺𝑤 is stored, with the index coming from
the sparse buffer. The sparse buffer stores relative index [2, 5, 15],
which takes fewer bits than absolute index at the expense of one
adder for conversion.

The sparse buffer is accessed sequentially but the dense buffer
needs irregular access, with the index ranging up to 𝑀 for both
BP and WU. Thus we make Dense Buf B big enough to hold𝑀 ×𝑇
words and use it to store input for BP and output for WU. Note that
while sparsity implies that many of the𝑀 vectors are skipped, for
different image pixels, different subsets of 𝑀 vectors are accessed,
resulting in some level of data reuse in the dense buffer. The sizes
of other on-chip buffers can be determined based on how the loops
in Fig. 2 are reordered, in a way very similar to designing inference
accelerators [9].

Our sparsity handling architecture is very efficient, generating
performance linearly proportional to sparsity with negligible over-
head (see Section 5.2.1), meaning very low sparsity tax, which in
turn renders our architecture to be useful for “dense” gradients as
well, in contrast to other sparse architectures (e.g., [5, 12]).

5 EXPERIMENTS
To evaluate the efficacy of our approach, we show i) our DTS algo-
rithm can track target sparsity very tightly, and ii) there is some
sparsity level that gives significant computation reduction with
little accuracy degradation (which was partially shown in previous
work using top-𝑘 method), and also evaluate training efficiency, i.e.,
how well our architecture can reduce total training time.
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Figure 8: Our DTS algorithm can track the target sparsity
(50% in this example) very closely, giving almost the same
training performance as top-𝑘 (AlexNet example).

Table 1: Test (or validation) accuracy (%) after training
MNIST CIFAR-10 AlexNet GoogleNet

Top-1 Top-5 Top-1 Top-5
Ref. (Dense) 99.08 82.13 57.18 79.97 67.75 88.32
DTS-0.5 99.11 81.41 56.80 79.87 66.59 87.87
DTS-0.7 99.12 80.56 55.38 78.63 0.10 0.50
Random-0.5 99.06 81.00 55.78 78.89 48.87 73.76

5.1 Training Performance and Sparsity
5.1.1 Setup. We have implemented sparse training algorithms in
C++, extending the Caffe framework [17]. For datasets and net-
works we use models from Caffe Model Zoo including MNIST CNN,
CIFAR-10 CNN, AlexNet (using ImageNet), and GoogleNet (using
ImageNet). We use the default training settings provided with the
models; GoogleNet is trained using the quick_solver setting.

5.1.2 Tracking Sparsity Target. Fig. 8a compares the sparsity track-
ing accuracy of our algorithm vs. the Gaussian distribution method
and static threshold. For static threshold, we use the median value
obtained from the first iteration. Note that higher sparsity doesn’t
mean “better” here; it is about how tightly we can maintain the
target sparsity, since both too much and too little sparsity can lower
the training efficiency.

Interestingly the Gaussian distribution method1 has a very large
tracking error, which is mainly due to the fact that the underlying
distribution is not always Gaussian. Using a static threshold can
be much worse, and the widely varying curve suggests that the
distribution of 𝐺𝑖 can change over time quite dramatically. On the
contrary, our method can track the target sparsity very tightly.

Tracking error translates into increased training loss in Fig. 8b,
where we show the training loss of the top-𝑘 method as a reference.
Our method gives an almost indistinguishable training curve as
top-𝑘 throughout the entire training iterations, whereas the other
methods show quite a gap.

5.1.3 GI Sparsity vs. Training Performance. Having established that
our DTS algorithm can control the sparsity level very tightly, the
next question is what the right sparsity should be. We compare
two sparsity levels, 50% and 70% as referred to as DTS-0.5 and DTS-
0.7, respectively, against a reference case, which is dense training.
The training result is summarized in Table 1, which suggests that
the optimal sparsity depends on the network. It may be hard to
generalize but higher sparsity tends to work better with easier-to-
train networks, which is quite understandable. In all cases DTS-0.5
shows good training performance, with the maximum accuracy
loss of 1.16%p compared to dense training. We also compare the
convergence speed in Fig. 9. Though it is not easy to read the graphs

1We set the threshold to 𝜇 + 0.67𝜎 from the previous iteration’s statistics, since for
random variable 𝑋 following 𝑁 (𝜇, 𝜎) , 𝑃 ( |𝑋 − 𝜇 | ≤ 0.67𝜎) � 0.5.
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Figure 9: Our DTS-0.5 gives almost as good training perfor-
mance as the reference case, i.e., dense training (𝑥-axis: iter-
ations, 𝑦-axis: loss smoothed over 1000 iterations).
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Figure 10: GO density with/without GI sparsification.

due to very high overlap, DTS-0.5 gives very similar training curves
as dense training throughout the entire training iterations.

To test another aspect of DTS, we run random sparsification
(Random-0.5), which is to sparsify stochastically 50% of 𝐺𝑖

conv irre-
spective of its value. Random works surprisingly well, better than
DTS-0.7 in most cases, but again for difficult-to-train networks, it
suffers a great deal of accuracy degradation. This result confirms
that it is important to choose the right ones to drop in addition to
enforcing the right sparsity level.

5.2 Training Efficiency Evaluation
5.2.1 Hardware Design and Implementation. We have implemented
the proposed SparTANN architecture in Verilog and synthesized
it using Synopsys Design Compiler with Samsung 65 nm standard
cell library. Scratchpad buffers are modeled with Cacti [18]. DRAM
power is estimated from access count with the unit access energy of
160 pJ/byte [5]. We set the design parameter𝑇 (= # MACs) to 32, tar-
geting cost- and power-constrained devices. On-chip buffers have
the following sizes: 4 KB sparse data buffer, 1 KB sparse index buffer,
68 KB dense (A+B) buffer, and 32 KB output buffer. In both software
training and hardware implementation, we use single-precision
floating-point arithmetic, which is necessary to guarantee conver-
gence for large networks. The target frequency is set to 250 MHz.
We conservatively estimate the overhead of the controller including
an irregular address generator (i.e., adder) and interconnects to be
10% of the total on-chip area and power.

The total area including MAC array, on-chip buffers, and others
such as sparsifier, control, and interconnects is estimated to be
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Figure 11: Efficiency of SparTANN in training (Convolution
layers only).

4.74 mm2, in which MAC array and on-chip buffers account for
0.69 mm2 and 3.56 mm2, respectively.

In terms of power, the steady-state power (after initial loading)
of our SparTANN architecture is estimated to be about 0.20 W for
BP and 0.29 W for WU (0.24 W on average). The higher power dis-
sipation during WU is attributed to greater on-chip buffer accesses
(especially Dense Buf B in Fig. 6) which is caused by lower data
reuse. Data reuse during WU can be enhanced by utilizing a more
specialized dataflow such as [3], which we did not consider to have
a single datapath for both BP and WU. The large dense and output
buffers consume about 64% of on-chip power in the worst case. On
the other hand, sparsity-supporting hardware, i.e., sparsifier and
sparse index buffer, has very low overhead in terms of both area
and power (about 3%). Despite sparse tensors and on-chip buffers,
DRAM power dissipation is still significant, more than half of the
total power consumption. While it varies depending on the network
and sparsity, DRAM access bandwidth and the total power dissipa-
tion are estimated to be about 1.95 GB/s and 0.58 W for AlexNet
training, and 3.93 GB/s and 0.92 W for GoogleNet.

5.2.2 Efficiency of Sparse Training. We estimate the speedup and
energy reduction of using our SparTANN architecture over dense
training for convolution layers as follows. For dense training, we
remove index buffer and sparsifier, which reduces area and power
marginally. The latency of sparse training is computed from 𝐺𝑜

conv
density, reflecting MAC under-utilization due to tiling (i.e., bound-
ary tiles not fully utilizingg MACs). Computing the latency of dense
training is more straightforward. Fig. 10 shows the 𝐺𝑜 density (= 1
− sparsity) of the networks, confirming that most have less than
40% density and DTS-0.5 is effective in increasing sparsity of 𝐺𝑜 in
convolution layers.

Fig. 11 compares the speed and energy consumption of different
architectures during BP and WU phases. For larger networks our
SparTANN architecture can accelerate convolution layer training
by 4.20∼8.88× over the dense training via zero skipping, thanks
to the large number of zeros generated by BP in post-convolution
layers.2 Our DTS method can further increase the training speed
by 7.30∼11.87× over the baseline with little accuracy loss, or 52%
over zero skipping only. On-chip energy reduction follows a similar
trend, reducing the energy consumption of training convolution
layer by 78% (zero-skipping only) and 85% (with DTS) over the
baseline, averaged for all the networks (geomean). DRAM energy
also decreases significantly though not as much as on-chip energy
reduction, because the amount of initial loading for dense tensors
remains unchanged contrary to the proportional reduction of sparse

2Dense training hardware may employ a different, and potentially more efficient,
architecture than what we assume for the dense training case, but a comparison
with well-known dense hardware [16] reveals that our dense case has similar energy
efficiency (GOPS/W) after technology scaling.
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Table 2: Comparison with previous training accelerators
Tech. Freq. Area GOPS Power GOPS/W Precision

Tegra X2 16 1300 n/a 1330 7.5 177 32-bit float
DaDianNao [16] 28 606 67.73 2090 15.97 131 32-bit fixed
TrainWare† [3] 65 100 n/a 32 0.05 617 16-bit
TNPU [8] 65 400 n/a ∼130 n/a n/a 32-bit float
DLAC* [19] 14 500 2.20 1390 n/a n/a 32-bit float
Selective Grad.*† [7] 45 500 1.21 801 0.12 6867 32-bit fixed
SparTANN* 65 250 4.74 190 0.75 254 32-bit float
SparTANN* (𝑇=64) 65 250 4.32 380 0.59 648 16-bit bfloat
Note: Omitted units are nm, MHz, mm2, and W.
*Sparse architectures, for which GOPS number includes skipped operations.
†TrainWare supports WU only; Selective Grad. supports BP only.

tensors. The total energy reduction of larger networks is more
substantial than smaller layers due to their higher speedup and
less dominant DRAM energy. Normally, tensors of larger networks
have higher chance of reuse, e.g. weights are reused for R×C times
in inference (see Fig. 2). As a result, for large networks, total energy
reduction is 83%∼84% compared to dense training.

A training curve (Fig. 9d) may suggest that accuracy difference
could be traded for training iterations. For GoogleNet, we calculate
the average 𝑥-shift between DTS-0.5 and Ref. to be 40K iterations,
or 1.67% of 2.4M iterations, which is much less than 34% speedup
over zero-skipping only, achieved by DTS for GoogleNet.

Fine-tuning scenario: Our architecture can also be used for
on-device training, in which case fine-tuning scenarios can be in-
teresting as well. To see the applicability of our approach to such
a training scenario, we ran an experiment. First we trained the
AlexNet for CIFAR-10 (called pretraining), and then the pretrained
model was fine-tuned for a more challenging dataset, CIFAR-100,
for 40 epochs (called retraining). Our DTS-based sparse training
was applied to retraining. Compared to the dense retraining, our
architecture reduced the total retraining time by 4.17× with zero
skipping and 4.84× with DTS-0.5 without any accuracy loss.

Light-weight CNN: To see the applicability of our sparse train-
ing to light-weight models, we profiled the training iterations of
SqueezeNet-v1.1 [14], which shows similar recognition accuracy as
AlexNet. We find that the network has about 70% zeros in𝐺𝑜 of con-
volutional layers, which means that SparTANN can achieve about
3.3× speedup over a dense architecture via simple zero skipping
alone.

5.2.3 Comparison with Previous Training Accelerators. Table 2 com-
pares various training hardware and a mobile GPU. First note that
there is quite a variance among the compared architectures in
terms of supported computation (BP, WU, or both) and the scope
of hardware in reporting power (with or without on-chip buffers
and DRAM). SparTANN supports both BP and WU, and its power
figures include that of on-chip buffers and DRAM.

Compared with dense accelerators, such as Tegra X2 and DaDi-
anNao, SparTANN shows higher GOPS/W though it uses an older
technology. TrainWare, despite being dense hardware, shows very
high energy efficiency. One reason is its use of 16-bit precision
(unclear whether it is floating- or fixed-point) but it also optimizes
on-chip memory access, lowering energy consumption significantly.
For comparison, we implemented a 16-bit version of SparTANN
using brain float [4], with the number of MACs doubled so that the
dense buffer has the same width. The result is that SparTANN is
more energy-efficient than TrainWare despite supporting both BP
andWU on the same datapath. We note that the optimizations made
by TrainWare and ours are largely orthogonal, and SparTANN’s

energy efficiency could be improved significantly by using separate,
more specialized datapaths for BP and WU.

DLAC reports the highest area efficiency, but after scaling for
technology and frequency differences, its area efficiency is much
lower than that of ours (14 vs. 40 GOPS/mm2). DLAC has relatively
large overhead for sparse processing because PEs in DLAC include
individual zero-skip logic. Compared with the other zero-skipping
hardware, Selective Grad., our speedup is 7.30∼11.87× over dense
training, which is much higher than the reported speedup numbers
by the previous work (2.63∼3.13×) for similar-sized CNNs. This is
because the previous work exploits sparsity from ReLU only (∼ 50%
sparsity) whereas SparTANN can exploit sparsity frommax-pooling
(> 80% sparsity) and ReLU as well as aggressive sparsification.
While the previous work reports the highest energy efficiency, this
figure doesn’t include on-chip buffers, which typically dominate
on-chip area and power, nor DRAM power. Since their baseline
architecture [1] consumes about 62.38% of on-chip power in buffers
and very high DRAM energy which is about 20× of on-chip en-
ergy including PEs and buffers, we expect their GOPS/W could
decrease by at least 50×. Also it uses fixed-point arithmetic and a
finer technology.

6 CONCLUSION
We presented sparse training hardware that can effectively hide
sparse processing overhead, and a low-cost algorithm that can curb
the impact of sparsification on training accuracy and convergence.
Our detailed analysis of training performance as well as hardware
efficiency suggests that sparse training can indeed offer a significant
advantage over dense hardware for convolution layers.
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