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Non-stationarity is ubiquitous in human behavior and addressing it in the contextual bandits 
is challenging. Several works have addressed the problem by investigating semi-parametric 
contextual bandits and warned that ignoring non-stationarity could harm performances. Another 
prevalent human behavior is social interaction which has become available in a form of a 
social network or graph structure. As a result, graph-based contextual bandits have received 
much attention. In this paper, we propose SemiGraphTS, a novel contextual Thompson-sampling 
algorithm for a graph-based semi-parametric reward model. Our algorithm is the first to be 
proposed in this setting. We derive an upper bound of the cumulative regret that can be expressed 
as a multiple of a factor depending on the graph structure and the order for the semi-parametric 
model without a graph. We evaluate the proposed and existing algorithms via simulation and real 
data example.

1. Introduction

In contextual multi-armed bandits (MAB), a learning agent sequentially chooses actions while balancing to maximize the reward 
(exploitation) and to learn the reward mechanism as a function of contexts with higher precision (exploration). Algorithms for 
contextual MAB problems have demonstrated their usefulness in many applications including recommendations of news articles, 
advertisements, or behavioral interventions [16,22,23]. Thompson sampling (TS)-based algorithms randomly choose an action from 
repeatedly updated posterior, and have been widely used among other bandit algorithms [21,12,3].

The semi-parametric contextual bandit [11,14,13] models the mean of the reward by a linear function of the contexts and a 
time-varying intercept. The algorithms for semi-parametric models allow the reward distribution to change over time in a non-

stationary manner. For example, behavior may change over time depending on the user’s circumstances or preference for a shopping 
item may change according to a time trend. These may not be captured in the context vectors. In the single-user setting, the semi-

parametric bandits have demonstrated success in accommodating non-stationarity in mobile health and product recommendation 
[11,13,19,18].
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In many real-life settings, there are multiple users and the relationships among the users in a social network are often available 
as side information. Such graph information has been utilized in recommendation [16,9,20]. Several graph-based contextual MAB 
algorithms have been proposed to take the graph information into account under the ordinary linear reward assumption [6,10,24,

17,26]. The aforementioned graph-based methods have shown to take advantages of a graph structure and perform well, but may be 
restrictive in real-life settings when the rewards tend to change over time.

Our goal is to construct a semi-parametric bandit algorithm that accommodates multiple users equipped with a network, with 
practically feasible computational cost. To the best of our knowledge, our algorithm is the first algorithm proposed in this setting. 
The main contributions of the work presented in this paper are as follows.

• We propose SemiGraphTS (semi-parametric-graph-Thompson-sampling), a novel TS algorithm for a setting in which each user’s 
reward follows the semi-parametric model and user-specific parameters are regularized by the given graph.

• We derive an upper bound of the cumulative regret for SemiGraphTS, which be expressed as a multiple of a factor depending 
on the graph structure and the bound from the semi-parametric model without a graph.

• We propose a novel scalable estimator for the user-specific parameter that incorporates the estimators from the neighbors defined 
by the graph structure while conditioning out time-dependent coefficients. This plays a crucial role in building the SemiGraphTS
algorithm. We establish a high-probability upper bound for its estimation error.

2. Model and problem setting

We study the semi-parametric contextual bandit problem for multiple users equipped with a user network. Suppose that there are 
𝑛 users, say 𝑗 ∈ 𝑉 = {1, … , 𝑛}. For each time step 𝑡 = 1, … , 𝑇 , the learning agent is instructed which user to serve, say 𝑗𝑡. The agent is 
supposed to recommend an item or pull an arm for the target user based on the previous action history and the contexts describing 
the items. Suppose that there are 𝑁 candidate arms, say 𝑖 = 1, … , 𝑁 , and that a context vector 𝑏𝑖(𝑡) ∈ℝ𝑑 represents the feature of the 
𝑖-th item at time 𝑡. We denote by 𝑎(𝑡) the selected arm to recommend to the target user. We let 𝑟𝑖,𝑗 (𝑡) be the reward for arm 𝑖, user 
𝑗 at time 𝑡. Upon the action, the user returns a user-specific reward for the chosen arm, say 𝑟𝑎(𝑡),𝑗𝑡 (𝑡). The information given to the 
learner at time 𝑡 is formally described as filtration 𝑡−1 = {𝑗𝑡, {𝑏𝑖(𝑡)}𝑁𝑖=1} 

⋃(⋃𝑡−1
𝜏=1{𝑗𝜏 ,{𝑏𝑖(𝜏)}

𝑁
𝑖=1, 𝑎(𝜏), 𝑟𝑎(𝜏),𝑗𝜏 (𝜏)}

)
.

The multiple-user semi-parametric reward model is described as below:

𝑟𝑖,𝑗 (𝑡) = 𝜈𝑗 (𝑡) + 𝑏𝑖(𝑡)𝑇 𝜇𝑗 + 𝜂𝑖,𝑗 (𝑡), (1)

for 𝑖 = 1, … , 𝑁 , 𝑗 = 1, … , 𝑛, and 𝑡 = 1, … , 𝑇 . Here, 𝜇𝑗 ∈ℝ𝑑 denotes the unknown user-specific parameter that represents the preference 
of the 𝑗-th user for a given context. The intercept 𝜈𝑗 (𝑡) indicates the baseline reward for user 𝑗 at time 𝑡. We do not impose any 
parametric assumption on the functional form of 𝜈𝑗 (𝑡); we allow the baseline to arbitrarily change over time and users, whatever 
gradually and abruptly. When 𝜈𝑗 (𝑡) = 0 for all 𝑗, (1) is reduced to the standard linear reward model. Without loss of generality, we 
assume a uniform boundedness of the contexts and true parameters, i.e., |𝜈𝑗(𝑡)| ≤ 1, ‖𝑏𝑖(𝑡)‖ ≤ 1 and ‖𝜇𝑗‖ ≤ 1 for all 𝑖, 𝑗 and 𝑡, where ‖ ⋅ ‖ denotes the vector 𝓁2 norm. This assumption can be satisfied by rescaling the data. We assume that the random error 𝜂𝑖,𝑗(𝑡)
satisfies 𝔼(𝜂𝑖,𝑗 (𝑡)|𝑡−1) = 0. If 𝑛 = 1, (1) coincides with the single-user semi-parametric bandit problem. In addition, we assume that 
𝜂𝑖,𝑗 (𝑡) given 𝑡−1 is 𝑅-sub-Gaussian, that is, for every 𝑐 ∈ℝ,

𝔼
[
exp{𝑐𝜂𝑖,𝑗 (𝑡)}|𝑡−1] ≤ exp(𝑐2𝑅2∕2), (2)

for all 𝑖, 𝑗, 𝑡, which is a common assumption in the literature for theoretical derivations.

The optimal arm 𝑎∗(𝑡) is defined as the arm that maximizes the expected reward for the 𝑗𝑡-th user given the history, that is, 
𝑎∗(𝑡) = argmax𝑖 𝔼(𝑟𝑖,𝑗𝑡 (𝑡)|𝑡−1) = argmax𝑖{𝜈𝑗𝑡 (𝑡) + 𝑏𝑖(𝑡)

𝑇 𝜇𝑗𝑡} = argmax𝑖{𝑏𝑖(𝑡)𝑇 𝜇𝑗𝑡}. Although 𝑎∗(𝑡) may be different across users, in each 
round 𝑡, only one user enters, and we omit the subscript. Regret at time 𝑡 is defined by the difference between the expected rewards 
from the optimal arm and the chosen arm,

𝑟𝑒𝑔𝑟𝑒𝑡(𝑡) = 𝔼(𝑟𝑎∗(𝑡),𝑗𝑡 (𝑡)|𝑡−1) − 𝔼(𝑟𝑎(𝑡),𝑗𝑡 (𝑡)|𝑡−1) = 𝑏𝑎∗(𝑡)(𝑡)𝑇 𝜇𝑗𝑡 − 𝑏𝑎(𝑡)(𝑡)𝑇 𝜇𝑗𝑡 .
The goal of the agent is to minimize the cumulative regret, 𝑅(𝑇 ) =∑𝑇

𝑡=1 𝑟𝑒𝑔𝑟𝑒𝑡(𝑡).
In graph-based bandit settings, the user network is given a priori as the side information. Without any information on the user 

network, the problem reduces to learning 𝑛 independent instances. In order to clarify the concept, we initially assume that the given 
network is undirected and simple. Nonetheless, our approach can readily be extended to accommodate weighted and/or directed 
networks. This will be discussed further in the final portion of Section 4. Let  = (𝑉 , 𝐸) be an undirected simple graph, where a node 
𝑗 ∈ 𝑉 = {1, … , 𝑛} corresponds to a user and an edge {𝑗, 𝑘} ∈𝐸 represents the link between users. There are several ways to uniquely 
represent  as a Laplacian matrix 𝐿 = (𝑙𝑗𝑘) ∈ℝ𝑛×𝑛. We employ the random-walk normalized Laplacian defined by

𝑙𝑗𝑗 = 1, 𝑙𝑗𝑘 =

{
−1∕deg(𝑗) if {𝑗, 𝑘} ∈𝐸,

0 otherwise,
(3)

for 𝑗, 𝑘 = 1, … , 𝑛 with 𝑗 ≠ 𝑘. The choice of random-walk normalized Laplacian is particularly useful in the regret analysis and dis-

cussed after the proof sketch. In addition, let Δ𝑗 =
∑𝑛
𝑘=1 𝑙𝑗𝑘𝜇𝑘 = 𝜇𝑗 −

∑
𝑘∶{𝑗,𝑘}∈𝐸 𝜇𝑘∕ deg(𝑗). Δ𝑗 is the difference between the parameter 
2

associated with user 𝑗 and the average of her neighbors’ parameters. Clearly, ‖Δ𝑗‖ is small if 𝜇𝑗 and its neighboring 𝜇𝑘 ’s are similar. 
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In an extreme case, we have Δ𝑗 = 0 if 𝜇𝑗 = 𝜇𝑘 for all neighbors 𝑘. In Section 4, we will see that the regret bound and the parameter 
convergence rate depends on max1≤𝑗≤𝑛 ‖Δ𝑗‖, the maximum “dissimilarities” between user-specific parameters. Our working assump-

tion is that ‖Δ𝑗‖ is small for all 𝑗, i.e., the user-specific parameters are smooth on the graph. Without loss of generality, we assume 
that  is connected. If not, each connected component of users do not share any information of parameters and it suffices to learn 
each connected component separately.

In addition, let ‖𝑥‖𝐴 =
√
𝑥𝑇 𝐴𝑥 for 𝑥 ∈ℝ𝑑 and a positive semi-definite 𝐴 ∈ℝ𝑑×𝑑 . A matrix-valued inequality 𝐴 ≥𝐵 (𝐴 > 𝐵) denotes 

that 𝐴 −𝐵 is positive semi-definite (positive definite).

2.1. Related work

Since linear contextual MAB problems for single users were investigated [2,3], there has been a rich line of works on contextual 
bandits in recent years. For conciseness, we focus on works that consider either the semi-parametric model for single user or the 
linear model for multiple user equipped with graph.

Semi-parametric contextual MABs for single user The semi-parametric reward model for a single user [11,14,13] assumes, say

𝑟𝑖(𝑡) = 𝜈(𝑡) + 𝑏𝑖(𝑡)𝑇 𝜇 + 𝜂𝑖(𝑡), (4)

which is a special case of our model (1) with 𝑛 = 1. Greenewald et al. [11] first proposed (4). A novel challenge in the semi-parametric 
bandit problem is to mitigate the confounding effect from the baseline reward. Greenewald et al. [11] considered a two-stage TS 
algorithm that fixes a random base action and contrasts the base and other actions. Krishnamurthy, Wu, and Syrgkanis [14] proposed 
another TS algorithm that contrasts every pair of actions repeatedly. Kim and Paik [13] proposed a single-step TS algorithm and 
arguably the state-of-the-art in this setting. Specifically, for each time 𝑡, they estimate 𝜇 in (4) by 𝜇(𝑡) = 𝐵(𝑡)−1∑𝑡−1

𝜏=1 2𝑋𝜏𝑟𝑎(𝜏),𝑘(𝜏), where 
𝑋𝜏 = 𝑏𝑎(𝜏)(𝜏) − 𝔼(𝑏𝑎(𝜏)(𝜏)|𝜏−1) and 𝐵(𝑡) = Σ̂𝑡 + Σ𝑡 + 𝐼𝑑 where Σ̂𝑡 =

∑𝑡−1
𝜏=1𝑋𝜏𝑋

𝑇
𝜏 , and Σ𝑡 =

∑𝑡−1
𝜏=1 𝔼(𝑋𝜏𝑋

𝑇
𝜏 |𝜏−1). Compared with Agrawal 

and Goyal [3], a TS algorithm under the standard linear reward model, the context vector and covariance part were centered by 
𝔼(𝑏𝑎(𝜏)(𝜏)|𝜏−1), which is crucial for ruling out the confounding effect of 𝜈(𝑡). The regret bound derived in Kim and Paik [13] has the 
same order with that in Agrawal and Goyal [3].

Linear graph-based bandit algorithms for multiple users Algorithms for graph-based linear contextual bandits have been proposed under 
the following model [6,10,24,17,26,15]:

𝑟𝑖,𝑗 (𝑡) = 𝑏𝑖(𝑡)𝑇 𝜇𝑗 + 𝜂𝑖,𝑗 (𝑡), (5)

which coincides with a special case of (1) when 𝜈𝑗 (𝑡) = 0. Gentile, Li, and Zappella [10] proposed an algorithm utilizing the given 
graph for clustering users, where those in the same cluster are represented by the same parameter. Li et al. [17] generalized Gentile, 
Li, and Zappella [10]’s algorithm to address non-uniform user frequencies. Li, Wu, and Wang [15] proposed another clustering-based 
algorithm that allows each 𝜇𝑗 to change abruptly over time. The regret bound proposed in this work depends on the number of 
abrupt shifts and can be linear in 𝑇 if the shifts occur proportionally to 𝑇 . On the other hand, Casa-bianchi et al. [6] and Vaswani, 
Schmidt, and Lakshmanan [24] proposed UCB- and TS-based algorithms with regret bound 𝑂(𝑑𝑛

√
𝑇 ), where the entire parameters 

for all users are estimated under regularization by a graph Laplacian. However, this led to scalability issues as a result of solving 
an equation involving 𝑛𝑑 by 𝑛𝑑 matrix. Yang, Toni, and Dong [26] proposed a local version of the Casa-bianchi et al. [6] with 
an improved regret bound 𝑂(Φ𝑑

√
𝑛𝑇 ), where Φ ∈ (0, 1) depends on . It updates only the parameter associated with the user to 

serve at each round. Specifically, Yang, Toni, and Dong [26] first calculates the ordinary least squares estimator 𝜇̄𝑘(𝑡) for each user 
𝑘 as if running 𝑛 bandits independently. Then, 𝜇𝑗𝑡 is estimated by adjusting 𝜇̄𝑗𝑡 for 𝜇̄𝑘(𝑡) weighted by the Laplacian, particularly 
𝜇𝑗𝑡 (𝑡) = 𝜇̄𝑗𝑡 (𝑡) − 𝜆𝐶𝑗𝑡 (𝑡)

−1∑𝑛
𝑘=1 𝑙𝑗𝑡𝑘𝜇̄𝑘(𝑡), where 𝜆 is a tunable parameter and 𝐶𝑗𝑡 is the gram matrix of the selected arm features for user 

𝑗𝑡 up to time 𝑡.

3. Proposed algorithm

A challenge is that we observe rewards that are correlated with neighbors defined from the given graph structure and yet whose 
conditional mean changes over time. Existing algorithms designed for the semi-parametric reward model with single user settings 
have only two choices: (i) to pretend that multiple users are actually the same person and estimate one parameter that applies 
to everyone, or (ii) to assign different parameters to different users and update the parameter estimate based on data from the 
corresponding user only. The risk of method (i) is that a single parameter is not able to incorporate the heterogeneity among users, 
while the risk of method (ii) is inefficiency in learning parameters.

Our novel approach incorporates the network information in estimating each 𝜇𝑗 while handling the confounding by 𝜈𝑗 (𝑡). To 
be specific, we handle non-stationarity for each individual by conditioning, while simultaneously accommodating information from 
neighbors. The key idea of conditioning is based on that the non-stationarity does not change across the arms, hence centering the 
context around the mean for the arms does not alter the problem of finding the maximum reward across the arms. This allows us to 
construct an estimator of 𝜇𝑗 that is robust to the effect of 𝜈𝑗 (𝑡) while exploiting the user affinity information via graph.

The proposed SemiGraphTS algorithm is described in Algorithm 1. Key steps include parameter estimation and Thompson 
3

sampling steps.
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Algorithm 1 Proposed algorithm (SemiGraphTS).

1: Fix 𝜆 > 0. Set 𝐵𝑗 (1) = 𝜆𝑙𝑗𝑗 𝐼𝑑 , 𝑦𝑗 (1) = 0𝑑 and 𝑣𝑗 = (4𝑅 + 12)
√
𝑑 log

{
(24𝑇 4∕𝛿)(1 + 𝜆−1)

}
+
√
𝜆(1 + ‖Δ𝑗‖) for 𝑗 = 1, … , 𝑛.

2: for 𝑡 = 1, 2, … , 𝑇 do

3: Observe 𝑗𝑡 .
4: for 𝑗 = 1, 2, … , 𝑛 do

5: if 𝑗 ≠ 𝑗𝑡 then

6: Update 𝐵𝑗 (𝑡 + 1) ←𝐵𝑗 (𝑡), 𝜇̄𝑗 (𝑡 + 1) ← 𝜇̄𝑗 (𝑡), and 𝑦𝑗 (𝑡 + 1) ← 𝑦𝑗 (𝑡).
7: else

8: 𝜇𝑗 (𝑡) ← 𝜇̄𝑗 (𝑡) −𝐵𝑗 (𝑡)−1
∑
𝑘≠𝑗 𝜆𝑙𝑗𝑘𝜇̄𝑘(𝑡).

9: Γ𝑗 (𝑡) ←𝐵𝑗 (𝑡) + 𝜆2
∑
𝑘≠𝑗 𝑙

2
𝑗𝑘
𝐵𝑘(𝑡)−1

10: Sample 𝜇𝑗 (𝑡) from 𝑑 (𝜇𝑗 (𝑡), 𝑣2𝑗Γ𝑗 (𝑡)−1).
11: Pull arm 𝑎(𝑡) = argmax𝑖{𝑏𝑖(𝑡)𝑇 𝜇𝑗 (𝑡)} and get reward 𝑟𝑎(𝑡),𝑗 (𝑡).
12: 𝜋𝑖(𝑡) ← ℙ(𝑎(𝑡) = 𝑖|𝑡−1), 𝑖 = 1, … , 𝑁 .

13: 𝑏̄(𝑡) ←∑𝑁
𝑖=1𝜋𝑖(𝑡)𝑏𝑖(𝑡) and 𝑋𝑡←𝑏𝑎(𝑡)(𝑡) − 𝑏̄(𝑡).

14: Update 𝐵𝑗 (𝑡 + 1) ←𝐵𝑗 (𝑡) +𝑋𝑡𝑋𝑇
𝑡 +
∑𝑁
𝑖=1𝜋𝑖(𝑡)(𝑏𝑖(𝑡) − 𝑏̄(𝑡))(𝑏𝑖(𝑡) − 𝑏̄(𝑡))𝑇 , 𝑦𝑗 (𝑡 + 1) ←𝑦𝑗 (𝑡) +2𝑋𝑡𝑟𝑎(𝑡),𝑗 (𝑡), and 𝜇̄𝑗 (𝑡 + 1) ←𝐵𝑗 (𝑡 + 1)−1𝑦𝑗 (𝑡 + 1).

15: end if

16: end for

17: end for

In the parameter estimation step, we propose a novel estimator 𝜇𝑗𝑡 (𝑡) for the 𝑗𝑡-th user, which is constructed as follows. Define 
𝑗,𝑡={𝜏 ∶ 𝑗𝜏 = 𝑗, 1 ≤ 𝜏 ≤ 𝑡}, i.e., 𝑗,𝑡 collects time indices when user 𝑗 is served up to time 𝑡. We first calculate an unadjusted user-specific 
estimator 𝜇̄𝑘(𝑡) (𝑘 = 1, … , 𝑛) proposed by

𝜇̄𝑘(𝑡) = 𝐵𝑘(𝑡)−1
∑

𝜏∈𝑘,𝑡−1

2𝑋𝜏𝑟𝑎(𝜏),𝑘(𝜏), (6)

where

𝐵𝑘(𝑡) = Σ̂𝑘,𝑡 +Σ𝑘,𝑡 + 𝜆𝑙𝑘𝑘𝐼𝑑 , (7)

𝑋𝜏 =𝑏𝑎(𝜏)(𝜏) −𝔼(𝑏𝑎(𝜏)(𝜏)|𝜏−1), Σ̂𝑘,𝑡=∑𝜏∈𝑘,𝑡−1𝑋𝜏𝑋
𝑇
𝜏 , and Σ𝑘,𝑡=

∑
𝜏∈𝑘,𝑡−1 𝔼(𝑋𝜏𝑋𝑇𝜏 |𝜏−1), 𝑘 = 1, … , 𝑛. The expectation in 𝑋𝜏 and Σ𝑘,𝑡

originates from the randomness of 𝑎(𝑡) given 𝑡−1. The definition of 𝜇̄𝑘(𝑡) coincides with calculating a regularized version of Kim and 
Paik [13]’s estimator for each user independently. Then, the main proposed estimator 𝜇𝑗𝑡 (𝑡) is given by

𝜇𝑗𝑡 (𝑡) = 𝜇̄𝑗𝑡 (𝑡) − 𝜆𝐵𝑗𝑡 (𝑡)
−1
∑
𝑘≠𝑗𝑡

𝑙𝑗𝑡𝑘𝜇̄𝑘(𝑡). (8)

Intuitively, 𝜇𝑗𝑡 (𝑡) adjusts 𝜇̄𝑗𝑡 (𝑡) by the neighborhood counterpart according to the graph structure. The designation of (8) is motivated 
from Yang, Toni, and Dong [26] and carefully constructed so that the estimation error can be expressed in terms of three different 
types of martingales (with respect to 𝑡−1), 𝜂𝑗𝑡,𝜏 (𝜏), 𝑋𝜏 , and 𝐷𝜏 as follows:

𝜇𝑗𝑡 (𝑡)−𝜇𝑗𝑡=𝐵𝑗𝑡 (𝑡)
−1

[
𝑐𝑗𝑡 − 𝜆Δ𝑗𝑡 +

𝑛∑
𝑘=1

⎧⎪⎨⎪⎩𝑀𝑗𝑡𝑘

∑
𝜏∈𝑘,𝑡−1

(
𝑋𝜏𝜂𝑗𝑡,𝜏 (𝜏) +𝐴𝑘(𝜏)

)⎫⎪⎬⎪⎭
]
,

where 𝐴𝑘(𝑡) =
∑
𝜏∈𝑘,𝑡−1𝐷𝜏𝜇𝑘+

∑
𝜏∈𝑘,𝑡−1 2𝑋𝜏

(
𝜈𝑘(𝜏)+𝑏̄(𝜏)𝑇 𝜇𝑘

)
, 𝐷𝜏=𝑋𝜏𝑋𝑇𝜏 −𝔼(𝑋𝜏𝑋𝑇𝜏 |𝜏−1), 𝑀𝑗𝑘 = 𝐼𝑑 if 𝑗 = 𝑘 and 𝜆𝑙𝑗𝑘𝐵𝑘(𝑡)−1 if 𝑗 ≠ 𝑘, and 𝑐𝑗

is a constant term bounded by 𝜆. Centering induces 𝑋𝜏 which in turn absorbs non-stationary term, 𝜈𝑘(𝜏). Detailed proof of sketch is 
provided in the next Section. The tuning parameter 𝜆 controls the influence of the graph structure. For a larger 𝜆, (8) indicates that 
adjacent nodes more profoundly affect on 𝜇𝑗𝑡 . Our regret analysis does not make any assumptions based on 𝜆, except for 𝜆 > 0.

In the Thompson sampling step, we propose to sample 𝜇𝑗𝑡 (𝑡) from 𝑑 (𝜇𝑗𝑡 (𝑡), 𝑣
2
𝑗𝑡
Γ𝑗𝑡 (𝑡)

−1), where

Γ𝑗 (𝑡) =𝐵𝑗 (𝑡) + 𝜆2
∑
𝑘≠𝑗

𝑙2𝑗𝑘𝐵𝑘(𝑡)
−1. (9)

The form of Γ𝑗 (𝑡) is analogous to [26]’s variance formula that was developed under the stationary reward model (𝜈𝑗 (𝑡) = 0). If 
the parameters for all users are estimated simultaneously under regularization by a graph Laplacian and each error term 𝜂𝑖,𝑗(𝑡)
independently follows a mean-zero homoscedastic distribution, it can be shown that Γ1(𝑡), Γ2(𝑡), ⋯, Γ𝑛(𝑡) are approximations for the 
block diagonals of the precision matrix of the estimate of 𝜇, where 𝜇 ∈ℝ𝑛𝑑 concatenates 𝜇1, ⋯ , 𝜇𝑛 into one vector. Detailed derivation 
of (9) is described in Appendix B. Since each 𝐵𝑘(𝑡) is positive definite, it holds that Γ𝑗𝑡 (𝑡)

−1 < 𝐵𝑗𝑡 (𝑡)
−1. This intuitively means that Γ𝑗𝑡 (𝑡)

contains more information than 𝐵𝑗𝑡 (𝑡) by incorporating the neighborhood information. As a result, our proposed sampling searches 
over narrower region around 𝜇𝑗𝑡 (𝑡) than the sampling with variance 𝑣2𝑗𝑡𝐵𝑗𝑡 (𝑡)

−1. This leads to an improvement of regret up to a factor 
less than one compared to an algorithm without graph, as we will see in the next Section. Finally, we select the arm 𝑎(𝑡) that satisfies 
𝑎(𝑡) = argmax𝑖{𝑏𝑖(𝑡)𝑇 𝜇𝑗𝑡 (𝑡)}.

It is worth mentioning that the proposed estimator 𝜇𝑗𝑡 and Thompson sampling step are local, in a sense that we run the procedure 
only for user 𝑗𝑡 at each time, not for the entire users. The idea of local update appears natural because we have no updated information 
4

about the other nodes at time 𝑡.
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The terms related to the conditional expectation can be calculated as follows. We define 𝜋𝑖(𝑡) as the probability of choosing the 𝑖-th 
arm at time 𝑡, that is, 𝜋𝑖(𝑡) = ℙ(𝑎(𝑡) =𝑖|𝑡−1). This is determined by the posterior distribution of 𝜇𝑗𝑡 (𝑡), which calls for the evaluation of 
an integral of a multivariate normal density on a polytope. One may employ well-known approximation algorithms for the integral, 
for example, Wilhelm and Manjunath [25] and Botev [4]. In our experiments on both synthetic and real data, the Monte Carlo 
approximation performed well. Once 𝜋𝑖(𝑡) is obtained, we can calculate 𝔼(𝑏𝑎(𝑡)(𝑡)|𝑡−1) = 𝔼(

∑𝑁
𝑖=1 𝐼(𝑎(𝑡) = 𝑖)𝑏𝑖(𝑡)|𝑡−1) =∑𝑁

𝑖=1 𝜋𝑖(𝑡)𝑏𝑖(𝑡). 
Similarly, 𝔼(𝑋𝑡𝑋𝑇𝑡 |𝑡−1) =∑𝑁

𝑖=1 𝜋𝑖(𝑡)(𝑏𝑖(𝑡) − 𝑏̄(𝑡))(𝑏𝑖(𝑡) − 𝑏̄(𝑡))𝑇 , where 𝑏̄(𝑡) = 𝔼(𝑏𝑎(𝑡)(𝑡)|𝑡−1).
The computation complexity of the proposed algorithm is 𝑂(𝑑2𝑁 + 𝑑2 deg(𝑗𝑡) +𝑀(𝑑2 + 𝑑𝑁)) if we use the Monte Carlo approxi-

mation for evaluating 𝜋𝑖(𝑡), where 𝑀 is the number of Monte Carlo samples. Note that the complexity does not depend on 𝑛; thus, 
the proposed algorithm is scalable for large graphs, provided that the average degree of nodes is in a moderate range. To see why, 
first, 𝜇𝑗𝑡 (𝑡) and Γ𝑗𝑡 (𝑡) in (8) requires 𝑂(𝑑2 deg(𝑗𝑡)) computations given 𝜇̄𝑘(𝑡). As for 𝜇̄𝑘(𝑡) and 𝐵𝑘(𝑡), note that 𝐵𝑗 (𝑡) = 𝐵𝑗 (𝑡 − 1) and 
𝜇̄𝑗 (𝑡) = 𝜇̄𝑗 (𝑡 −1) if 𝑗 ≠ 𝑗𝑡. Thus, 𝜇̄𝑘(𝑡) and 𝐵𝑘(𝑡) is computed only for 𝑘 = 𝑗𝑡, which requires 𝑂(𝑑2𝑁) operations. In addition, the Thomp-

son sampling step and the approximation for 𝜋𝑖(𝑡) cost 𝑂(𝑀(𝑑2 +𝑑𝑁)). To compare with the fastest algorithms in similar settings, Kim 
and Paik [13] and Yang, Toni, and Dong [26] require 𝑂(𝑑2𝑁 +𝑀(𝑑2 + 𝑑𝑁)) and 𝑂(𝑑2 deg(𝑗𝑡)) operations, respectively. Although the 
proposed algorithm has slightly increased order, in the Experiments Section, we demonstrate that the actual runtime of the proposed 
method is comparable to those fastest algorithms.

4. Regret analysis

We present the high-probability regret upper bound for the proposed SemiGraphTS algorithm. A sketch of proof is provided for a 
key step. The complete proof can be found in Appendices Appendix C and Appendix D in the Supplement Material. The regret bound 
for SemiGraphTS is described in the following theorem.

Theorem 1. Assume (2) and 𝛿 ∈ (0, 1). Under the semi-parametric linear reward model (1), with probability 1 − 𝛿, the cumulative regret 
from SemiGraphTS (Algorithm 1) achieves

𝑅(𝑇 ) ≤
𝑛∑
𝑗=1
𝑂

(
Ψ𝑗,𝑇

{√
𝑑 log(|𝑗,𝑇 |)+√𝜆‖Δ𝑗‖}×min

{√
𝑑 log(𝑑𝑇 ),

√
log(𝑁𝑇 )

}√
𝑑|𝑗,𝑇 | log(|𝑗,𝑇 |)), (10)

where Ψ𝑗,𝑇 =
∑
𝑡∈𝑗,𝑇 ‖𝑋𝑡‖Γ𝑗 (𝑡)−1∕ ∑𝑡∈𝑗,𝑇 ‖𝑋𝑡‖𝐵𝑗 (𝑡)−1 .

We note that Ψ𝑗,𝑇 ∈ (0, 1) due to Γ𝑗𝑡 (𝑡)
−1 < 𝐵𝑗𝑡 (𝑡)

−1. A simpler representation of our regret is 𝑂(max𝑗Ψ𝑗,𝑇 ⋅𝑑
√
𝑛𝑇 min{

√
𝑑, 
√
log(𝑁)}), 

if we assume |𝑗,𝑇 | ≈ 𝑇 ∕𝑛 (each 𝑗𝑡 is uniformly chosen at random). Compared to the regret bound derived in Yang, Toni, and Dong [26]

for the linear graph bandit model, ours has an additional min{
√
𝑑 log(𝑑𝑇 ), 

√
log(𝑁𝑇 )} due to the Thompson sampling; other parts are 

the same, although our model has additional nonparametric intercept 𝜈𝑗 (𝑡). Running Kim and Paik [13]’s algorithm for each user 
independently under the same setting leads to the same form of regret bound with (10), except for the term Ψ𝑗,𝑇 {

√
𝑑 log(|𝑗,𝑇 |)+√

𝜆‖Δ𝑗‖} is replaced with 
√
𝑑 log(|𝑗,𝑇 |) +√𝜆‖𝜇𝑗‖. Since Ψ𝑗,𝑇 ∈ (0, 1), the regret bound of the propose algorithm is strictly lower 

than that from running Kim and Paik [13] independently, provided ‖Δ𝑗‖ ≤ ‖𝜇𝑗‖.
The outline of the proof for Theorem 1 follows Agrawal and Goyal [3] and Kim and Paik [13]. Major modifications are made at 

establishing a high-probability bound for 𝜇𝑗𝑡 (𝑡) − 𝜇𝑗𝑡 , as stated in the theorem below.

Theorem 2. Assume that the settings for the semi-parametric linear reward model (1) hold along with (2). Let 𝐸𝜇(𝑡) be an event satisfying

𝐸𝜇(𝑡) =
{
∀𝑖 ∶ |𝑏𝑐𝑖 (𝑡)𝑇 (𝜇𝑗𝑡 (𝑡) − 𝜇𝑗𝑡 )| ≤ 𝑠𝑐𝑖,𝑗𝑡 (𝑡)𝛼(𝑡)} ,

where 𝑏𝑐𝑖 (𝑡) = 𝑏𝑖(𝑡) − 𝑏̄(𝑡), 𝑠
𝑐
𝑖,𝑗𝑡

(𝑡) = ‖𝑏𝑐𝑖 (𝑡)‖Γ𝑗𝑡 (𝑡)−1 and

𝛼(𝑡) = (4𝑅+ 12)

√
2𝑑 log

{
24𝑡4
𝛿

(
1 + 1

𝜆

)}
+
√
2𝜆(1 + ‖Δ𝑗𝑡‖).

For all 𝛿 ∈ (0, 1) and 𝑡 ≥ 1, ℙ(𝐸𝜇(𝑡)) ≥ 1 − 𝛿∕𝑡2.

The proof for Theorem 2 carefully leverages the structures of 𝐵𝑗 (𝑡) and Γ𝑗 (𝑡). First, the lemma below enables us to induce 𝑠𝑐𝑖,𝑗𝑡 (𝑡)
from |𝑏𝑐𝑖 (𝑡)𝑇 (𝜇𝑗𝑡 (𝑡) − 𝜇𝑗𝑡 )| while encapsulating the other terms into quadratic forms associated with 𝐵𝑗𝑡 (𝑡)

−1.

Lemma 3. For any 𝑥, 𝑦 ∈ℝ𝑑 and 𝑗 = 1, … , 𝑛,√

5

𝑥𝑇 𝐵𝑗 (𝑡)−1𝑦 ≤ 2‖𝑥‖Γ𝑗 (𝑡)−1‖𝑦‖𝐵𝑗 (𝑡)−1 .
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Proof. For simplicity, let 𝐵𝑗 = 𝐵𝑗 (𝑡) and Γ𝑗 = Γ𝑗 (𝑡) for all 𝑗. By the Cauchy-Schwartz inequality, 𝑥𝑇 𝐵−1
𝑗 𝑦 = 𝑥Γ

− 1
2

𝑗 Γ
1
2
𝑗 𝐵

−1
𝑗 𝑦 ≤‖𝑥‖Γ−1𝑗 √𝑦𝑇 𝐵−1

𝑗 Γ𝑗𝐵−1
𝑗 𝑦. Note that 𝐵−1

𝑗 ≤(𝜆𝑙𝑗𝑗 )−1𝐼𝑑 . Then, by (7) and (9),

𝐵−1
𝑗 Γ𝑗 = 𝐼𝑑 +

∑
𝑘≠𝑗

𝜆2𝑙2𝑗𝑘𝐵
−1
𝑗 𝐵

−1
𝑘 ≤ 𝐼𝑑 +

∑
𝑘≠𝑗

𝑙2𝑗𝑘∕(𝑙𝑗𝑗 𝑙𝑘𝑘)𝐼𝑑 . (11)

By (3), we have ∑𝑘≠𝑗 𝑙
2
𝑗𝑘
∕(𝑙𝑗𝑗 𝑙𝑘𝑘) ≤1. So, the bound in (11) is further bounded by 2𝐼𝑑 . Therefore, 

√
𝑦𝑇 𝐵−1

𝑗 Γ𝑗𝐵−1
𝑗 𝑦≤

√
2‖𝑦‖𝐵−1

𝑗
. This 

concludes the proof. □

Then, we utilize the lemma below to simplify random quadratic forms caused by neighboring users’ intermediate estimators 𝜇̄𝑘(𝑡)
(𝑘 ≠ 𝑗𝑡).

Lemma 4. For any 𝑥 ∈ℝ𝑑 and 𝑗, 𝑘 = 1, … , 𝑛,

‖𝐵𝑘(𝑡)−1𝑥‖𝐵𝑗 (𝑡)−1 ≤ ‖𝑥‖𝐵𝑘(𝑡)−1∕√𝜆2𝑙𝑗𝑗 𝑙𝑘𝑘.
Proof. By (7), it suffices to show (𝑢𝐼𝑑 +𝐴)(𝑣𝐼𝑑 +𝐵)(𝑢𝐼𝑑 +𝐴) ≥ 𝑢𝑣(𝑢𝐼𝑑 +𝐴) for any scalars 𝑢, 𝑣 > 0 and positive semi-definite matrices 
𝐴, 𝐵. Observe that (𝑢𝐼𝑑 +𝐴)(𝑣𝐼𝑑 + 𝐵)(𝑢𝐼𝑑 +𝐴) = 𝑣(𝑢𝐼𝑑 +𝐴)2 + (𝑢𝐼𝑑 +𝐴)𝐵(𝑢𝐼𝑑 +𝐴) ≥ 𝑣(𝑢𝐼𝑑 +𝐴)2 = 𝑢2𝑣(𝐼𝑑 + 𝑢−1𝐴)2 ≥ 𝑢2𝑣(𝐼𝑑 + 𝑢−1𝐴) =
𝑢𝑣(𝑢𝐼𝑑 +𝐴), which completes the proof. □

Finally, we separately bound each of the simplified terms by employing the technique of Abbasi-Yadkori, Pal, and Szepesvári [2]. 
We apply a union bound argument to obtain a uniform bound.

Sketch of proof for Theorem 2. Detailed derivations for key inequalities are provided in Appendix C. Suppose that the semi-

parametric reward model (1) holds. Fix 𝑡 and 𝛿. Let 𝜇𝑗𝑡 (𝑡), 𝐵𝑘(𝑡) and 𝜇̄𝑘(𝑡) be as in (8), and (6). For simplification, we write as 
𝑏𝜏 = 𝑏𝑎(𝜏)(𝜏) and 𝜂𝜏 = 𝜂𝑎(𝜏),𝑗𝜏 (𝜏) for 𝜏 = 1, … , 𝑡 − 1, and 𝑗 = 𝑗𝑡 with slight abuse of notation. By algebra and Lemma 3,

|𝑏𝑐𝑖 (𝑡)𝑇 (𝜇𝑗 (𝑡) − 𝜇𝑗 )| ≤√2𝑠𝑐𝑖,𝑗 (𝑡)
6∑
𝑙=1
𝐶𝑙, (12)

where

𝐶1 = ‖∑𝑛
𝑘=1 𝜆𝑙𝑗𝑘𝜇𝑘‖𝐵𝑗 (𝑡)−1 , 𝐶2 = ‖∑𝑘≠𝑗 𝜆𝑙𝑗𝑘𝐵𝑘(𝑡)−1𝜆𝑙𝑘𝑘𝜇𝑘‖𝐵𝑗 (𝑡)−1 ,

𝐶3 = ‖∑𝜏∈𝑗,𝑡−1 𝑋𝜏𝜂𝜏‖𝐵𝑗 (𝑡)−1 , 𝐶4 = ‖∑𝑘≠𝑗 𝜆𝑙𝑗𝑘𝐵𝑘(𝑡)−1
∑
𝜏∈𝑗,𝑡−1𝑋𝜏𝜂𝜏‖𝐵𝑗 (𝑡)−1 ,

𝐶5 = ‖𝐴𝑗 (𝑡)‖𝐵𝑗 (𝑡)−1 , 𝐶6 = ‖∑𝑘≠𝑗 𝜆𝑙𝑗𝑘𝐵𝑘(𝑡)−1𝐴𝑘(𝑡)‖𝐵𝑗 (𝑡)−1 , (13)

with

𝐴𝑘(𝑡) =
∑

𝜏∈𝑘,𝑡−1

𝐷𝜏𝜇𝑘 +
∑

𝜏∈𝑘,𝑡−1

2𝑋𝜏
(
𝜈𝑘(𝜏) + 𝑏̄(𝜏)𝑇 𝜇𝑘

)
,

𝑘 = 1, … , 𝑛, and 𝐷𝜏 =𝑋𝜏𝑋𝑇𝜏 − 𝔼(𝑋𝜏𝑋𝑇𝜏 |𝜏−1).
For 𝐶1, we have 𝐶1 ≤

√
𝜆‖Δ𝑗‖ from 𝐵𝑗 (𝑡)−1 ≤ (𝜆𝑙𝑗𝑗 )−1𝐼𝑑 . For 𝐶2, from Lemma 4, we have 𝐶2 ≤

√
𝜆
∑
𝑘≠𝑗 (|𝑙𝑗𝑘|∕√𝑙𝑗𝑗 )‖𝜇𝑘‖ and so 

𝐶2 ≤
√
𝜆 by ‖𝜇𝑘‖ ≤ 1 and (3). To bound 𝐶3 and 𝐶4, we first observe that applying Lemma 4 to 𝐶4 yields

𝐶3 +𝐶4 ≤ 2
𝑛∑
𝑘=1

|𝑙𝑗𝑘|√
𝑙𝑗𝑗 𝑙𝑘𝑘

‖‖‖‖‖‖
∑

𝜏∈𝑘,𝑡−1

𝑋𝜏𝜂𝜏

‖‖‖‖‖‖𝐵𝑘(𝑡)−1 . (14)

Next, for each 𝑘, Lemma A.1 in Appendix A yields the following with probability at least 1 − 𝛿(|𝑘,𝑡−1| + 1∕𝑛)∕3𝑡3:

‖‖‖‖‖‖
∑

𝜏∈𝑘,𝑡−1

𝑋𝜏𝜂𝜏

‖‖‖‖‖‖𝐵𝑘(𝑡)−1≤𝑅
√
𝑑 log

{
24𝑡4
𝛿

(
1 + 1

𝜆𝑙𝑘𝑘

)}
. (15)

Since ∑𝑛
𝑘=1(|𝑘,𝑡−1| +1∕𝑛) = 𝑡, a union bound argument shows that event (15) holds for all 𝑘 = 1, … , 𝑛 with probability at least 1 − 𝛿∕𝑡2. 

Under this event, (14) and along with (3) yields

𝐶3 +𝐶4 ≤ 4𝑅

√
𝑑 log

{
24𝑡4
𝛿

(
1 + 1

𝜆

)}
. (16)
6

Now, for 𝐶5 and 𝐶6, applying Lemma 4 to 𝐶6 leads to
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𝐶5 +𝐶6 ≤

𝑛∑
𝑘=1

|𝑙𝑗𝑘|√
𝑙𝑗𝑗 𝑙𝑘𝑘

‖‖𝐴𝑘(𝑡)‖‖𝐵𝑘(𝑡)−1 . (17)

To bound ‖‖𝐴𝑘(𝑡)‖‖𝐵𝑘(𝑡)−1 , we first use the definition for a fixed 𝑘,

‖‖𝐴𝑘(𝑡)‖‖𝐵𝑘(𝑡)−1 ≤ 2
‖‖‖‖‖‖
∑

𝜏∈𝑘,𝑡−1

𝑋𝜏
(
𝜈𝑘(𝜏) + 𝑏̄(𝜏)𝑇 𝜇𝑘

)‖‖‖‖‖‖𝐵𝑘(𝑡)−1+
‖‖‖‖‖‖
∑

𝜏∈𝑘,𝑡−1

𝐷𝜏𝜇𝑘

‖‖‖‖‖‖𝐵𝑘(𝑡)−1.
Using the fact that 𝑋𝜏 and 𝐷𝜏 are mean-zero random variables given 𝜏−1, we can follow the techniques in Theorem 4.2 of Kim and 
Paik [13] to bound each term in the right-hand side of the equation above. Then, by a union bound argument,

‖‖𝐴𝑘(𝑡)‖‖𝐵𝑘(𝑡)−1 ≤ 6

√
𝑑 log

{
24𝑡4
𝛿

(
1 + 1

𝜆𝑙𝑘𝑘

)}
(18)

uniformly for all 𝑘 = 1, … , 𝑛 with probability at least 1 − 2𝛿∕(3𝑡2). Combining (17), (18) and the definition of random-walk Laplacian 
(3), we have with probability at least 1 − 2𝛿∕(3𝑡2)

𝐶5 +𝐶6 ≤ 12

√
𝑑 log

{
24𝑡4
𝛿

(
1 + 1

𝜆

)}
. (19)

Finally, plugging the bounds of 𝐶1, 𝐶2, (16), and (19) into (12) completes the proof. □

Remark 1. In our proof, we utilized the definition of the random-walk normalized Laplacian (3) to deduce (i) ∑𝑘≠𝑗 𝑙
2
𝑗𝑘
∕(𝑙𝑗𝑗 𝑙𝑘𝑘) ≤ 1 in 

(11); (ii) ∑𝑛
𝑘=1|𝑙𝑗𝑘|∕√𝑙𝑗𝑗 𝑙𝑘𝑘 = 2 in both (14) and (17); and (iii) 𝑙𝑗𝑗 = 1.

Remark 2. We note that the SemiGraphTS algorithm and Theorem 1 is applicable to weighted and/or direct graphs by generalizing 
the definition of the random-walk Laplacian (3). First, we consider an undirected weighted graph . Let 𝑊 = [𝑤𝑗𝑘]1≤𝑗,𝑘≤𝑛 represent 
the (weighted) adjacency matrix of . The degree matrix 𝐷 of  is 𝐷 = diag(

∑𝑛
𝑘=1𝑤1𝑘, … , ∑𝑛

𝑘=1𝑤𝑛𝑘). Based on the definition of the 
random-walk normalized Laplacian 𝐿 =𝐷−1(𝐷 −𝑊 ), each component of 𝐿 is written as

𝑙𝑗𝑗 = 1, 𝑙𝑗𝑘 = −
𝑤𝑗𝑘∑𝑛
𝑘=1𝑤𝑗𝑘

(𝑘 ≠ 𝑗). (20)

This extended definition continues to satisfy the three properties mentioned in Remark 1. Thus, the entire proof for Theorem 1

remains valid. Next, assume that  represents a directed and weighted graph with the weighted adjacency matrix 𝑊 = [𝑤𝑗𝑘]1≤𝑗,𝑘≤𝑛. 
Here, 𝑤𝑗𝑘 denotes the arrow weight from node 𝑗 to 𝑘, where 1 ≤ 𝑗, 𝑘 ≤ 𝑛. Let 𝐷 = diag(

∑𝑛
𝑘=1𝑤1𝑘, … , ∑𝑛

𝑘=1𝑤𝑛𝑘) be the out-degree 
matrix of . Alternatively, one can define the reverse, where 𝑤𝑗𝑘 represents the weight from 𝑘 to 𝑗, and 𝐷 corresponds to the in-

degree matrix. In either case, based on the definition, the random-walk normalized Laplacian 𝐿 can once again be expressed as (20), 
and properties (i) through (iii) in Remark 1 still hold. Therefore, the proposed algorithm with 𝐿 defined in (20) continues to satisfy 
Theorem 1.

Remark 3. Our proposed regret bound may not hold if other Laplacian representations are used. For instance, suppose that 𝐿 was 
defined using the symmetric normalized Laplacian instead of the random-walk normalized representation (3). If the given graph 
represents a hub graph in which the first node is connected to all other nodes, then ∑𝑛

𝑘=1|𝑙1𝑘|∕√𝑙11𝑙𝑘𝑘 ≈√𝑛, which is not bounded 
by a constant. Therefore, the final regret bound exhibits an increased order in 𝑛. See also Yang, Toni, and Dong [26] for further 
discussion.

Remark 4. In deriving the regret bound in Theorem 1, we assumed that 𝜋𝑖(𝑡) can be exactly computed, as in Kim and Paik [13]. 
This assumption appears reasonable since we can choose arbitrary precision to approximate 𝜋𝑖(𝑡). The additional regret caused by 
the uncertainty of finite Monte Carlo samples can be absorbed in the current bound; detailed discussion is provided in Appendix E.

5. Experiments

We compared the proposed SemiGraphTS with algorithms for (i) semi-parametric bandits without exploiting graph, (ii) linear 
bandits exploiting graph, and (iii) linear bandits without graph. For (i), we included running Kim and Paik [13] independently 
on 𝑛 users to fully personalize recommendations (“SemiTS-Ind”), running a single instance of Kim and Paik [13] for all users to 
synchronize recommendations across users (“SemiTS-Sin”). For (ii), we considered a Laplacian regularization-based method (Yang, 
Toni, and Dong 26, namely “GraphUCB”) and clustering-based methods (Li et al. 17, “SCLUB”; Li, Wu, and Wang 15, “DyClu”). 
For (iii), we included “LinTS-Ind” and “LinTS-Sin”, running Agrawal and Goyal [3] in “independent” and “single” fashions. Every 
bandit algorithm involves a hyperparameter that controls the degree of exploration, either through the variance of 𝜇̃(𝑡) in the 
TS-type algorithms (e.g. 𝑣𝑗 in our algorithm) or through the confidence width in the UCB-type algorithms. In graph-based and 
independent bandit algorithms, we use the same value across users, i.e., 𝑣𝑗 = 𝑣. Another hyperparameter is 𝜆, which controls the 
7

strength incorporating the graph structure. We tuned (𝑣, 𝜆) by a grid search for first 𝑡0 rounds, with 𝑣 ∈ {10−3, 10−2, 10−1, 100, 101} and 
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Fig. 1. Current cumulative regrets under the non-stationary scenario (left) and the stationary scenario (right). All regrets are relative to that of the random selection.

𝜆 ∈ {5−3, 5−2, 5−1, 50, 51}. Then, with the best combination of hyperparameters, we assessed each algorithm for over next 𝑇 rounds. 
Other hyperparameters were set as default for each algorithm. All computations were conducted in a workstation with AMD Ryzen 
3990X CPU and 256 GB RAM. All results were generated over five replications. In all Figures, we report the average in solid line and 
the confidence band (average ± 1.96 × (standard deviation)∕

√
5) in light band.

Synthetic dataset We generated data under (1). We considered 𝜈𝑗 (𝑡) as 𝜈𝑗 (𝑡) = −𝑏𝑎∗(𝑡)(𝑡)𝑇 𝜇𝑗 to simulate a non-stationary scenario 
and 𝜈𝑗 (𝑡) = 0 for a stationary scenario. We fixed 𝑛 = 30, 𝑁 = 10, 𝑑 = 40. For each time 𝑡, we chose 𝑗𝑡 uniformly at random. We 
constructed the item features as 𝑏𝑖(𝑡) = (𝐼(𝑖 =1)𝑧1(𝑡)𝑇 , 𝐼(𝑖 =2)𝑧2(𝑡)𝑇 , … , 𝐼(𝑖 =𝑁)𝑧𝑁 (𝑡)𝑇 )𝑇 , where 𝑧𝑖(𝑡) follows a uniform distribution 
on 𝑑′-dimensional sphere (𝑑′ = 𝑑∕𝑁). A random error 𝜂𝑖,𝑗 (𝑡) was generated from 𝑑 (0, 0.12). Such settings have been considered 
in Kim and Paik [13]. Next, the user network  was generated following the Erdös-Rényi (ER) model, in which the edges were 
generated independently and randomly with probability 𝑝. We set 𝑝 = 0.4. Then we constructed the true user-specific parameters 
𝜇 ∈ ℝ𝑛𝑑 according to 𝜇 = argmin𝜇′∈ℝ𝑛𝑑

[‖‖𝜇′ − 𝜇0‖‖2 + 𝛾𝜇′𝑇 (𝐿⊗ 𝐼𝑑 )𝜇′], where 𝜇0 ∈ ℝ𝑛𝑑 is randomly initialized, 𝐿 is the random-walk 
graph Laplacian of , and 𝛾 ≥ 0 [27]. We put 𝑡0 = 5, 000 and 𝑇 = 50, 000.

Fig. 1 displays the result for the non-stationary scenario with 𝛾 = 5. This scenario satisfies all of our assumptions. As expected, tne 
proposed SemiGraphTS outperformed other algorithms. Compared to SemiTS-Ind that was the second-best, SemiGraphTS recorded 
the final cumulative regret decreased by 11.5 percent and the performance gap was larger in small 𝑇 . This observation is anticipated; 
since both algorithms specify the reward model correctly, it is natural that the two algorithms will converge to the same result. 
However, because the proposed algorithm uses a more efficient estimator and exploration strategy by exploiting the graph structure 
while SemiTS-ind does not, the cumulative regret is significantly smaller than SemiTS-ind when 𝑇 is small. The third best was

SemiTS-Sin, although it performed the best in early rounds. Since SemiTS-Sin estimates only a small number of parameters, the 
fitted coefficients may have been converging fast to a biased target. Another observation is that SemiGraphTS outperformed the 
linear graph-based methods. This may suggest that our method could robustly leverage the graph structure when non-stationarity 
exists. As a next experiment, we tested the same setting but under the stationary scenario 𝜈𝑗(𝑡) = 0. Note that both linear and 
semi-parametric algorithms have theoretical guarantees for this case. The result is reported in the right panel of Fig. 1. We see 
that the linear graph-based algorithms (GraphUCB and SCLUB) outperformed SemiGraphTS. Similarly, LinTS-Ind outperformed

SemiTS-Ind. We hypothesize that accommodating the nuisance terms in semi-parametric algorithms may delay convergence of fitted 
coefficients, which is a price to pay for robustness. In Appendix F, we report additional simulation results based on another choice 
of 𝜈𝑗 (𝑡).

For sensitivity analysis, we tested the performances of the algorithms against graph strength and graph misspecification. First, we 
assessed the performance of the proposed method with varying 𝛾 . In practice, the value of 𝛾 is unknown and varies largely across 
different applications. In the left panel of Fig. 2, we tracked the final cumulative regrets for 𝛾 = 0 (𝜇1, 𝜇2, ⋯ , 𝜇𝑛 are not enforced to 
be smooth over the given graph) through 𝛾 = 20 (𝜇1, 𝜇2, ⋯ , 𝜇𝑛 are almost the same), under the non-stationary scenario. A larger 𝛾
indicates a stronger similarity between 𝜇𝑗 ’s. For large-𝛾 cases, SemiGraphTS was between those of SemiTS-Ind and SemiTS-Sin. 
For small-𝛾 cases, SemiGraphTS was comparable to SemiTS-Ind and outperformed SemiTS-Sin with a large margin. In other words, 
the proposed method performed robustly well in the given range of 𝛾 . Second, we assessed the performance of the proposed method 
with varying number of sign-reversed nodes, varying the proportion of node 𝑗s in which the signs of 𝜇𝑗 were reversed. In practice, 
graphs may be misspecified due to unobserved connections, etc. The misspecification proportion is unknown and probably varies 
across applications. The right panel of Fig. 2 shows the results. When the proportion was large, SemiGraphTS behaved comparably 
to SemiTS-Ind, while SemiTS-Sin performed poorly. It is natural that SemiTS-Ind performs close to ours when the proportion is 
high, since in this case the graph information would not be useful any more and the algorithms that do not use this information 
could perform better. In summary, the proposed method performed robustly well across the given range.

Scalability Fig. 3 reports the average runtime per step of each algorithm, varying the number of users 𝑛 (left panel), the number of 
8

features 𝑑 (middle panel), and the number of arms 𝑁 (right panel), fixing other settings the same as in the non-stationary synthetic 
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Fig. 2. Final cumulative regrets under the non-stationary scenario, while varying 𝛾 (left) and the proportion of sign-reversed nodes (right). All regrets are relative to 
that of the random selection.

Fig. 3. Average runtimes of the algorithms over varying 𝑛 (left), 𝑑 (middle), and 𝑁 (right).

experiment. SemiGraphTS was slightly slower than SemiTS-Ind. This difference is expected; the construction of 𝜇𝑗𝑡 (𝑡) and Γ𝑗𝑡 (𝑡)
depends on the degree of the node (user) to serve, which increases linearly with 𝑛 in the ER graph we tested. A comparison of the 
semi-parametric methods with the linear methods revealed that each of the semi-parametric methods costed more time than its linear 
counterparts, mainly due to the Monte Carlo approximation of the arm selection probability. One exception was that SemiGraphTS
was faster than GraphUCB as 𝑛 increases. Overall, SemiGraphTS demonstrated comparable efficiency for large graphs when 𝑑 and 
𝑁 are in a moderate range.

Real data example The LastFM and Delicious datasets are from a music streaming service last.fm and social bookmarking web service 
Delicous, released by Cantador, Brusilovsky, and Kuflik [5].1 The LastFM dataset consists of 𝑛 = 1, 892 nodes (users) connected by |𝐸| = 12, 717 edges, and 17, 632 items (artists) described by 11, 946 tags. In the delicious dataset, there are 𝑛 = 1, 861 nodes (users) with |𝐸| = 7, 668 edges, and 69, 226 items (artists) described by 53, 388 tags. The datasets contain aggregated tables for the frequencies of 
(user, artist) pairs, representing the number of times a user listened to any music of an artist. For each dataset, we generated an 
artificial history of 𝑡0 = 5, 000 and 𝑇 = 50, 000 rounds following Casa-bianchi et al. [6] and Gentile, Li, and Zappella [10]. In short, 
we randomly sampled one user to serve and 𝑁 = 25 artists for each round. As item features, we used the first 𝑑 = 25 principal 
component scores resulting from a term-frequency-inverse-document-frequency (TF-IDF) matrix of artists versus tags, treating artists 
as “documents” and tags as “words.” We set the reward to 1 if the selected user ever listened to a selected artist and 0 otherwise.

Fig. 4 displays the cumulative rewards of the considered algorithms for the two datasets, relative to that of the random selec-

tion policy. In the LastFM dataset (left panel), SemiGraphTS produced the best final cumulative reward, 16.7 percent higher value 
compared to the second-best algorithms. In particular, SemiGraphTS uniformly outperformed SemiTS-Ind and SemiTS-Sin, which 
we believe that the proposed method might have exploited the graph structure successfully. Compared to the linear graph-based 
algorithms, SemiGraphTS underperformed GraphUCB in early stages but eventually outperformed them. This result is somewhat 
anticipated from the synthetic experiment; the presence of nuisance term might have slowed down the learning process of the 
proposed method but enhanced the robustness of against the change of timely trends. In the Delicious dataset (right panel), Sem-
9

1 URLs: http://ir .ii .uam .es /hetrec2011/.

http://ir.ii.uam.es/hetrec2011/
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Fig. 4. Current cumulative rewards for the LastFM and Delicious datasets, normalized by the random selection policy.

iGraphTS algorithm again attained the highest final cumulative reward, despite exhibiting lower performance than several other 
algorithms in the initial stages. Notably, it outperformed other algorithms, except SemiTS-Ind, by a significant margin. This may 
again suggest the robustness of semi-parametric models against nonstationarity. The performance gap between SemiGraphTS and

SemiTS-Ind was relatively small, at 3.7%. This finding is consistent with prior literature which highlights the crucial role of personal-

ization in this dataset, and indicates that leveraging the graph provides only a marginal benefit [6,24]. A hyperparameter sensitivity 
analysis on both LastFM and Delicious datasets can be found in Appendix G.

To summary the synthetic and real-data experiments, the proposed algorithm appears to robustly achieve desirable performances.

6. Concluding remarks

This study proposes SemiGraphTS, the first algorithm for the semi-parametric contextual bandit MAB problem for multiple users 
equipped with a graph encoding similarity between user preferences. SemiGraphTS is well suited to more realistic problems in which 
individual baseline rewards change over time. Experiments demonstrate the potential advantage of SemiGraphTS.
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Appendix

In Appendix A, we introduce lemmas for theoretical derivation. In Appendix B, we discuss the rationale behind the variance 
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formula (9) utilized in the Thompson sampling step of our algorithm. In Appendix C, we complete the proof for Theorem 2. In 



Information Sciences 645 (2023) 119367Y.-G. Choi, G.-S. Kim, S. Paik et al.

Appendix D, we provide the proof for Theorem 1. Finally, in Appendix E, we discuss the derivation of the regret bound that addresses 
the approximation to exact 𝜋𝑖(𝑡) by Monte Carlo sampling. In Appendix F, we provide more simulation results. In Appendix G, we 
analyze a hyperparameter sensitivity of the proposed algorithm on both LastFM and Delicious datasets.

Appendix A. Auxiliary lemmas

Lemma 5 (Simplified version of Corollary 4.3 in de la Peña, Klass, and Lai [7]). Let 𝑋𝜏 ∈ℝ𝑑 and 𝑐𝜏 ∈ℝ be random variables for 𝜏 = 1, … , 𝑡. 
Let 𝐴(𝑡) ∈ℝ𝑑×𝑑 be a symmetric and positive semi-definite matrix. Suppose that, for all 𝑢 ∈ℝ𝑑 ,

𝔼

[
exp

{
𝑢𝑇

𝑡∑
𝜏=1
𝑋𝜏𝑐𝜏 −

1
2
𝑢𝑇 𝐴(𝑡)𝑢

}]
≤ 1.

Then, for any 𝛿 ∈ (0, 1) and any symmetric positive definite matrix 𝑄 ∈ℝ𝑑×𝑑 , the following holds with probability at least 1 − 𝛿:

‖‖‖‖‖‖
𝑡∑
𝜏=1
𝑋𝜏𝑐𝜏

‖‖‖‖‖‖
2

(𝑄+𝐴(𝑡))−1
≤ log

{
det(𝑄+𝐴(𝑡))∕det(𝑄)

𝛿2

}
.

The lemma below is Lemma 7 in de la Peña, Klass, and Lai [8]. See also Lemma A.3 of Kim and Paik [13] for proof.

Lemma 6. Let {𝜏}𝑡𝜏=1 be a filtration. Let 𝑋𝜏 ∈ℝ𝑑 and 𝑐𝜏 ∈ℝ be 𝜏 -measurable random variables such that 𝔼(𝑋𝜏 |𝜏−1) = 0, 𝑋𝜏 ⟂ 𝑐𝜏 |𝜏−1, ‖𝑋𝜏‖ ≤ 𝐵, and ‖𝑐𝜏‖ ≤ 1 for some constant 𝐵, 𝜏 = 1, … , 𝑡. Then, for any 𝑢 ∈ℝ𝑑 ,

𝔼

[
exp

{
𝑢𝑇

𝑡∑
𝜏=1
𝑋𝜏𝑐𝜏 −

1
2
𝑢𝑇

(
𝑡∑
𝜏=1
𝑋𝜏𝑋

𝑇
𝜏 +

𝑡∑
𝜏=1

𝔼(𝑋𝜏𝑋𝑇𝜏 |𝜏−1)
)
𝑢

}]
≤ 1.

Lemma 7 (Azuma-Hoeffding inequality). If {𝑀𝑡}𝑇𝑡=0 is a supermartingale satisfying |𝑀𝑡 −𝑀𝑡−1| ≤ 𝑐𝑡 for all 𝑡 almost surely, then for any 
𝑎 > 0,

ℙ
(|𝑀𝑇 −𝑀0| ≥ 𝑎) ≤ exp

(
− 𝑎2

2
∑𝑇
𝑡=1 𝑐

2
𝑡

)
.

Lemma 8 (Abramowitz and Stegun [1]). If 𝑍 is a standard normal random variable, then for any 𝑢 ≥ 1,

1
2
√
𝜋𝑢

exp
(
− 𝑢

2

2

)
≤ ℙ (|𝑍| > 𝑢) ≤ 1√

𝜋𝑢
exp
(
− 𝑢

2

2

)
.

Appendix B. Motivation for the variance formula (9)

We follow the lines of Appendices B and C in Yang, Toni, and Dong [26]. Suppose that we estimate the parameters for all users 
simultaneously by a semi-parametric estimator with regularization by a graph Laplacian 𝐿. Then, we may consider to estimate 
𝜇 ∶= (𝜇𝑇1 , … , 𝜇𝑇𝑛 )𝑇 ∈ℝ𝑛𝑑 by

𝜇∗ =𝐌−1
𝑡 𝚽𝑡𝐘𝑡.

Here, 𝐌𝑡 is a 𝑛𝑑 × 𝑛𝑑 matrix in which the (𝑗, 𝑘)-th 𝑑 × 𝑑 block 𝐌𝑗𝑘,𝑡 is

𝐌𝑗𝑗,𝑡 =𝐵𝑗 (𝑡) = Σ𝑗,𝑡 + Σ̂𝑗,𝑡 + 𝜆𝑙𝑗𝑗𝐼𝑑 , 𝐌𝑗𝑘,𝑡 = 𝜆𝑙𝑗𝑘𝐼𝑑 (𝑗 ≠ 𝑘).

Next, 𝚽𝑡 is a 𝑛𝑑 × (𝑡 − 1) matrix whose 𝜏-th column 𝝓𝜏 ∈ℝ𝑛𝑑 is

𝝓𝜏 =
[
0𝑇𝑑 , … ,0𝑇𝑑
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝑗𝜏−1 times

, 2𝑋𝑇𝜏 , 0𝑇𝑑 , … ,0𝑇𝑑
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝑛−𝑗𝜏 times

]𝑇
,

and 𝐘𝑡 ∈ℝ𝑡−1 is the reward vector, i.e.,

𝐘𝑡 = [𝑟𝑎(1),𝑗1 (1), 𝑟𝑎(2),𝑗2 (2),… , 𝑟𝑎(𝑡−1),𝑗𝑡−1 (𝑡− 1)]𝑇 .

Assume that each error term 𝜂𝑖,𝑗 (𝜏) independently follows a distribution with mean zero and variance 𝜎2. Then, as in equation 34 of 
Yang, Toni, and Dong [26], the precision matrix of 𝜇∗ in a fixed design setting, denoted by 𝚲𝑡, is
11

𝚲𝑡 =
1
𝜎2

𝐌𝑡𝐀−1
𝑡 𝐌𝑡,



Information Sciences 645 (2023) 119367Y.-G. Choi, G.-S. Kim, S. Paik et al.

where 𝐀𝑡 =𝚽𝑡𝚽𝑇
𝑡 ∈ℝ𝑛𝑑×𝑛𝑑 . Note that the 𝑗-th 𝑑 ×𝑑 diagonal block of 𝐀𝑡 is 𝐀𝑗,𝑡 ∶= 4 ∑𝜏∈𝑗,𝑡−1 𝑋𝜏𝑋

𝑇
𝜏 = 4Σ̂𝑗,𝑡. From equation 38 in Yang, 

Toni, and Dong [26], the 𝑗-th 𝑑 × 𝑑 diagonal block of 𝚲𝑡 is

𝚲𝑗,𝑡 ∶=
1
𝜎2

[
𝐌𝑗𝑗,𝑡𝐀−1

𝑗,𝑡𝐌𝑗𝑗,𝑡 +
∑
𝑘≠𝑗

𝐌𝑗𝑘,𝑡𝐀−1
𝑘,𝑡𝐌𝑘𝑗,𝑡

]
.

From construction, we recall that 𝐌𝑗𝑗,𝑡 = 𝐵𝑗 (𝑡) = Σ𝑗,𝑡 + Σ̂𝑗,𝑡 + 𝜆𝑙𝑗𝑗𝐼𝑑 and 𝐌𝑗𝑘,𝑡 = 𝜆𝑙𝑗𝑘𝐼𝑑 . Moreover, from the definition of 𝚽𝑡, we have 
𝐀𝑗,𝑡 = 4Σ̂𝑗,𝑡. Thus,

𝚲𝑗,𝑡 =
1

4𝜎2

[
𝐵𝑗 (𝑡)Σ̂−1

𝑗,𝑡 𝐵𝑗 (𝑡) +
∑
𝑘≠𝑗

𝜆2𝑙2𝑗𝑘Σ̂
−1
𝑘,𝑡

]
.

Now, we claim that we can approximate 𝚲𝑗,𝑡 by 1
2𝜎2 Γ𝑗 (𝑡), where Γ𝑗 (𝑡) is defined in (9). Note that Σ̂𝑗,𝑡 =

∑
𝜏∈𝑗,𝑡−1 𝑋𝜏𝑋

𝑇
𝜏 may be 

numerically unstable when its inverse is taken, since it is not of full rank at early stages. Therefore, we may want a perturbed version 
of Σ̂𝑗,𝑡, say Σ̂𝑗,𝑡 + 𝑐𝐼𝑑 for a constant 𝑐. In addition, we remark that Σ̂𝑗,𝑡 ≈ Σ𝑗,𝑡 when |𝑗,𝑡−1| is large. To see this, observe that

1|𝑗,𝑡−1| (Σ̂𝑗,𝑡 −Σ𝑗,𝑡)

= 1|𝑗,𝑡−1| ∑
𝜏∈𝑗,𝑡−1

𝑁∑
𝑖=1

[
{𝐼(𝑎(𝜏) = 𝑖) − 𝜋𝑖(𝜏)}{𝑏𝑖(𝜏) − 𝑏̄(𝜏)}{𝑏𝑖(𝜏) − 𝑏̄(𝜏)}𝑇

]
.

Since {𝐼(𝑎(𝜏) = 𝑖) − 𝜋𝑖(𝜏)}𝜏 is a martingale adapted to {𝜏}𝜏 and ‖𝑏𝑖(𝜏) − 𝑏̄(𝜏)‖ is bounded, 1|𝑗,𝑡−1| (Σ̂𝑗,𝑡 − Σ𝑗,𝑡) → 0 in probability as |𝑗,𝑡−1| →∞ by the Azuma-Hoeffding inequality (Lemma 7). Therefore, taking 𝑐 = 𝜆𝑙𝑗𝑗∕2 and approximating Σ̂𝑗,𝑡 by (Σ̂𝑗,𝑡 +Σ𝑗,𝑡)∕2, we 

obtain Σ̂𝑗,𝑡 ≈
Σ̂𝑗,𝑡+Σ𝑗,𝑡+𝜆𝑙𝑗𝑗 𝐼𝑑

2 = 𝐵𝑗 (𝑡)∕2. So,

𝚲𝑗,𝑡 ≈
1

4𝜎2

[
𝐵𝑗 (𝑡)

(
𝐵𝑗 (𝑡)
2

)−1

𝐵𝑗 (𝑡) +
∑
𝑘≠𝑗

𝜆2𝑙2𝑗𝑘

(
𝐵𝑘(𝑡)
2

)−1
]

= 1
2𝜎2

[
𝐵𝑗 (𝑡) +

∑
𝑘≠𝑗

𝜆2𝑙2𝑗𝑘𝐵𝑘(𝑡)
−1

]

= 1
2𝜎2

Γ𝑗 (𝑡).

We handle the constant factor 1∕2𝜎2 in 𝑣𝑗 in the Thompson sampling variance. Therefore, the use of 𝚲𝑗,𝑡 is approximately equivalent 
to the use of Γ𝑗 (𝑡).

We note that while other approximations may be considered, our approximation ̂Σ𝑗,𝑡 ≈
Σ̂𝑗,𝑡+Σ𝑗,𝑡+𝜆𝑙𝑗𝑗 𝐼𝑑

2 =𝐵𝑗 (𝑡)∕2 could be a favorable 
choice, as it not only simplifies the expression that leads to Γ𝑗 (𝑡) in (9) but also exhibits reasonably good empirical performance.

Appendix C. Proof of Theorem 2

The proof of Theorem 2 follows the sketch in the Regret Analysis Section.

C.1. Proof of (11)

By the semi-parametric reward assumption, for 𝑘 = 1, … , 𝑛,

𝜇̄𝑘(𝑡) = 𝐵𝑘(𝑡)−1
∑

𝜏∈𝑘,𝑡−1

2𝑋𝜏
{
𝜈(𝜏) + 𝑏𝑇𝜏 𝜇𝑘 + 𝜂𝜏

}
= 𝐵𝑘(𝑡)−1

{ ∑
𝜏∈𝑘,𝑡−1

2𝑋𝜏𝜈(𝜏) +
∑

𝜏∈𝑘,𝑡−1

2𝑋𝜏𝑋𝑇𝜏 𝜇𝑘

+
∑

𝜏∈𝑘,𝑡−1

2𝑋𝜏𝑏̄(𝜏)𝑇 𝜇𝑘 +
∑

𝜏∈𝑘,𝑡−1

2𝑋𝜏𝜂𝜏

}

= 𝐵𝑘(𝑡)−1
{(

Σ̂𝑘,𝑡 +Σ𝑘,𝑡
)
+
(
Σ̂𝑘,𝑡 −Σ𝑘,𝑡

)
+ 𝜆𝑙𝑘𝑘𝐼𝑑 − 𝜆𝑙𝑘𝑘𝐼𝑑

}
𝜇𝑘

+ 𝐵𝑘(𝑡)−1
⎧⎪⎨ ∑

2𝑋𝜏
(
𝜈(𝜏) + 𝑏̄(𝜏)𝑇 𝜇𝑘

)
+

∑
2𝑋𝜏𝜂𝜏

⎫⎪⎬

12

⎪⎩𝜏∈𝑘,𝑡−1 𝜏∈𝑘,𝑡−1 ⎪⎭
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= 𝜇𝑘 − 𝜆𝑙𝑘𝑘𝐵𝑘(𝑡)−1𝜇𝑘 +𝐵𝑘(𝑡)−1𝐴𝑘(𝑡) +𝐵𝑘(𝑡)−1
∑

𝜏∈𝑘,𝑡−1

2𝑋𝜏𝜂𝜏 .

By the relation above, the proposed estimator satisfies

𝜇𝑗 (𝑡) − 𝜇𝑗

= −

[
𝐵𝑗 (𝑡)−1

𝑛∑
𝑘=1
𝜆𝑙𝑗𝑘𝜇𝑘

]
+

[
𝐵𝑗 (𝑡)−1

∑
𝑘≠𝑗

𝜆2𝑙𝑗𝑘𝑙𝑘𝑘𝐵𝑘(𝑡)−1𝜇𝑘

]

+ 2
⎡⎢⎢⎣𝐵𝑗 (𝑡)−1

∑
𝜏∈𝑘,𝑡−1

𝑋𝜏𝜂𝜏

⎤⎥⎥⎦− 2
⎡⎢⎢⎣𝐵𝑗 (𝑡)−1

∑
𝑘≠𝑗

𝜆𝑙𝑗𝑘𝐵𝑘(𝑡)−1
∑

𝜏∈𝑘,𝑡−1

𝑋𝜏𝜂𝜏

⎤⎥⎥⎦
+
[
𝐵𝑗 (𝑡)−1𝐴𝑗 (𝑡)

]
−

[
𝐵𝑗 (𝑡)−1

∑
𝑘≠𝑗

𝜆𝑙𝑗𝑘𝐵𝑘(𝑡)−1𝐴𝑘(𝑡)

]
.

Now, left-multiply 𝑏𝑐𝑖 (𝑡)𝑇 on each side of the equation above and applying Lemma 3 on the six terms in the right-hand side yields the 
desired result. □

C.2. Proof of (16)

Fix 𝑘 (𝑘 = 1, … , 𝑛). Note that when 𝜏−1 and 𝑎(𝜏) are given, 𝑋𝜏 is fixed and 𝜂𝜏 is 𝑅-sub-Gaussian. Then, from (7), for all 𝑢 ∈ℝ𝑑 ,

𝔼

[
exp
{
𝑢𝑇𝑋𝜏

( 𝜂𝜏
𝑅

)
− 1

2
𝑢𝑇𝑋𝜏𝑋

𝑇
𝜏 𝑢
}|||||𝜏−1, 𝑎(𝜏)

]
≤ 1.

This leads to

𝔼
⎡⎢⎢⎢⎣exp

⎧⎪⎨⎪⎩𝑢
𝑇
∑

𝜏∈𝑘,𝑡−1

𝑋𝜏𝑐𝜏 −
1
2
𝑢𝑇 Σ̂𝑘,𝑡𝑢

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦ ≤ 1,

which satisfies the assumption of Lemma 5 with the choice of 𝑋𝜏 = 𝑋𝜏 , 𝑐𝜏 = 𝑛𝜏∕𝑅, 𝑄 = 𝜆𝑙𝑘𝑘𝐼𝑑 + Σ𝑘,𝑡 and 𝐴(𝑡) = Σ̂𝑘,𝑡. Then, for any 
0 < 𝛿 < 1, with probability at least 1 − 𝛿(|𝑘,𝑡−1| + 1∕𝑛)∕(3𝑡3),

‖‖‖‖‖‖
∑

𝜏∈𝑘,𝑡−1

𝑋𝜏𝜂𝜏

‖‖‖‖‖‖𝐵𝑘(𝑡)−1 ≤𝑅
√√√√log

{
det(𝐵𝑘(𝑡))∕det(𝜆𝑙𝑘𝑘𝐼𝑑 +Σ𝑘,𝑡)

(𝛿(|𝑘,𝑡−1|+ 1∕𝑛)∕3𝑡3)2

}
. (C.1)

We may assume |𝑘,𝑡−1| ≥ 1, otherwise the left-hand side of (C.1) is zero. The determinant-trace inequality for det(𝐵𝑘(𝑡)) yields

det(𝐵𝑘(𝑡)) ≤
(
tr(𝐵𝑘(𝑡))

𝑑

)𝑑
=

( tr(𝜆𝑙𝑘𝑘𝐼𝑑 ) +
∑
𝜏∈𝑘,𝑡−1 tr(𝑋𝜏𝑋

𝑇
𝜏 + 𝔼(𝑋𝜏𝑋𝑇𝜏 |𝜏−1))

𝑑

)𝑑

≤

(
𝜆𝑙𝑘𝑘 +

8|𝑘,𝑡−1|
𝑑

)𝑑
,

where we used ‖𝑋𝜏‖ ≤ 2. On the other hand, since Σ𝑘,𝑡 is positive semi-definite, we have det(𝜆𝑙𝑘𝑘𝐼𝑑 + Σ𝑘,𝑡) ≥ det(𝜆𝑙𝑘𝑘𝐼𝑑 ) = (𝜆𝑙𝑘𝑘)𝑑 . 
Then, for 𝑑 ≥ 2 and 𝑡 ≥ 1,

det(𝐵𝑗 (𝑡))
det(𝜆𝑙𝑘𝑘𝐼𝑑 +Σ𝑘,𝑡)

≤

(
1 +

8|𝑘,𝑡−1|
𝑑𝜆𝑙𝑘𝑘

)𝑑
≤ 8𝑑 |𝑘,𝑡−1|𝑑 (1 + 1

𝜆𝑙𝑘𝑘

)𝑑
.

Since 𝑑 ≥ 2, 𝑡 > 1, 0 < 𝛿 < 1 and 1 ≤ |𝑘,𝑡−1| ≤ 𝑡, the right-hand side of (C.1) is further simplified by

𝑅

√√√√log

{
det(𝐵𝑘(𝑡))∕det(𝜆𝑙𝑘𝑘𝐼𝑑 )
(𝛿(|𝑘,𝑡−1|+ 1∕𝑛)∕3𝑡3)2

}
≤𝑅

√√√√√√√log
⎧⎪⎨⎪⎩
𝑡6

𝛿2

8𝑑9|𝑘,𝑡−1|𝑑 (1 + 1
𝜆𝑙𝑘𝑘

)𝑑
(|𝑘,𝑡−1|+ 1∕𝑛)2

⎫⎪⎬⎪⎭
≤𝑅

√√√√√√√log
⎧⎪⎨ 𝑡3𝑑
𝛿𝑑

8𝑑3𝑑 |𝑘,𝑡−1|𝑑 (1 + 1
𝜆𝑙𝑘𝑘

)𝑑
2

⎫⎪⎬

13

⎪⎩ (|𝑘,𝑡−1|+ 1∕𝑛) ⎪⎭
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≤𝑅

√
𝑑 log

{
24𝑡3
𝛿
|𝑘,𝑡−1|(1 + 1

𝜆𝑙𝑘𝑘

)}

≤𝑅

√
𝑑 log

{
24𝑡4
𝛿

(
1 + 1

𝜆𝑙𝑘𝑘

)}
.

Combining (C.1) and the result above, for any 0 < 𝛿 < 1, we have‖‖‖‖‖‖
∑

𝜏∈𝑘,𝑡−1

𝑋𝜏𝜂𝜏

‖‖‖‖‖‖𝐵𝑘(𝑡)−1 ≤𝑅
√
𝑑 log

{
24𝑡4
𝛿

(
1 + 1

𝜆𝑙𝑘𝑘

)}
with probability at least ≥ 1 − 𝛿(|𝑘,𝑡−1| + 1∕𝑛)∕(3𝑡3). This concludes the derivation. □

C.3. Proof of (17)

Fix 𝑘 (𝑘 = 1, … , 𝑛). Recall the definition of 𝐴𝑘(𝑡),

‖‖𝐴𝑘(𝑡)‖‖𝐵𝑘(𝑡)−1 ≤ 2
‖‖‖‖‖‖
∑

𝜏∈𝑘,𝑡−1

𝑋𝜏
(
𝜈(𝜏) + 𝑏̄(𝜏)𝑇 𝜇𝑘

)‖‖‖‖‖‖𝐵𝑘(𝑡)−1+
‖‖‖‖‖‖
∑

𝜏∈𝑘,𝑡−1

𝐷𝜏𝜇𝑘

‖‖‖‖‖‖𝐵𝑘(𝑡)−1 . (C.2)

For the first term of the right-hand side of (C.2), Lemma 6 yields

𝔼
⎡⎢⎢⎢⎣exp

⎧⎪⎨⎪⎩𝑢
𝑇
∑

𝜏∈𝑘,𝑡−1

𝑋𝜏𝑐𝜏 −
1
2
𝑢𝑇
(
Σ̂𝑘,𝑡 +Σ𝑘,𝑡

)
𝑢

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦ ≤ 1

for any 𝑢 ∈ ℝ𝑑 , where 𝑐𝜏 = (𝜈(𝜏) + 𝑏̄(𝜏)𝑇 𝜇𝑘)∕2. Then, we can apply Lemma 5 with 𝐴(𝑡) = Σ̂𝑘,𝑡 + Σ𝑘,𝑡 and 𝑄 = 𝜆𝑙𝑘𝑘𝐼𝑑 to obtain the 
following inequality with probability at least 1 − 𝛿(|𝑘,𝑡−1| + 1∕𝑛)∕3𝑡3:

‖‖‖‖‖‖
∑

𝜏∈𝑘,𝑡−1

𝑋𝜏
(
𝜈(𝜏) + 𝑏̄(𝜏)𝑇 𝜇𝑘

)‖‖‖‖‖‖𝐵𝑘(𝑡)−1 ≤ 2

√√√√log

{
det(𝐵𝑘(𝑡))∕det(𝜆𝑙𝑘𝑘𝐼𝑑 )
(𝛿(|𝑘,𝑡−1|+ 1∕𝑛)∕3𝑡3)2

}
. (C.3)

We can bound (C.3) similarly as in bounding the right-hand side of (C.1). Therefore, with probability at least 1 − 𝛿(|𝑘,𝑡−1| +1∕𝑛)∕3𝑡3,‖‖‖‖‖‖
∑

𝜏∈𝑘,𝑡−1

𝑋𝜏
(
𝜈(𝜏) + 𝑏̄(𝜏)𝑇 𝜇𝑘

)‖‖‖‖‖‖𝐵𝑘(𝑡)−1 ≤ 2

√
𝑑 log

{
24𝑡4
𝛿

(
1 + 1

𝜆𝑙𝑘𝑘

)}
. (C.4)

For the second term of the right-hand side of (C.2), we let 𝑌𝑘,𝜏 =𝐷𝜏𝜇𝑘 and observe 𝑌𝑘,𝜏 ∈ ℝ𝑑 , 𝔼(𝑌𝑘,𝜏 |𝜏−1) = 0. It is straightforward 
from Lemma 4.4 and its proof in Kim and Paik [13] to derive

𝔼
⎡⎢⎢⎢⎣exp

⎧⎪⎨⎪⎩𝑢
𝑇
∑

𝜏∈𝑘,𝑡−1

1√
2
𝑌𝑘,𝜏 −

1
2
𝑢𝑇
(
Σ̂𝑘,𝑡 +Σ𝑘,𝑡

)
𝑢

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦ ≤ 1

for any 𝑢 ∈ℝ𝑑 , which again satisfies the assumption of Lemma 5 with the choice of 𝑋𝜏 = 𝑌𝑘,𝜏 , 𝑐𝜏 = 1∕
√
2 and 𝐴(𝑡) = Σ̂𝑘,𝑡 + Σ𝑘,𝑡. Then, 

putting 𝑄 = 𝜆𝑙𝑘𝑘𝐼𝑑 , we have with probability at least 1 − 𝛿(|𝑘,𝑡−1| + 1∕𝑛)∕3𝑡3,

‖‖‖‖‖‖
∑

𝜏∈𝑘,𝑡−1

𝐷𝜏𝜇𝑘

‖‖‖‖‖‖𝐵𝑘(𝑡)−1 ≤
√
2

√√√√log

{
det(𝐵𝑘(𝑡))∕det(𝜆𝑙𝑘𝑘𝐼𝑑 )
(𝛿(|𝑘,𝑡−1|+ 1∕𝑛)∕3𝑡3)2

}

≤
√
2

√
𝑑 log

{
24𝑡4
𝛿

(
1 + 1

𝜆𝑙𝑘𝑘

)}
. (C.5)

Plugging (C.4) and (C.5) into (C.2) yields bounds for each user:

ℙ
⎡⎢⎢⎣‖‖𝐴𝑘(𝑡)‖‖𝐵𝑘(𝑡)−1 ≤ 6

√
𝑑 log

{
24𝑡4
𝛿

(
1 + 1

𝜆𝑙𝑘𝑘

)}⎤⎥⎥⎦ ≥ 1 −
2𝛿(|𝑘,𝑡−1|+ 1∕𝑛)

3𝑡3
.

Finally, applying the union bound argument yields

ℙ
⎡⎢∀𝑘 = 1,… , 𝑛 ∶ ‖𝐴 (𝑡)‖ −1 ≤ 6

√
𝑑 log

{
24𝑡4

(
1 + 1

)}⎤⎥ ≥ 1 − 2𝛿
, (C.6)
14

⎢⎣ ‖ 𝑘 ‖𝐵𝑘(𝑡) 𝛿 𝜆𝑙𝑘𝑘 ⎥⎦ 3𝑡2



Information Sciences 645 (2023) 119367Y.-G. Choi, G.-S. Kim, S. Paik et al.

which completes the proof. □

Appendix D. Proof of Theorem 1

The proof incorporates the lines of Agrawal and Goyal [3] and Kim and Paik [13] with the proposed estimation and Thompson 
sampling steps. Throughout the Section, we write as 𝑗 = 𝑗𝑡, 𝑏𝜏 = 𝑏𝑎(𝜏)(𝜏) and 𝜂𝜏 = 𝜂𝑎(𝜏),𝑗𝜏 (𝜏) for brevity. We reserve 𝑘 (𝑘 = 1, … , 𝑛) to 
denote user index. The proof has six steps:

(a) (Theorem 2) To establish a high-probability upper bound of |𝑏𝑐𝑖 (𝑡)(𝜇𝑗 (𝑡) − 𝜇𝑗 )|.
(b) (Lemma 9) To establish a high-probability upper bound of |𝑏𝑐𝑖 (𝑡)(𝜇𝑗 (𝑡) − 𝜇𝑗 (𝑡))| given 𝑡−1.
(c) (Definition 1) To divide arms at each time 𝑡 into saturated arms and unsaturated arms.

(d) (Lemma 10) To bound the probability of playing saturated arms by a function of playing unsaturated arms.

(e) (Lemma 11) To bound 𝑟𝑒𝑔𝑟𝑒𝑡(𝑡) given 𝑡−1 for each 𝑡.
(f) To bound 𝑅(𝑇 ) and complete the proof.

We begin with step (b).

Lemma 9. Let 𝐸𝜇(𝑡) be an event defined by

𝐸𝜇(𝑡) =
{
∀𝑖 ∶ |𝑏𝑐𝑖 (𝑡)𝑇 (𝜇𝑗 (𝑡) − 𝜇𝑗 (𝑡))| ≤ 𝑣𝑗𝑠𝑐𝑖,𝑗 (𝑡)min{

√
4𝑑 log(2𝑑𝑇 ),

√
4 log(2𝑁𝑇 )}

}
,

for all 𝑡 ≥ 1, ℙ(𝐸𝜇(𝑡)|𝑡−1) ≥ 1 − 1∕𝑇 2.

Proof. We first show |𝑏𝑐𝑖 (𝑡)𝑇 (𝜇𝑗 (𝑡) − 𝜇𝑗 (𝑡))| ≤ 𝑣𝑗𝑠𝑐𝑖,𝑗 (𝑡)√4𝑑 log(2𝑑𝑇 ). Given 𝑡−1, the values of 𝑏𝑐𝑖 (𝑡), Γ𝑗 (𝑡), and 𝜇𝑗 (𝑡) are fixed. Then, for 
𝑖 = 1, … , 𝑁 , we have

|||𝑏𝑐𝑖 (𝑡)𝑇 (𝜇𝑗 (𝑡) − 𝜇𝑗 (𝑡))||| = |||||𝑣𝑗𝑏𝑐𝑖 (𝑡)𝑇 Γ𝑗 (𝑡)− 1
2 ⋅

1
𝑣𝑗

Γ𝑗 (𝑡)
1
2 (𝜇𝑗 (𝑡) − 𝜇𝑗 (𝑡))

|||||
≤ 𝑣𝑗𝑠

𝑐
𝑖,𝑗 (𝑡)

‖‖‖‖‖ 1
𝑣𝑗

Γ𝑗 (𝑡)
1
2 (𝜇𝑗 (𝑡) − 𝜇𝑗 (𝑡))

‖‖‖‖‖2
= 𝑣𝑗𝑠𝑐𝑖,𝑗 (𝑡)

√√√√ 𝑑∑
𝑙=1
𝑍𝑙(𝑡)2, (D.1)

where 𝑍𝑙(𝑡)|𝑡−1 (𝑙 = 1, … , 𝑑) identically and independently follow the standard normal distribution. We apply Lemma 8 with the 
choice of 𝑢 =

√
2 log(2𝑑𝑇 2). Noting 

√
2 log(2𝑑𝑇 2) ≤

√
2 log(22𝑑2𝑇 2) =

√
4 log(2𝑑𝑇 ),

ℙ
(|𝑍𝑙(𝑡)| >√4 log(2𝑑𝑇 )|||𝑡−1) ≤ ℙ

(|𝑍𝑙(𝑡)| >√2 log(2𝑑𝑇 2)|||𝑡−1
)

≤
1√

2𝜋 log(2𝑑𝑇 2)
⋅

1
2𝑑𝑇 2 ≤

1
2𝑑𝑇 2 ,

for each 𝑙 = 1, … , 𝑑. Then, by a union bound argument,

ℙ
(
∀𝑙 = 1,… , 𝑑 ∶ |𝑍𝑘(𝑡)| >√4 log(2𝑑𝑇 )|||𝑡−1) ≤ 1

2𝑇 2 . (D.2)

Therefore, combining (D.1) and (D.2) yields

ℙ
(
∀𝑖 ∶ |||𝑏𝑐𝑖 (𝑡)𝑇 (𝜇𝑗 (𝑡) − 𝜇𝑗 (𝑡))||| ≤ 𝑣𝑗𝑠𝑐𝑖,𝑗 (𝑡)√4𝑑 log(2𝑑𝑇 )

)
≥ 1 − 1

2𝑇 2 .

On the other hand, by the observation that 𝑏𝑐𝑖 (𝑡)𝑇 (𝜇𝑗 (𝑡) − 𝜇𝑗 (𝑡))|𝑡−1 (𝑖 = 1, … , 𝑁) identically and independently follow the standard 
normal distribution, one can apply a similar technique to derive |𝑏𝑐𝑖 (𝑡)𝑇 (𝜇𝑗 (𝑡) − 𝜇𝑗 (𝑡))| ≤ 𝑣𝑗𝑠𝑐𝑖,𝑗 (𝑡)√4 log(2𝑁𝑇 ) with probability at least 
1 − 1∕(2𝑇 2) given 𝑡−1. Combining the two bounds, we obtain the desired result. □

In step (c), we divide arms at each time 𝑡 into saturated arms and unsaturated arms. Note that 𝐶(𝑡) implicitly depends on 𝑗𝑡.

Definition 1. Define 𝐶(𝑡), the set of saturated arms, by

𝐶(𝑡) = {𝑖 ∶ 𝑏𝑐𝑖 (𝑡)
𝑇 𝜇𝑗 + 𝑔𝑗 (𝑇 )𝑠𝑐𝑖,𝑗 (𝑡) < 𝑏𝑎∗(𝑡)(𝑡)

𝑇 𝜇𝑗},

where 𝑔𝑘(𝑇 ) = 𝛼𝑘(𝑇 ) + 𝑣𝑘min{
√
4𝑑 log(2𝑑𝑇 ), 

√
4 log(2𝑁𝑇 )} and 𝛼𝑘(𝑇 ) = (4𝑅 + 12)⋅

√
𝑑 log

{
(24𝑇 4∕𝛿)(1 + 𝜆−1)

}
+
√
𝜆(1 + ‖Δ𝑘‖), 𝑘 =
15

1, … , 𝑛.
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In step (d), we establish that the probability of playing saturated arms is bounded by the probability of playing unsaturated arms 
up to constant multiplication and addition.

Lemma 10. Given 𝑡−1 such that 𝐸𝜇(𝑡) is true,

ℙ
(
𝑎(𝑡) ∈ 𝐶(𝑡)|𝑡−1) ≤ 1

𝑝
ℙ
(
𝑎(𝑡) ∉ 𝐶(𝑡)|𝑡−1)+ 1

𝑝𝑇 2 ,

where 𝑝 = 1∕(4𝑒
√
𝜋).

Proof. Since 𝑎(𝑡) = argmax1≤𝑖≤𝑁{𝑏𝑐𝑖 (𝑡)
𝑇 𝜇𝑗 (𝑡)} by definition, if 𝑏𝑎∗(𝑡)(𝑡)𝑇 𝜇𝑗 (𝑡) > 𝑏𝑐𝑖 (𝑡)𝑇 𝜇𝑗 (𝑡) for every 𝑖 ∈ 𝐶(𝑡), then 𝑎(𝑡) ∉ 𝐶(𝑡). This implies

ℙ
(
𝑎(𝑡) ∉ 𝐶(𝑡)|𝑡−1) ≥ ℙ

(
∀𝑖 ∈ 𝐶(𝑡) ∶ 𝑏𝑎∗(𝑡)(𝑡)𝑇 𝜇𝑗 (𝑡) > 𝑏𝑐𝑖 (𝑡)

𝑇 𝜇𝑗 (𝑡)|𝑡−1) . (D.3)

On the other hand, when 𝐸𝜇(𝑡) is additionally true,

𝑏𝑐𝑖 (𝑡)
𝑇 𝜇𝑗 (𝑡) ≤ 𝑏𝑐𝑖 (𝑡)

𝑇 𝜇𝑗 + 𝑔𝑗 (𝑇 )𝑠𝑐𝑖,𝑗 (𝑡) (Def. of 𝐸𝜇(𝑡) & 𝐸𝜇(𝑡))

≤ 𝑏𝑎∗(𝑡)(𝑡)𝑇 𝜇𝑗 , (Def. of 𝐶(𝑡)),

which implies that

ℙ
(
𝑏𝑎∗(𝑡)(𝑡)𝑇 𝜇𝑗 < 𝑏𝑎∗(𝑡)(𝑡)𝑇 𝜇𝑗 (𝑡)|𝑡−1)

≤ ℙ
(
∀𝑖 ∈ 𝐶(𝑡) ∶ 𝑏𝑐𝑖 (𝑡)

𝑇 𝜇𝑗 (𝑡) < 𝑏𝑎∗(𝑡)(𝑡)𝑇 𝜇𝑗 (𝑡)|𝑡−1)+ (1 −ℙ
(
𝐸𝜇(𝑡)|𝑡−1)) (D.4)

The left-hand side of (D.4) can be lower-bounded, because the normality of 𝜇𝑗 (𝑡) and Lemma 8 yields

ℙ
(
𝑏𝑎∗(𝑡)(𝑡)𝑇 𝜇𝑗 (𝑡) > 𝑏𝑎∗(𝑡)(𝑡)𝑇 𝜇𝑗

||||𝑡−1
)

= ℙ

(
𝑏𝑎∗(𝑡)(𝑡)𝑇 (𝜇𝑗 (𝑡) − 𝜇𝑗 (𝑡))

𝑣𝑗𝑠
𝑐
𝑎∗(𝑡),𝑗 (𝑡)

>
𝑏𝑎∗(𝑡)(𝑡)𝑇 (𝜇𝑗 − 𝜇𝑗 (𝑡))

𝑣𝑗𝑠
𝑐
𝑎∗(𝑡),𝑗 (𝑡)

||||𝑡−1
)

≥ ℙ
(
𝑍(𝑡) >

𝛼𝑗 (𝑇 )
𝑣𝑗

|||𝑡−1
)

≥
1

4
√
𝜋𝑢

exp
(
− 𝑢

2

2

)
,

where 𝑢 = 𝛼𝑗 (𝑇 )∕𝑣𝑗 and 𝑍(𝑡)|𝑡−1 is a standard normal random variable. Note that 𝑢 ≤ 1 by the construction. Therefore,

ℙ
(
𝑏𝑎∗(𝑡)(𝑡)𝑇 𝜇𝑗 (𝑡) > 𝑏𝑎∗(𝑡)(𝑡)𝑇 𝜇𝑗 |𝑡−1) ≥ 1

4𝑒
√
𝜋
= 𝑝. (D.5)

Combining (D.3), (D.4), (D.5) and Lemma 9, we have

ℙ
(
𝑎(𝑡) ∉ 𝐶(𝑡)|𝑡−1)+ 1

𝑇 2 ≥ 𝑝,

which implies

ℙ
(
𝑎(𝑡) ∈ 𝐶(𝑡)|𝑡−1)

ℙ
(
𝑎(𝑡) ∉ 𝐶(𝑡)|𝑡−1)+ 1

𝑇 2

≤
1
𝑝
.

This completes the proof. □

Before proceeding to bound the cumulative regret, we bound each 𝑟𝑒𝑔𝑟𝑒𝑡(𝑡) given 𝑡−1 in step (e).

Lemma 11. Given 𝑡−1 such that 𝐸𝜇(𝑡) is true,

𝔼
(
𝑟𝑒𝑔𝑟𝑒𝑡(𝑡)|𝑡−1) ≤ 5𝑔𝑗 (𝑇 )

𝑝
𝔼
(
𝑠𝑐
𝑎(𝑡),𝑗 (𝑡)|𝑡−1)+ 4𝑔𝑗 (𝑇 )

𝑝𝑇 2 .

Proof. Let 𝑎̄(𝑡) = argmin𝑖∉𝐶(𝑡) 𝑠𝑐𝑖,𝑗 (𝑡). If 𝑡−1 is given, then 𝑎̄(𝑡) is deterministic. This value is also well-defined due to 𝑎∗(𝑡) ∉ 𝐶(𝑡). Under 
𝑡−1 such that both 𝐸𝜇(𝑡) and 𝐸𝜇(𝑡) holds,

𝑏𝑎∗(𝑡)(𝑡)𝑇 𝜇𝑗
16

= 𝑏𝑎∗(𝑡)(𝑡)𝑇 𝜇𝑗 − 𝑏𝑎̄(𝑡)(𝑡)𝑇 𝜇𝑗 + 𝑏𝑎̄(𝑡)(𝑡)𝑇 𝜇𝑗
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≤ 𝑔𝑗 (𝑇 )𝑠𝑐𝑎̄(𝑡),𝑗 (𝑡) + 𝑏𝑎̄(𝑡)(𝑡)
𝑇 𝜇𝑗 (𝑎̄(𝑡) ∉ 𝐶(𝑡) & def. of 𝐶(𝑡))

≤ 𝑔𝑗 (𝑇 )𝑠𝑐𝑎̄(𝑡),𝑗 (𝑡) + 𝑏𝑎̄(𝑡)(𝑡)
𝑇 𝜇𝑗 (𝑡) + 𝑔𝑗 (𝑇 )𝑠𝑐𝑎̄(𝑡),𝑗 (𝑡) (Def. of 𝐸𝜇(𝑡) and 𝐸𝜇(𝑡))

≤ 2𝑔𝑗 (𝑇 )𝑠𝑐𝑎̄(𝑡),𝑗 (𝑡) + 𝑏𝑎(𝑡)(𝑡)
𝑇 𝜇𝑗 (𝑡) (Def. of 𝑎(𝑡))

≤ 2𝑔𝑗 (𝑇 )𝑠𝑐𝑎̄(𝑡),𝑗 (𝑡) + 𝑏𝑎(𝑡)(𝑡)
𝑇 𝜇𝑗 + 𝑔𝑗 (𝑇 )𝑠𝑐𝑎(𝑡),𝑗 (𝑡) (Def. of 𝐸𝜇(𝑡) and 𝐸𝜇(𝑡)),

which yields

𝑟𝑒𝑔𝑟𝑒𝑡(𝑡) ≤ 2𝑔𝑗 (𝑇 )𝑠𝑐𝑎̄(𝑡),𝑗 (𝑡) + 𝑔𝑗 (𝑇 )𝑠
𝑐
𝑎(𝑡),𝑗 (𝑡).

Then, under 𝑡−1 such that 𝐸𝜇(𝑡) holds, the following holds from inequality above, Lemma 9 and |𝑟𝑒𝑔𝑟𝑒𝑡(𝑡)| ≤ 2:

𝔼
(
𝑟𝑒𝑔𝑟𝑒𝑡(𝑡)|𝑡−1)

= 𝔼
(
𝑟𝑒𝑔𝑟𝑒𝑡(𝑡)𝐼(𝐸𝜇(𝑡))|𝑡−1)+ 𝔼

(
𝑟𝑒𝑔𝑟𝑒𝑡(𝑡){1 − 𝐼(𝐸𝜇(𝑡))}|𝑡−1)

≤ 2𝑔𝑗 (𝑇 )𝑠𝑐𝑎̄(𝑡),𝑗 (𝑡) + 𝑔𝑗 (𝑇 )𝔼
(
𝑠𝑐
𝑎(𝑡),𝑗 (𝑡)|𝑡−1)+ 2

(
1 −ℙ

(
𝐸𝜇(𝑡)|𝑡−1))

≤ 2𝑔𝑗 (𝑇 )𝑠𝑐𝑎̄(𝑡),𝑗 (𝑡) + 𝑔𝑗 (𝑇 )𝔼
(
𝑠𝑐
𝑎(𝑡),𝑗 (𝑡)|𝑡−1)+ 2

𝑇 2 . (D.6)

We now further bound 𝑠𝑐
𝑎̄(𝑡),𝑗 (𝑡). Observe that

𝑠𝑐
𝑎̄(𝑡),𝑗 (𝑡)

= 𝑠𝑐
𝑎̄(𝑡),𝑗 (𝑡)

{
ℙ(𝑎(𝑡) ∈ 𝐶(𝑡)|𝑡−1) +ℙ(𝑎(𝑡) ∉ 𝐶(𝑡)|𝑡−1)}

= 𝑠𝑐
𝑎̄(𝑡),𝑗 (𝑡)

{
2
𝑝
ℙ(𝑎(𝑡) ∉ 𝐶(𝑡)|𝑡−1) + 1

𝑝𝑇 2

}
(Lemma 10)

= 2
𝑝
𝔼
(
𝑠𝑐
𝑎̄(𝑡),𝑗 (𝑡)𝐼(𝑎(𝑡) ∉ 𝐶(𝑡))|𝑡−1)+ 𝑠𝑐𝑎̄(𝑡),𝑗 (𝑡)𝑝𝑇 2

≤
2
𝑝
𝔼
(
𝑠𝑐
𝑎(𝑡),𝑗 (𝑡)𝐼(𝑎(𝑡) ∉ 𝐶(𝑡))|𝑡−1)+ 𝑠𝑐𝑎̄(𝑡),𝑗 (𝑡)𝑝𝑇 2 (Def. of 𝑎̄(𝑡))

≤
2
𝑝
𝔼
(
𝑠𝑐
𝑎(𝑡),𝑗 (𝑡)|𝑡−1)+ 1

𝑝𝑇 2 . (𝑠𝑐
𝑖,𝑘
(𝑡) ≤ 1 for any 𝑖, 𝑘, 𝑡)

Combining the inequality above and (D.6) conclude the proof. □

In step (f), we complete the proof.

Proof for Theorem 1. Let

𝑀𝑡 ∶= 𝑟𝑒𝑔𝑟𝑒𝑡(𝑡)𝐼(𝐸𝜇(𝑡)) −
5𝑔𝑗𝑡 (𝑇 )
𝑝

𝑠𝑎(𝑡),𝑗𝑡 (𝑡) −
4𝑔𝑗𝑡 (𝑇 )

𝑝𝑇 2 , 𝑡 = 1,… , 𝑇 ,

with 𝑀0 = 0.

We apply martingale arguments for each user 𝑘 = 1, … , 𝑛, and aggregate them by union bound. Fix 𝑘 and let 𝑇𝑘 = |𝑘,𝑇 |. Due to 
Lemma 11 and 𝑠𝑐

𝑖,𝑘
(𝑡) ≤ 1, {𝑀𝑡}𝑡∈{0}∪𝑘,𝑇 is a supermartingale process satisfying |𝑀𝑡| ≤ 10𝑔𝑘(𝑇 )∕𝑝. We apply Lemma 7 with the choice 

of 𝑐𝑡 = 10𝑔𝑘(𝑇 )∕𝑝 and 𝑎 = (10𝑔𝑘(𝑇 )∕𝑝)
√
2𝑇𝑘 log(2𝑇 ∕(𝛿𝑇𝑘)) that satisfies exp(−𝑎2∕(2 ∑𝑡 𝑐

2
𝑡 )) = 𝛿𝑇𝑘∕(2𝑇 ). This yields∑

𝑡∈𝑘,𝑇

𝑟𝑒𝑔𝑟𝑒𝑡(𝑡)𝐼(𝐸𝜇(𝑡)) ≤

5𝑔𝑘(𝑇 )
𝑝

∑
𝑡∈𝑘,𝑇

𝑠𝑐
𝑎(𝑡),𝑘(𝑡) +

4𝑔𝑘(𝑇 )
𝑝𝑇

+
10𝑔𝑘(𝑇 )
𝑝

√
2𝑇𝑘 log(2𝑇 ∕(𝛿𝑇𝑘)) (D.7)

with probability at least 1 − 𝛿𝑇𝑘∕(2𝑇 ). Since 𝑇1 +… + 𝑇𝑛 = 𝑇 , a union bound argument over 𝑘 = 1, … , 𝑛 leads to

𝑇∑
𝑡=1
𝑟𝑒𝑔𝑟𝑒𝑡(𝑡)𝐼(𝐸𝜇(𝑡)) ≤

𝑛∑
𝑘=1

⎡⎢⎢⎣
5𝑔𝑘(𝑇 )
𝑝

∑
𝑡∈𝑘,𝑇

𝑠𝑎(𝑡),𝑘(𝑡) +
4𝑔𝑘(𝑇 )
𝑝𝑇

+
10𝑔𝑘(𝑇 )
𝑝

√
2𝑇𝑘 log(2𝑇 ∕(𝛿𝑇𝑘))

⎤⎥⎥⎦ (D.8)
17

with probability at least 1 − 𝛿∕2.
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On the other hand, we apply a union bound argument to Theorem 2 over 𝑡 = 1, … , 𝑇 and replace 𝛿 with 3𝛿∕𝜋2, which yields 
ℙ(𝐸𝜇(𝑡) for all 𝑡 = 1,… , 𝑇 ) ≥ 1 − 𝛿∕2. Then, 𝑟𝑒𝑔𝑟𝑒𝑡(𝑡)𝐼(𝐸𝜇(𝑡)) = 𝑟𝑒𝑔𝑟𝑒𝑡(𝑡) for every 𝑡 with probability at least 1 − 𝛿∕2.

Therefore, with probability at least 1 − 𝛿,

𝑇∑
𝑡=1
𝑟𝑒𝑔𝑟𝑒𝑡(𝑡)≤

𝑛∑
𝑘=1

⎡⎢⎢⎣
5𝑔𝑘(𝑇 )
𝑝

∑
𝑡∈𝑘,𝑇

𝑠𝑐
𝑎(𝑡),𝑘(𝑡) +

4𝑔𝑘(𝑇 )
𝑝𝑇

+
10𝑔𝑘(𝑇 )
𝑝

√
2𝑇𝑘 log(2𝑇 ∕(𝛿𝑇𝑘))

⎤⎥⎥⎦ .
Now, by Lemma 12 below and the definitions of 𝑔𝑘(𝑇 ) and 𝑝,

𝑅(𝑇 ) ≤
𝑛∑
𝑘=1
𝑂

(
Ψ𝑘,𝑇

{√
𝑑 log(|𝑘,𝑇 |)+√𝜆‖Δ𝑘‖}×

min
{√

𝑑 log(𝑑|𝑘,𝑇 |),√log(𝑁|𝑘,𝑇 |)}√𝑑|𝑘,𝑇 | log(|𝑘,𝑇 |))
with probability at least 1 − 𝛿, which completes the proof. □

Lemma 12.∑
𝑡∈𝑘,𝑇

𝑠𝑐
𝑎(𝑡),𝑘(𝑡) =𝑂

(
Ψ𝑘,𝑇

√
𝑑|𝑘,𝑇 | log(|𝑘,𝑇 |)) .

Proof. We recall that Ψ𝑘,𝑇 =
∑
𝑡∈𝑘,𝑇 ‖𝑋𝑡‖Γ𝑘(𝑡)−1∕ ∑𝑡∈𝑘,𝑇 ‖𝑋𝑡‖𝐵𝑘(𝑡)−1 and that Ψ𝑘,𝑇 ∈ (0, 1) due to Γ𝑘(𝑡)−1 < 𝐵𝑘(𝑡)−1 for all 𝑗, 𝑡. Since ∑

𝑡∈𝑘,𝑇 𝑠
𝑐
𝑎(𝑡),𝑘(𝑡) =

∑
𝑡∈𝑘,𝑇 ‖𝑋𝑡‖Γ𝑘(𝑡)−1 by the definitions of 𝑠𝑐

𝑖,𝑘
(𝑡) and 𝑋𝑡, we have∑

𝑡∈𝑘,𝑇

𝑠𝑐
𝑎(𝑡),𝑘(𝑡) = Ψ𝑘,𝑇

∑
𝑡∈𝑘,𝑇

‖𝑋𝜏‖𝐵𝑘(𝑡)−1 .
We now claim ∑𝑡∈𝑘,𝑇 ‖𝑋𝜏‖𝐵𝑘(𝑡)−1 = 𝑂

(√
𝑑|𝑘,𝑇 | log(|𝑘,𝑇 |)). This has been proved in similar settings [2,3,24,13]; for complete-

ness, we present the proof. Define 𝑠𝑖,𝑘(𝑡) = ‖𝑏𝑐𝑖 (𝑡)‖𝐵𝑗 (𝑘)−1 . Note that 𝑠𝑎(𝑡),𝑗𝑡 (𝑡) = 𝑋𝑡 and ∑𝑡∈𝑘,𝑇 ‖𝑋𝜏‖𝐵𝑘(𝑡)−1 =. Then, ‖𝑋𝜏‖𝐵𝑘(𝑡)−1 =∑
𝑡∈𝑘,𝑇 𝑠𝑎(𝑡),𝑘(𝑡). Following the lines for equation 60 of Vaswani, Schmidt, and Lakshmanan [24], we can derive

log
[
det(𝐵𝑘(𝑡+ 1))

]
≥ log

[
det(𝜆𝑙𝑘𝑘𝐼𝑑 )

]
+
∑
𝜏∈𝑘,𝑡

log
(
1 + 𝑠𝑎(𝜏),𝑘(𝜏)2

)
. (D.9)

On the other hand, the trace of 𝐵𝑘(𝑡 + 1) is

tr
(
𝐵𝑘(𝑡+ 1)

)
≤ 8|𝑘,𝑇 |+ 𝜆𝑙𝑘𝑘𝑑, (D.10)

where we used ‖𝑋𝜏‖ ≤ 2 by construction. Plugging (D.9) and (D.10) into the determinant-trace inequality 
{
tr
(
𝐵𝑘(𝑡+ 1)

)
∕𝑑
}𝑑

≥

det
(
𝐵𝑘(𝑡+ 1)

)
, equivalently 𝑑 log

{
tr
(
𝐵𝑘(𝑡+ 1)

)
∕𝑑
}
≥ logdet

(
𝐵𝑘(𝑡+ 1)

)
, we obtain

𝑑 log
( 8|𝑘,𝑇 |

𝑑
+ 𝜆𝑙𝑘𝑘

)
≥ 𝑑 log(𝜆𝑙𝑘𝑘) +

∑
𝜏∈𝑘,𝑡

log
(
1 + 𝑠𝑎(𝜏),𝑘(𝜏)2

)
,

or, ∑
𝜏∈𝑘,𝑡

log
(
1 + 𝑠𝑎(𝜏),𝑘(𝜏)2

)
≤ 𝑑 log

(
1 +

8|𝑘,𝑇 |
𝑑𝜆𝑙𝑘𝑘

)
.

Now, we bound ∑𝜏∈𝑘,𝑡 𝑠𝑎(𝜏),𝑘(𝜏)
2 by the result above. First, we have 𝑠𝑎(𝜏),𝑘(𝜏)2 ∈ [0, 1∕(𝜆𝑙𝑘𝑘)] because

𝑠𝑎(𝜏),𝑘(𝜏)2 = 𝑏𝑇𝜏 𝐵𝑘(𝜏)
−1𝑏𝜏 ≤ 𝑏

𝑇
𝜏

(
𝜆𝑙𝑘𝑘𝐼𝑑

)−1
𝑏𝜏 ≤ (𝜆𝑙𝑘𝑘)−1.

Considering a function 𝑓 (𝑡) = log(1 + 𝑡)∕ 
[
𝜆𝑙𝑘𝑘 log

(
1 + (𝜆𝑙𝑘𝑘)−1

)]
, 𝑓 satisfies 𝑡 ≤ 𝑓 (𝑡) for all 𝑡 ∈ [0, 1∕(𝜆𝑙𝑘𝑘)]. Therefore,∑

𝜏∈𝑘,𝑡

𝑠𝑎(𝜏),𝑘(𝜏)2 ≤
1

𝜆𝑙𝑘𝑘 log
(
1 + (𝜆𝑙𝑘𝑘)−1

) ∑
𝜏∈𝑘,𝑡

log
(
1 + 𝑠𝑎(𝜏),𝑘(𝜏)2

)
≤

𝑑

𝜆𝑙𝑘𝑘 log
(
1 + (𝜆𝑙𝑘𝑘)−1

) log(1 + |𝑘,𝑇 |
𝑑𝜆𝑙𝑘𝑘

)
.

18
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Algorithm 2 A special case of the SemiGraphTS algorithm that approximates 𝜋𝑖(𝑡) by the Monte Carlo sampling (SemiGraphTS-MC).

1: Fix 𝜆 > 0 and M. Set 𝐵𝑗 (1) = 𝜆𝑙𝑗𝑗𝐼𝑑 , 𝑦𝑗 (1) = 0𝑑 and 𝑣𝑗 = (4𝑅 + 12)
√
𝑑 log

{
(24𝑇 4∕𝛿)(1 + 𝜆−1)

}
+
√
𝜆(1 + ‖Δ𝑗‖) for 𝑗 = 1, … , 𝑛.

2: for 𝑡 = 1, 2, … , 𝑇 do

3: Observe 𝑗𝑡 .
4: for 𝑗 = 1, 2, … , 𝑛 do

5: if 𝑗 ≠ 𝑗𝑡 then

6: Update 𝐵𝑗 (𝑡 + 1) ←𝐵𝑗 (𝑡), 𝜇̄𝑗 (𝑡 + 1) ← 𝜇̄𝑗 (𝑡), and 𝑦𝑗 (𝑡 + 1) ← 𝑦𝑗 (𝑡).
7: else

8: 𝜇𝑗 (𝑡) ← 𝜇̄𝑗 (𝑡) −𝐵𝑗 (𝑡)−1
∑
𝑘≠𝑗 𝜆𝑙𝑗𝑘𝜇̄𝑘(𝑡).

9: Γ𝑗 (𝑡) ←𝐵𝑗 (𝑡) + 𝜆2
∑
𝑘≠𝑗 𝑙

2
𝑗𝑘
𝐵𝑘(𝑡)−1

10: for 𝑚 = 1, 2, ⋯ , 𝑀 do

11: Sample 𝜇𝑚𝑗 (𝑡) from 𝑑 (𝜇𝑗 (𝑡), 𝑣2𝑗Γ𝑗 (𝑡)−1)
12: end for

13: for 𝑖 = 1, 2, ⋯ , 𝑁 do

14: Compute 𝜋𝑖(𝑡) = 1
𝑀

∑𝑀
𝑚=1 𝐼

{
𝑖 = argmax𝑘{𝑏𝑘(𝑡)𝑇 𝜇𝑚𝑗 (𝑡)}

}
15: end for

16: Sample 𝑎(𝑡) from Multinom(𝜋1(𝑡), ⋯ , ̂𝜋𝑁 (𝑡)).
17: 𝑏̄(𝑡) ←∑𝑁

𝑖=1𝜋𝑖(𝑡)𝑏𝑖(𝑡) and 𝑋𝑡←𝑏𝑎(𝑡)(𝑡) − 𝑏̄(𝑡).
18: Update 𝐵𝑗 (𝑡 + 1) ←𝐵𝑗 (𝑡) +𝑋𝑡𝑋𝑇

𝑡 +
∑𝑁
𝑖=1𝜋𝑖(𝑡)(𝑏𝑖(𝑡) − 𝑏̄(𝑡))(𝑏𝑖(𝑡) − 𝑏̄(𝑡))𝑇 , 𝑦𝑗 (𝑡 + 1) ←𝑦𝑗 (𝑡) +2𝑋𝑡𝑟𝑎(𝑡),𝑗 (𝑡), and 𝜇̄𝑗 (𝑡 + 1) ←𝐵𝑗 (𝑡 + 1)−1𝑦𝑗 (𝑡 + 1).

19: end if

20: end for

21: end for

Finally, from the Cauchy-Schwartz inequality and the result above,∑
𝜏∈𝑘,𝑡

𝑠𝑎(𝜏),𝑘(𝜏) ≤
√

8|𝑘,𝑇 |√ ∑
𝜏∈𝑘,𝑡

𝑠𝑎(𝜏),𝑘(𝜏)2

≤

√
𝑑|𝑘,𝑇 |

𝜆𝑙𝑘𝑘 log
(
1 + (𝜆𝑙𝑘𝑘)−1

) log(1 + |𝑗𝑘,𝑡|
𝑑𝜆𝑙𝑘𝑘

)
.

Since 𝑙𝑘𝑘 = 1 by the definition of the random-walk Laplacian,

∑
𝜏∈𝑘,𝑡

𝑠𝑎(𝜏),𝑘(𝜏) ≤

√√√√√ 𝑑|𝑘,𝑇 |
𝜆 log

(
1 + 1

𝜆

) log
(
1 +

8|𝑘,𝑇 |
𝑑𝜆

)
,

which proves the claim and concludes the proof. □

Appendix E. Regret bound when 𝝅𝒊(𝒕) is approximated by Monte Carlo sampling

In this section, we analyze the additional regret induced by approximation and show that the regret upper bound of the alternative 
algorithm has the same order as the bound of SemiGraphTS.

Our discussion is based on Algorithm 2, a special case of the SemiGraphTS algorithm (Algorithm 1), that explicitly states that we 
use the Monte Carlo approximated values of 𝜋𝑖(𝑡) for action selection. Before action selection, Algorithm 2 computes first the Monte 
Carlo approximates of 𝜋𝑖(𝑡). We denote the approximated value as 𝜋𝑖(𝑡). Then, Algorithm 2 samples the arm from a multinomial 
distribution with size 1, say Multinom(𝜋1(𝑡), ⋯ , ̂𝜋𝑁 (𝑡)). In comparison, Algorithm 1 samples 𝑎(𝑡) ∼Multinom(𝜋1(𝑡), ⋯ , 𝜋𝑁 (𝑡)).

We now discuss the regret bound for Algorithm 2. We highlight the key differences from following the lines of Appendix D. Let 
the filtration 𝑡−1 further include all Monte Carlo samples up to time 𝑡 − 1.

For step (a), Theorem 2 directly holds with 𝜋𝑖(𝑡)’s replaced with 𝜋𝑖(𝑡)’s since the approximated values 𝜋𝑖(𝑡)’s are now the true 
probabilities of the arm selection.

Steps (b)-(e) in Appendix D exploited that the arm is selected from the exact probability. In other words, those results were 
derived if we select arm according to 𝑎̃(𝑡) = argmax1≤𝑖≤𝑁{𝑏𝑖(𝑡)𝑇 𝜇𝑗𝑡 (𝑡)} (i.e., 𝑎(𝑡) ∼Multinom(𝜋1(𝑡), ⋯ , 𝜋𝑁 (𝑡))). Now we show through an 
inductive argument that the remaining proofs are still valid with the new arm selection 𝑎(𝑡) ∼Multinom(𝜋1(𝑡), ⋯ , ̂𝜋𝑁 (𝑡)).

Suppose that until round 𝑡 − 1, we have sampled arms 𝑎(𝜏) ∼Multinom(𝜋1(𝜏), ⋯ , ̂𝜋𝑁 (𝜏)), 𝜏 = 1, ⋯ , 𝑡 − 1. Then we have the desired 
high-probability upper bound for the estimate 𝜇̂𝑗 (𝑡) for every 𝑗 = 1, ⋯ , 𝑛 (Theorem 2). Now suppose that at round 𝑡, we sample the 
arm 𝑎̃(𝑡) = argmax1≤𝑖≤𝑁{𝑏𝑖(𝑡)𝑇 𝜇𝑗𝑡 (𝑡)}. Then the proofs (b)-(e) go through, and by Lemma 13 we have,

𝔼
(
(𝑏𝑎∗(𝑡)(𝑡)𝑇 𝜇𝑗𝑡 − 𝑏𝑎̃(𝑡)(𝑡)

𝑇 𝜇𝑗𝑡 )𝐼(𝐸
𝜇̂(𝑡))|𝑡−1)

≤
5𝑔𝑗𝑡 (𝑇 )
𝑝

𝔼
(
𝑠𝑐
𝑎̃(𝑡),𝑗𝑡

(𝑡)|𝑡−1)+ 4𝑔𝑗𝑡 (𝑇 )

𝑝𝑇 2 . (E.1)
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Then, given 𝑡−1 such that 𝐸𝜇̂(𝑡) is true,

𝔼
(
𝑟𝑒𝑔𝑟𝑒𝑡(𝑡)|𝑡−1)

= 𝔼
(
𝑏𝑎∗(𝑡)(𝑡)𝑇 𝜇𝑗𝑡 − 𝑏𝑎(𝑡)(𝑡)

𝑇 𝜇𝑗𝑡 |𝑡−1)
= 𝔼

(
(𝑏𝑎∗(𝑡)(𝑡)𝑇 𝜇𝑗𝑡 − 𝑏𝑎̃(𝑡)(𝑡)

𝑇 𝜇𝑗𝑡 ) + (𝑏𝑎̃(𝑡)(𝑡)𝑇 𝜇𝑗𝑡 − 𝑏𝑎(𝑡)(𝑡)
𝑇 𝜇𝑗𝑡 )|𝑡−1)

≤
5𝑔𝑗𝑡 (𝑇 )
𝑝

𝔼
(
𝑠𝑐
𝑎̃(𝑡),𝑗𝑡

(𝑡)|𝑡−1)+ 4𝑔𝑗𝑡 (𝑇 )

𝑝𝑇 2 + 𝔼
(
𝑏𝑎̃(𝑡)(𝑡)𝑇 𝜇𝑗𝑡 − 𝑏𝑎(𝑡)(𝑡)

𝑇 𝜇𝑗𝑡 |𝑡−1)
=

5𝑔𝑗𝑡 (𝑇 )
𝑝

𝔼
(
𝑠𝑐
𝑎(𝑡),𝑗𝑡

(𝑡)|𝑡−1)+ 4𝑔𝑗𝑡 (𝑇 )

𝑝𝑇 2 + 𝔼
(
𝑏𝑎̃(𝑡)(𝑡)𝑇 𝜇𝑗𝑡 − 𝑏𝑎(𝑡)(𝑡)

𝑇 𝜇𝑗𝑡 |𝑡−1)
+

5𝑔𝑗𝑡 (𝑇 )
𝑝

𝔼
(
𝑠𝑐
𝑎̃(𝑡),𝑗𝑡

(𝑡) − 𝑠𝑐
𝑎(𝑡),𝑗𝑡

(𝑡)|𝑡−1) .
As compared to Lemma 13 for Algorithm 1, we have two additional terms to bound; for step (f), those terms appear in the final 

cumulative regret. We claim below that the cumulative sum of the two additional terms have lower order than the original regret 
bound of Algorithm 1. We first have,

𝔼
(
𝑏𝑎̃(𝑡)(𝑡)𝑇 𝜇𝑗𝑡 − 𝑏𝑎(𝑡)(𝑡)

𝑇 𝜇𝑗𝑡 |𝑡−1)
= 𝔼

(
𝑁∑
𝑖=1
𝑏𝑖(𝑡)𝑇 𝜇𝑗𝑡 𝐼(𝑎̃(𝑡) = 𝑖) −

𝑁∑
𝑖=1
𝑏𝑖(𝑡)𝑇 𝜇𝑗𝑡 𝐼(𝑎(𝑡) = 𝑖)

||||𝑡−1
)

=
𝑁∑
𝑖=1
𝑏𝑖(𝑡)𝑇 𝜇𝑗𝑡𝜋𝑖(𝑡) −

𝑁∑
𝑖=1
𝑏𝑖(𝑡)𝑇 𝜇𝑗𝑡𝔼(𝜋𝑖(𝑡)|𝑡−1)

=
𝑁∑
𝑖=1
𝑏𝑖(𝑡)𝑇 𝜇𝑗𝑡𝜋𝑖(𝑡) −

𝑁∑
𝑖=1
𝑏𝑖(𝑡)𝑇 𝜇𝑗𝑡𝜋𝑖(𝑡) = 0,

which is due to unbiasedness of the Monte-Carlo estimate 𝜋𝑖(𝑡). Since we also have ||𝑏𝑎̃(𝑡)(𝑡)𝑇 𝜇𝑗𝑡 − 𝑏𝑎(𝑡)(𝑡)𝑇 𝜇𝑗𝑡 || ≤ 2, we can show from 
the Azuma-Hoeffding inequality, with high probability,

𝑇∑
𝑡=1

{
𝑏𝑎̃(𝑡)(𝑡)𝑇 𝜇𝑗𝑡 − 𝑏𝑎(𝑡)(𝑡)

𝑇 𝜇𝑗𝑡

}
≤𝑂(

√
𝑇 ). (E.2)

Similarly, we have

5𝑔𝑗𝑡 (𝑇 )
𝑝

𝔼
(
𝑠𝑐
𝑎̃(𝑡),𝑗𝑡

(𝑡) − 𝑠𝑐
𝑎(𝑡),𝑗𝑡

(𝑡)|𝑡−1)
=

5𝑔𝑗𝑡 (𝑇 )
𝑝

𝔼

(
𝑁∑
𝑖=1
𝑠𝑐𝑖,𝑗𝑡

(𝑡)𝐼(𝑎̃(𝑡) = 𝑖) −
𝑁∑
𝑖=1
𝑠𝑐𝑖,𝑗𝑡

(𝑡)𝐼(𝑎(𝑡) = 𝑖)
||||𝑡−1

)

=
5𝑔𝑗𝑡 (𝑇 )
𝑝

𝑁∑
𝑖=1
𝑠𝑐𝑖,𝑗𝑡

(𝑡)(𝜋𝑖(𝑡) − 𝜋𝑖(𝑡)) = 0.

Hence with high probability,

𝑇∑
𝑡=1

5𝑔𝑗𝑡 (𝑇 )
𝑝

{
𝑠𝑐
𝑎̃(𝑡),𝑗𝑡

(𝑡) − 𝑠𝑐
𝑎(𝑡),𝑗𝑡

(𝑡)
}
≤

5max𝑗 𝑔𝑗 (𝑇 )
𝑝

𝑂(
√
𝑇 ). (E.3)

We remark that the right-hand sides of (E.2) and (E.3) does not depend on 𝑑, 𝑛, 𝑁 nor the graph structure. Therefore, our claim holds.

Appendix F. More simulation results

To further support the empirical findings in the non-stationary scenario in Section 5, we conducted additional experiments with 
a different choice for 𝜈𝑗 (𝑡). We considered a random time-varying intercept 𝜈𝑗 (𝑡) ∼ (−{(𝑗 mod 2) + 1}, 0.12). Except 𝜈𝑗 (𝑡), we used 
the same data generating process as used in the main experiment. Fig. F.5 displays the cumulative regret under 𝛾 = 5, and Fig. F.6
20

reports the sensitivity analysis results against the graph strength and graph misspecification. Overall, the results are consistent with 
the case of 𝜈𝑗 (𝑡) = −𝑏𝑎∗(𝑡)(𝑡)𝑇 𝜇𝑗 in the main body.
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Fig. F.5. Current cumulative regrets under the non-stationary scenario with 𝜈𝑗 (𝑡) ∼ (−{(𝑗 mod 2) + 1},0.12). All regrets are relative to that of the random selection.

Fig. F.6. Final cumulative regrets under the non-stationary scenario with 𝜈𝑗 (𝑡) ∼ (−{(𝑗 mod 2) + 1}, 0.12), while varying 𝛾 (left) and the proportion of sign-reversed 
nodes (right). All regrets are relative to that of the random selection.

Appendix G. Hyperparameter sensitivity on real datasets

We assessed how sensitive the performance of our proposed algorithm is to different hyperparameter values when applied to 
LastFM and Delicious datasets.

Table G.1 presents the cumulative reward (relative to a random selection algorithm) achieved by running our proposed algorithm 
for 50,000 rounds using different pairs of hyperparameters (𝑣, 𝜆). When we tried different values for one hyperparameter (either 𝑣 or 
𝜆), we kept the other parameter fixed at the optimal value found in the original experiment in Section 5.

In Delicious dataset, the performance was relatively stable over different choice of 𝑣 and 𝜆. On the other hand, the performance 
in the LastFM dataset decayed in large values of 𝑣, while it was less sensitive to the choice of 𝜆. This may suggest that tuning 𝑣, the 
degree of exploration, could be crucial in practice.

Table G.1

Hyperparameter sensitivity on two real datasets: Final cumulative rewards (normalized by the random 
selection policy) for different pairs of hyperparameters (𝑣, 𝜆). When we tried different values for one 
hyperparameter (either 𝑣 or 𝜆), we kept the other parameter fixed at the optimal value found in the 
original experiment in Section 5.

Varying 𝑣

LastFM Delicious

𝑣 = 5−3 3.70 ± 0.07 1.74 ± 0.02
𝑣 = 5−2 3.16 ± 0.06 1.81 ± 0.04
𝑣 = 5−1 3.11 ± 0.07 1.57 ± 0.01
𝑣 = 50 2.27 ± 0.03 1.37 ± 0.01
𝑣 = 51 1.69 ± 0.04 1.35 ± 0.01

Varying 𝜆

LastFM Delicious

𝜆 = 10−3 2.62 ± 0.05 1.35 ± 0.02
𝜆 = 10−2 2.76 ± 0.05 1.36 ± 0.01
𝜆 = 10−1 2.97 ± 0.03 1.56 ± 0.02
𝜆 = 100 3.35 ± 0.08 1.72 ± 0.02
𝜆 = 101 3.67 ± 0.06 1.83 ± 0.03
21
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