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ABSTRACT

Resistive RAM (ReRAM) is a promising technology with such ad-

vantages as small device size and in-memory-computing capability.

However, designing optimal AI processors based on ReRAMs is

challenging due to the limited precision, and the complex interplay

between quality of result and hardware efficiency. In this paper we

present a study targeting a low-power low-cost image classification

application. We discover that the trade-off between accuracy and

hardware efficiency in ReRAM-based hardware is not obvious and

even surprising, and our solution developed for a recently fabri-

cated ReRAM device achieves both the state-of-the-art efficiency

and empirical assurance on the high quality of result.
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1 INTRODUCTION

Recently, the resistive RAM (ReRAM) technology is getting much at-

tention [21, 22] due to many advantages including small device size,

non-volatility, and compatibility with the CMOS technology. Also

some devices show very high on-off ratio (Ron/Roff ) [16], enabling

in-memory computing, which is crucial to overcoming the von

Neumann bottleneck and the memory wall problem in computer

architecture [23].

In-memory computing with ReRAM is realized by arranging a

number of ReRAM cells in a 2D crossbar array structure and ac-

tivating all the rows (wordlines) simultaneously, which produces

the result of matrix-vector multiplication (MVM) computation at
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bitlines, performingO(n2) computation in a single cycle. The MVM

operation is the main computation kernel in neural network appli-

cations, and there has been much previous work on ReRAM-based

neural network hardware, suggesting order-of-magnitude improve-

ment in energy efficiency [5, 7, 20ś22].

However, when it comes to actual hardware implementation,

there is very little work reported, and the reported accuracy is

generally low as well (around 91% for the MNIST dataset) [14, 17].

There are many reasons for that but an important one is the pro-

gramming difficulty: programming ReRAM devices in a crossbar

array is extremely difficult due to write disturbance, limited en-

durance, and long write time [26]. Consequently, to avoid frequent

re-programming of ReRAM cells at runtime, ReRAM-based neural

networks unfold all synapses (= ReRAM cells) spatially [5, 7, 20],

resulting in a fully-parallel architecture, i.e., all neurons/synapses

are implemented using dedicated resources. Not only that, but all

the layers of a network should be unrolled in a fully parallel fashion.

Thus, from the system-level design perspective, designing ReRAM-

based full-network hardware using today’s technology involves

two key problems: (i) how to optimize system performance (i.e.,

classification accuracy) while meeting stringent area constraints,

and (ii) how to efficiently and effectively implement all types of lay-

ers, especially normalization layers. The first challenge may appear

similar to that of digital CMOS-based neural networks, but is in fact

very different, because unlike digital CMOS-based neural networks,

which have the freedom of trading between area and delay, ReRAM-

based neural networks cannot trade off delay for smaller area. To

reduce area, one must resort to algorithmic optimizations such as

reducing network size and precision, which are bound to affect

accuracy. This calls for complex algorithm-architecture co-design,

which is lacking in the current literature.

At the same time, to maintain high accuracy in low-precision

networks, batch normalization (BN) layers are found to be crucial [6].

But since a straightforward implementation of BN is quite expensive

especially compared to ReRAM-based layers, it is worthwhile to

explore alternative methods.

In this paper, we present an accuracy-aware design optimization

study for a ReRAM-based neural network, targeting low-cost, low-

power applications. We explore network size, bit precision, and

various ways to implement BN for optimal design in terms of area

and accuracy. Compared with previous work on ReRAM-based neu-

ral networks, whereas they emphasize on architectural scalability

[5, 7, 20], our optimization considers both accuracy and efficiency,

and is also readily implementable using today’s technology.

In this paper we make the following contributions. First, we

present an algorithm-architecture co-optimization study targeting a
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Figure 1: System overview. (a) Top-level system architecture

where the priority encoder outputs class label. (b) A layer is

implemented by a ReRAM crossbar array and I-V converters

(realizing activation function).

low-power, low-cost image classification application scenario such

as in IoT (internet-of-things) devices, optimizing both accuracy

and hardware complexity together. Second, we analyze efficient

ways to implement BN for analog-based neural networks, including

a novel scheme that is hardware-friendly. Finally, based on the

previous work and our own circuit implementation, we estimate

that our architecture can deliver extremely high efficiency (361.02

TOPS/mm2 and 589.57 TOPS/W) at acceptable accuracy (about

95.97% for MNIST in simulation).

2 RELATEDWORK

2.1 ReRAM-based Neural Network Hardware

Most of the previous work on ReRAM-based neural network hard-

ware falls into the category of architecture study focusing on hard-

ware efficiency (e.g., TOPS/W), without much attention to the func-

tional correctness of such systems beyond simple noise analysis

(e.g., [20]). In ISAAC [20], activation and weights are represented

in 16-bit digital signals, which should be sufficient for inference but

require ADC/DAC. To minimize the overhead of ADC/DAC, ISAAC

processes digital activation in a bit-serial manner, and analog-to-

digital conversion, is done by a single ADC in a time-multiplexed

manner, which limits computation throughput while saving area.

Even then, ADC/DAC account for 23.06% of area while ReRAM

crossbar takes only 0.47%. This shows a potential for higher effi-

ciency of co-optimizing precision and area.

BISAAC [7] reduces the overhead of peripheral circuit by execut-

ing XNOR operation, achieving about 2.7× improvement in power

consumption over ISAAC. However, all the above work considers

hardware efficiency only, without optimizing the neural network

algorithm (e.g., using hardware-friendly low precision networks).

There are a few papers reporting ReRAM-based deep neural

network (DNN) chips that have been actually built, but in those

cases the reported DNN accuracy is universally low. A ReRAM-

based DNN was fabricated [17], targeting MNIST with three fully

connected layers. While its energy efficiency is very high (66.5

TOPS/W), the accuracy is less than 91%. Another ReRAM-based

neural network chip [14] targeting MNIST consists of two fully-

connected layers, and despite the newly endowed on-chip learning

capability, its accuracy is under 92%.

On the other hand, very impressive accuracy of 98.8% for MNIST

and 88.52% for CIFAR-10 has been reported [2, 24], but the hard-

ware consists of a ReRAM memory only while the rest of DNN

computation, even including the subtraction operation between

the positive-weight and negative-weight crossbar outputs, is im-

plemented on an FPGA and a host computer. On top of that, in

this work the crossbar columns are accessed sequentially, in a way

analogous to ISAAC, to minimize the sneakpath problem at the

expense of much reduced computation throughput, which cannot

realize the full potential of a crossbar architecture.

2.2 Low-Precision DNN

In this paper precision refers to the number of quantization levels

used for a certain variable, such as weight and activation, in a quan-

tized neural network. Previous work on neural network quantiza-

tion shows that it is possible to achieve near-baseline performance

if we binarize only either activation or weights of a neural network

(but not both), where the baseline is one that uses floating-point for

both [4, 8, 15]. For instance, using ternary or binary weights with

floating point activation is shown to give 84∼81% top-5 accuracy

on ImageNet [19] classification [15], which is close to the 86.76%

baseline.

However, binarizing both activation and weights [6], which is

the most hardware-friendly version, seems to work only for mid-

to-small datasets such as MNIST [12] and CIFAR-10 [10]. Also the

authors [6] stress that having BN layers is crucial to achieving

high accuracy for low-precision networks, which agrees with our

experimental results.

3 DESIGN FRAMEWORK CONSIDERING
BOTH ACCURACY AND EFFICIENCY

3.1 System Architecture

To illustrate our design framework we consider a small, yet highly

efficient neural network processor for extremely cost-sensitive ap-

plications such as IoT devices. For dataset, we use the MNIST hand-

written digit recognition dataset [12]. An analysis of the previ-

ous work [7, 20] suggests that ADC/DAC consumes most of the

area/power budget even when ADC is shared across all columns of

an ReRAM crossbar array. This motivates the use of analog activa-

tion, which can eliminate the ADC/DAC circuitry between layers.

While using digital activation may be necessary to support very

large DNN models and complex datasets, not all applications must
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support the largest datasets, and certainly not ours targeting IoT

devices.

As mentioned earlier, all layers and all neurons are implemented

with dedicated resources, and the output of the first layer is fed to

the second layer, and so on, possibly with digital or analog buffers

inserted between layers to maximize throughput, as illustrated in

Figure 1.

To maximize area efficiency we must minimize area while not

sacrificing inference accuracy. In our design, area is directly propor-

tional to the number of neurons and synaptic weights. Therefore,

we explore different input sizes (e.g., using image cropping) as well

as different activation/weight precisions. However, there are also

normalization layers such as BN [9] and local response normaliza-

tion (LRN) [11] that are shown to be essential for high accuracy.

How to handle those layers strongly impacts the accuracy and cost

of the hardware implementation. Thus, we next discuss BN, which

is popular among extremely low precision networks [6].

3.2 Batch Normalization and Activation
Quantization

A BN layer is defined as follows, where yj is the jth -channel’s

output of the preceding layer, µ j and σj are the mean and variance

of yj across the batch, and γj and βj are the trainable parameters.

BN
(

yj
)

=

yj − µ j

σj
γj + βj (1)

During inference, the batch size is often very small (e.g., 1), in

which case a pre-computed version of µ j and σj (computed across

all training data) is used. Therefore we can merge BN into the

preceding layer as follows (Note: BN is applied before activation

function). For simplicity, we assume that the preceding layer is a

fully-connected layer, but it can be merged equally well to convolu-

tion layers: yj =
∑

i xiwi j + bj .

BN
(

yj
)

=

γj

σj

(

yj +

(

−µ j +
σj

γj
βj

))

(2)

=

∑

i

xiw
′
i j + b

′
j (3)

The above holds true if we definew ′
i j and b

′
j as follows.

w ′
i j =

γj

σj
wi j , (4)

b ′j =
γj

σj

(

bj +

(

−µ j +
σj

γj
βj

))

(5)

Thisway, we canmerge a BN layer into the preceding fully-connected

or convolution layer for inference.

It is important to understand that when quantizing a network,

we must quantize the original weightwi j and notw ′
i j , in order to

reap the benefit of BN. Unfortunately, this means that the above

merging method makes quantized weights no longer quantized

after merging. For instance, if wi j is binary ({−1,+1}), w ′
i j may

not be binary, and may require very high precision. While the

above merging method may still be used (with some error) for high-

precision weights, for low-precision weights (e.g., binary weights)

much larger error can be introduced, except for one case: binary

activation case.

3.2.1 Binary Activation. If activation is binary, the activation func-

tion is the sign function. Hence we can ignore magnitude, and

rewrite y′j (activation output after BN) as follows [25]. This is an

exact method that can merge BN into the preceding layer.

w ′
i j = sign

(

γj

σj

)

wi j , (6)

b ′j = sign

(

γj

σj

) (

bj +

(

−µ j +
σj

γj
βj

))

(7)

3.2.2 Multi-bit Activation and SBN. If activation is non-binary, one

possible workaround (to keep weights quantized) is to merge BN

into the following activation function. For instance, a scaling pa-

rameter,
γj
σj
, can be multiplied into the domain of the activation

function, which gives mathematically identical result. The prob-

lem with this method is that the scaling parameter differs across

channels, leading to very complex hardware design.

As an approximate method, we propose shared-parameter BN

(SBN), which is to share the scaling parameter
γj
σj

across all channels,

to simplify hardware implementation. However, since this reduces

the number of BN parameters, performance loss may be inevitable.

Therefore, when deciding the precision for activation, all the above

issues must be taken into account to get the best of both accuracy

and hardware efficiency.

3.3 Weight Quantization

There are three factors affecting the decision of the weight quanti-

zation. First, the network itself dictates the minimum precision for

weights to guarantee a certain level of inference accuracy. Second,

multi-bit ReRAM cells [1] can naturally represent multi-bit weight

values. Third, if the precision required by the algorithm is higher

than that of ReRAM cells, multiple ReRAM cells can be used to-

gether to represent a single weight value, which incurs additional

hardware overhead such as digital shifter-adder [20] or an analog

equivalent to combine the results from multiple bitlines.

4 ALGORITHM-ARCHITECTURE
CO-OPTIMIZATION

We explore various network designs evaluating their performance.

Our model is based on the MNIST DNN of the BinaryNet frame-

work,1 which uses binary values for both activation ({0, 1}) and

weight ({−1, 1}), but we explore different precision and input sizes

in a bid to strike a better balance between hardware efficiency and

accuracy. The BinaryNet for MNIST consists of fully-connected

layers only (along with BN), but for other datasets such as CIFAR-10

and SVHN, BinaryNet uses convolutional neural networks (CNNs),

to which our methodology is equally applicable. For neural network

training, we use the Torch7 framework with the default setting,

which is extended to support our design exploration.

The final architecture that gives the best tradeoff between accu-

racy and area, turns out to be a binarized network with this config-

uration: 400-128-128-10. The input size is cropped to 20x20(=400),

and the two hidden layers have 128 neurons each. The precision of

both weights and activations is determined to be 1-bit, which allows

for the use of a simpler BN implementation. In the following, due

1https://github.com/itayhubara/BinaryNet
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Table 1: Input size exploration (hidden size: 128, 128)

Image Size Accuracy (%) Network Size (#bits)

28 × 28 96.08 118 016

24 × 24 96.16 91 392

20 × 20 96.23 68 864

16 × 16 95.46 50 432

12 × 12 90.38 36 096

Table 2: Hidden layer size exploration (input size: 20x20)

Hidden Layer Size Accuracy (%) Network Size (#bits)

192, 192 96.74 115 584

160, 160 96.61 91 200

128, 128 96.23 68 864

96, 96 94.82 48 576

64, 64 93.49 30 336

Table 3: Weight precision exploration (activation: 1-bit,

#neurons is adjusted to make total # of synaptic weight bits

constant)

Weight Accuracy (%)

Binary ({−1, 1}) 96.23

2-bit ({−2, −1, 0, 1}) 92.99

3-bit ({−4 ∼ 3}) 91.92

4-bit ({−8 ∼ 7}) 90.81

6-bit ({−32 ∼ 31}) 87.28

8-bit ({−128 ∼ 127}) 66.08

Table 4: Activation precision and BN exploration (MNIST)

Activation
Baseline

w/o BN w/ SBN
Arith. Signed

(w/ BN) Merge Merge

Binary ({0, 1}) 96.23 9.57 95.72 87.54 95.97

2-bit ({0, 1, 2, 3}) 95.97 8.82 91.36 69.23 93.39

3-bit ({0 ∼ 7}) 96.25 8.99 90.17 65.98 88.14

6-bit ({0 ∼ 63}) 96.71 9.30 90.21 58.06 89.19

8-bit ({0 ∼ 255}) 97.30 9.27 89.11 57.89 89.00

to space, limitation we give a justification of the final architecture

instead of the entire design exploration, which has a combinatorial

complexity.

4.1 Effect of Input Cropping

Reducing the input size is primarily motivated by the I/O pin restric-

tion. Moreover, reducing the input size can have a huge impact on

the total number of synaptic weights. Input cropping is preferred

to image scaling due to its cheaper computation (we binarized

the input). Table 1 summarizes the result (i.e., test accuracy) of

input cropping, where the rest of the network consists of 2 fully-

connected layers with 128 neurons each. Our training result shows

that there is virtually no degradation until 20 × 20 compared to

the original size, 28 × 28. Cropping further degrades accuracy sig-

nificantly, over 5 percent point (%p) at 12 × 12 image. Due to the

relatively large size of the input layer in our DNN, input cropping

contributes to about 42% reduction of the network size.

Table 5: MNIST multi-bit weight accuracy (%) after merging

BN (activation: 1-bit, 400-128-128-10)

Weight Baseline Arith. Merge Signed Merge

Binary ({−1, 1}) 96.23 87.54 95.97

2-bit ({−2, −1, 0, 1}) 96.84 9.58 96.87

3-bit ({−4 ∼ 3}) 97.08 95.09 97.06

4-bit ({−8 ∼ 7}) 96.83 96.43 96.82

6-bit ({−32 ∼ 31}) 97.17 96.97 97.16

8-bit ({−128 ∼ 127}) 96.82 96.87 96.76

4.2 Exploring Hidden Layer Size

Next we consider the effect of different hidden layer sizes (we vary

both the layer sizes together). As compared in Table 2, increasing

layer size gives better result in general but also increases the cost.

Unlike the input size which is only related to the first layer, the

hidden layer size affects every layer, actually quadratically in middle

layers. Considering both accuracy and cost, the table shows that

using 128 neurons is the best.

4.3 Exploring Weight Precision

Unlike network size, changing weight precision has deeper con-

sequences. Everything else being equal, higher precision should

produce better accuracy, but it would not only increase the number

of ReRAM cells required, but increase the overhead of periphery.

For example, if multiple ReRAM cells are needed to represent a

weight value, we need to combine the results from multiple bitlines,

such as using shifter-adder or its analog equivalent. Therefore in

this exploration we vary both weight precision and the number of

weight parameters at the same time such that the total number of

weight bits remain roughly the same.

Table 3 summarizes the result. The BN layer is implemented in

software. Our result suggests that when the network size is fixed,

using 1-bit weights gives the highest accuracy.

4.4 Exploring Activation Precision and BN

Table 4 shows how multi-bit activation and BN affect performance

(i.e., inference accuracy). Without BN, networks fail to train regard-

less of the activation precision. With BN, the binary case is very

compelling, achieving within 1%p degradation compared to 8-bit’s

performance. The result for SBN is quite surprising, as it suggests

that binary activation can be much better than few-bit activation;

few-bit activation requires costly BN hardware whereas 1-bit acti-

vation works well even without BN. This is understandable if we

remember that the BN problem is about weight precision, which is

fixed to 1-bit in our case; thus, increasing weight precision doesn’t

help.

The 5th column of Table 4 lists the test accuracy after merging

BN layers using (4) and (5) (referred to as arithmetic merge). As

predicted, large errors are introduced by the arithmetic merge. Note

that the merged version is mathematically the same as the baseline

if weights were not quantized. Thus this accuracy drop is due to

the forced quantization ofw ′ to 1-bit (see also Section 4.5). On the

other hand, if we use (6) and (7) (referred to as signed merge), the

accuracy is preserved in the case of binary activation. (The small

discrepancy is believed to be due to numerical error.) Since multi-bit

activation could be thought of as a łsupersetž of the binary case, we
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Figure 2: (a) Operating table and (b) I-V converter’s I/O curve.

apply the signed merge to multi-bit activation as well. However, the

result shows that the binary case is clearly the best. This is because

multi-bit activation uses a different activation function (tanh), and

signed merge is mathematically correct only if it is followed by the

sign-activation layer.

While the above results are without retraining, retraining didn’t

improve the performance at all. We also tried training the networks

from scratch, starting from the merged version, which didn’t train

at all, probably due to the absence of BN layers.

In summary the results in this section suggest the following.

First, BN is essential for binary-weight networks. Second, hardware-

friendly BN implementations such as SBN can recover the accuracy

to some degree. Third, the best option, at least for the MNIST

network, is to use binary activation if weights are binary, meaning

that for our application multi-bit analog activation is not necessary.

In addition, these results demonstrate we must consider net-

work’s performance using actual training experiments to determine

the best hardware architecture satisfying both efficiency and quality

requirements, reinforcing the need for techniques such as ours.

4.5 Additional Experiment on BN Merging

To see if the accuracy drop in BN merging is really caused by binary

weight, we perform an additional experiment. Table 5 shows the

result of arithmetic vs. signed merge applied to the MNIST DNN

with multi-bit weights. This result is slightly different from that of

Table 3, since the size of the network is fixed here. Nonetheless, the

result shows that the network with merged BN can achieve near-

baseline accuracy if weight precision is 3-bit or higher, confirming

that accuracy drop in BN merging is due to low-precision weights.

Our findings regarding BNmerging can be summarized as follow-

ing. There are several cases but when activation is binary, signed

merge is the best policy as accurate as using original BN. However,

for the case that both activation and weight have enough precision

(e.g.,≥ 3 bits), arithmetic merge is the best. Lastly, when weight is

low-precision and activation is at least 3-bit, SBN or signed merge

is the best (SBN is slightly better).

Additionally, this result shows that low-precision analog acti-

vation may not be very advantageous; rather, binary activation

multi-bit weight can be a much better combination due to signed

merge.

5 HARDWARE EFFICIENCY EVALUATION

5.1 Architecture Detail

Figure 1 illustrates the top-level architecture of our optimized de-

sign. The network is a binarized neural network, with each layer

(b) Power Breakdown
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Figure 3: Area and power breakdown.

having 400-128-128-10 neurons. Though our design is small, it is

agreeable because we are aiming at a chip that can be implemented

on a very small silicon area with an existing ReRAM fabrication

backend, which is not necessarily state-of-the-art. The total number

of ReRAM crossbar arrays is 6, each being no greater than 128×128.

The amount of peripheral circuit is minimal as it uses no ADC/DAC

except for the primary output.

Each layer consists of one or more ReRAM crossbar arrays sur-

rounded by peripheral circuit. To represent negative weight, we

use a reference current of value (ILRS + IHRS)/2 as illustrated in

Figure 2a. This scheme, which is simpler than using two arrays, is

possible due to our weights being binary. In our implementation,

we create the reference current using a fixed resistor, which is more

reliable than programming a ReRAM with half the HRS.

Each column of a crossbar array has two outputs: (i) ISUM , which

is the result of a dot-product between the input and a weight vector,

and (ii) the reference current (summed along the column, thus

having the value of (ILRS + IHRS)/2 · N , where N is the number of

rows). The reference current represents how much ISUM is shifted.

Thus the I-V converter uses the reference current as a threshold

to determine the output (see Figure 2b). The I-V converter also

serves as the activation function, which is a simple binary function.

Current mirror is used before the I-V converter to minimize the

output load effect.

On the input side, we have flip-flops (for optional pipelining), as

well as drivers and buffers for programming ReRAMs. Last layer’s

output is encoded as a binary number to be out through I/O pins.

5.2 Comparison with Previous Work

To evaluate our architecture, we follow the same modeling frame-

work as in [20], except that the new components such as current

mirror and I-V converter are implemented using Cadence Virtuoso

up to layout, from which we obtain area and power. Figure 3 shows

the area and power breakdown of our design. The operating fre-

quency is determined to be 100 MHz from bandwidth analysis of

I-V converter circuit.

Table 6 summarizes the comparison. Note that the numbers are

based on different process technologies. Clearly, ReRAM-based

hardware gives much better area and energy efficiency than dig-

ital CMOS-based neural networks, whereas the latter has more

flexibility and scalability for larger neural networks. Among the

ReRAM-based ones, we also provide the technology-scaled effi-

ciency numbers, which should be taken with caution as analog

components may not be as easily scaled as digital components.
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Table 6: Comparison with previous work (Efficiency is peak efficiency)

Approach
Precision #bits per

Area Efficiency Energy Efficiency Technology
Activ. Weight ReRAM

Digital Eyeriss [3] 16-bit 16-bit NA 3.43 GOPS/mm2 151 GOPS/W 65 nm

CMOS UNPU [13] 1-bit 1-bit NA 460.75 GOPS/mm2 50.6 TOPS/W 65 nm

BinarEye [18] 1-bit 1-bit NA 1.40 TOPS/mm2 230 TOPS/W 28 nm

ISAAC (CE, estimated) [20] 16-bit 16-bit 2 bits 478.95 GOPS/mm2 627.5 GOPS/W 32 nm

ReRAM Mochida et al. [17] 1-bit 1-bit 1 bit 26.19 (828.7)* GOPS/mm2 20.7 (655)* TOPS/W 180 nm

Chen et al. [2] 1-bit ternary 1 bit NA 16.95 (69.94)* TOPS/W 65 nm

Ours (estimated) 1-bit 1-bit 1 bit 361.02 TOPS/mm2 589.57 TOPS/W 32 nm

*Note: Shown in parentheses is the efficiency when the technology is scaled to 32 nm.

Nevertheless, the comparison shows that our design is much

more efficient than ISAAC, whose area and power numbers are also

estimated using the same methodology. There are several factors

for this difference. First, ISAAC is comprised of more than 2000

blocks, each of which is about the size of our design. Consequently

ISAAC uses a large portion of area to non-computing components

(e.g., eDRAM buffers and routers). If we consider only one such

block (called IMA in [20]), its area efficiency is increased to 1.55

TOPS/mm2. Second, ISAAC implements 16-bit multiplication using

2-bit ReRAMs and assumes much higher operating frequency (1.2

GHz vs 100 MHz of ours). Converted into 1-bit multiplication on

1-bit ReRAMs, the effective efficiency is increased by 16× 8-fold (at

1.2 GHz). Finally, the remaining gap is explained by the fact that

crossbar arrays in ISAAC-CE generate 8 outputs per cycle due to

the ADC bottleneck. By contrast ours generates all outputs at the

same time, which can give up to 16× speedup for 128-column array.

To sum, the main advantage of our design comes from precision

optimization and ReRAM array-level parallelism.

In terms of energy efficiency, ours is similar to that of [17], which

is custom-designed for MNIST with 1-bit precision. Another work

[2] has much lower energy efficiency due to on-chip learning. All

in all, our approach can generate very competitive design in terms

of area and energy efficiency while ensuring high accuracy.

6 CONCLUSION

In this paper we presented an extremely cost-efficient neural net-

work based on ReRAM crossbar array and analog computing. By

replacing costly peripheral circuitry such as ADC/DAC with analog

counterparts, we can achieve very high efficiency per area and

energy, while ensuring that our scaled-down neural network pro-

cessor does give high quality of result. One of the key ingredients in

such low-precision networks is batch normalization, for which we

examined multiple methods. Our design framework can be useful

for applications where precision (or quality of result) can be traded

off for higher hardware efficiency such as in IoT devices.
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