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Abstract

Identifying cohesive subgraphs in hypergraphs is a fundamental problem that has received recent attention in data mining and
engineering fields. Existing approaches mainly focus on a strongly induced subhypergraph or edge cardinality, overlooking the
importance of the frequency of co-occurrence. In this paper, we propose a new cohesive subgraph named (k, g)-core, which considers
both neighbour and co-occurrence simultaneously. The (k, g)-core has various applications including recommendation system,
network analysis, and fraud detection. To the best of our knowledge, this is the first work to combine these factors. We extend an
existing efficient algorithm to find solutions for (k, g)-core. Finally, we conduct extensive experimental studies that demonstrate the
efficiency and effectiveness of our proposed algorithm.
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1. Introduction

Complex systems such as social networks, biological net-
works, and market transaction systems are becoming increas-
ingly intricate. The ability to accurately model and analyse these
systems is important for understanding their behaviour and pre-
dicting their evolution. Traditional graph theory [1], which has
been widely used to represent relationships between entities in
a system, often falls short in capturing the high-order relation-
ships in complex systems [2]. Hypergraphs [3], which gener-
alise traditional graph theory, offer a more flexible framework
by allowing edges to connect any number of nodes, unlike tra-
ditional graphs where edges connect only two nodes. This char-
acteristic makes hypergraphs particularly suitable for capturing
multifaceted relationships and interactions in real-world net-
works, ranging from social networks to biological systems and
beyond.

Real-world networks exhibit complex interactions that go
beyond pairwise connections. For example, co-authorship net-
works [4], co-purchase networks [5], and location-tagged social
networks [6] have complex relationships that cannot be ade-
quately represented by traditional graphs. Hypergraphs provide
more expressive representations for such networks, enabling
a deeper understanding of underlying structures and interac-
tions [2].

Despite the increasing popularity and wide-ranging applica-
tions of mining hypergraphs [7], understanding their structural
properties remains a challenging task. One of the key aspects
of this challenge is to find cohesive subgraphs within a hyper-
graph, which are more densely connected internally than with
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the rest of the graph. In general, identifying the cohesive struc-
ture is important for understanding the overall structure and
function of the graph, as they often represent key communities
or roles [8]. In addition, it provides insights into the robustness
of networks [9], aiding in network analysis [10] and identifying
influential nodes [11], and revealing query-centric communi-
ties [12].

Recently, several cohesive models have been proposed for
hypergraphs. The first approach involves converting the hyper-
graph into a clique-like graph, then applying k-core algorithm [13,
14]. k-core is a maximal set of nodes of which every node has at
least k neighbour nodes in the k-core. We refer to this approach
as the clique-core. Lee et al. [15] introduced the (k, q)-core, a
maximal subgraph in which each node has at least k degree,
and each hyperedge contains at least q nodes. With the similar
period, the nbr-k-core was proposed by Arafat et al. [13]. The
nbr-k-core is the maximal strongly induced connected subhy-
pergraph [16, 17] H such that every node has at least k neigh-
bours in H. Note that the strongly induced subhypergraph in-
dicates that every node in the hyperedge belongs to the subhy-
pergraph if and only if all nodes of the hyperedge exist. Arafat
et al. [13] also formulated the (k, d)-core, a maximal strongly
induced connected subhypergraph in which every node has at
least k neighbours and degree (number of hyperedges incident
on a node) is greater than or equal to d in strongly induced sub-
hypergraph.

While these proposed models have proven useful, they may
not capture all aspects of cohesion in hypergraphs. Especially,
hyperedges in hypergraphs have some distinct characteristics:
(1) hyperedge nesting: Hyperedges often nest, with one’s ver-
tex set being a subset of another’s, representing hierarchical or
containment relationships. For instance, in biological networks,
smaller modules may nest within larger ones, and in transaction
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Table 1: Model comparison

nbr-k-core (k, d)-core (k, q)-core Clique-core (k, g)-core (α, β)-core

objective maximize subgraph size
1st param strongly induced. subgraph deg. const. neighbour size const. deg. const.
2nd param - deg. const. cardinality const. - co-occur. const. cardinality const.

networks, certain products may repeatedly co-occur in transac-
tions; (2) nodes belong to multiple hyperedges: Nodes can en-
gage in multiple relationships, each depicted by a hyperedge. In
social networks, an individual may be associated with different
communities or groups through distinct hyperedges.

However, existing models do not mainly consider these char-
acteristics when designing cohesive subgraph models. To effec-
tively address the above issues, we incorporate the frequency of
co-occurrence of nodes within hyperedges, which can be a cru-
cial aspect of cohesion in many systems. Taking into account
the frequency with which entities co-occur has proven to be ef-
fective in domains [18] such as recommendation systems. This
is particularly effective in the context of user-based collabora-
tive filtering [19, 20]. In user-based collaborative filtering, it is
important to find users who have similar preferences or tastes
to a given user. This is because fundamental principle of user-
based collaborative filtering is to recommend items based on
the choices of similar users. Cohesive subgraphs of hypergraphs
based on the frequency of co-occurrence among users help to
define target similar users for capturing collaborative signals.

Therefore, we propose a new concept (k, g)-core by extend-
ing traditional k-core [14] by incorporating the occurrence of
the cohesive subgraphs. The (k, g)-core is a maximal subgraph
in which each node has at least k neighbours which appear in at
least g hyperedges together in the (k, g)-core. Note that (k, g)-
core can be solved by converting a clique-based graph. How-
ever, it is not desired since this step inflates the size of the prob-
lem [21]. In the following, we point out the motivating applica-
tions of the (k, g)-core.
Applications. (1) Fraudster Detection: Within a social com-
merce service, user purchasing data can be organised into a
hypergraph, where edges represent groups of items bought by
users. Fraudsters often exhibit similar behaviours and have con-
nections through shared product purchases [22]. For example, a
seller may recruit individuals to inflate review ratings for their
mobile devices, resulting in fraudulent activity. By identifying
shared characteristics among users, it becomes possible to clus-
ter these fraudsters within the hypergraph network; (2) Biomed-
ical Systems: The (k, g)-core model finds extensive application
in modeling biological systems, such as protein-protein inter-
action networks and gene regulatory networks [23]. Leveraging
this model helps to identify highly interconnected substructures
within these networks, revealing crucial protein complexes or
functional modules that play key roles in biological processes;
and (3) Recommendation Systems: The (k, g)-core model offers
valuable insights in recommendation systems by finding user
clusters with similar preferences. By detecting (k, g)-core sub-
graphs in the hypergraph representing user-item interactions,
personalised recommendations can be generated, capitalising

on the co-occurrence patterns of items within these subgraphs.

2. RELATED WORK

The study of hypergraphs has seen a surge of interest in
recent years, with numerous methods proposed based on differ-
ent criteria [24, 25]. In this section, we review the most relevant
previous study.
(k, q)-core [15]. One of the models for finding cohesive sub-
graphs by considering hyperedges and nodes together in hy-
pergraphs is the (k, q)-core, proposed by Lee et al. This model
defines a (k, q)-core as the largest subgraph in which each node
has at least k degree, and each hyperedge contains at least q
nodes. Even if this model has various applications, providing
valuable insights into the structure of hypergraphs, it does not
consider the frequency of co-occurrence of nodes within hy-
peredges, which can be a crucial aspect of cohesion in many
systems.
nbr-k-core [13]. nbr-k-core is proposed by Arafat et al. It is
the maximal strongly induced subhypergraph [16, 17] such that
every node has at least k neighbours. The concept strongly in-
duced subhypergraph implies that for each node within a hyper-
edge, it must be included in the subhypergraph if and only if all
other nodes within the same hyperedge are also present. Note
that utilising a strongly induced subhypergraph may have some
issues. A hyperedge can be present in its entirety or not at all in
a subhypergraph due to its definition. When a node is included
in a large hyperedge, a size of the strongly induced subhyper-
graph can be very large, leading to difficulties in analysing an
extracting meaningful information.
(k, d)-core [13]. Arafat et al. [13] observed the problem that the
nbr-k-core usually return a very large cohesive subgraph as a re-
sult if it is included in a large-sized hyperedge. To address this
issue, they proposed a more comprehensive cohesive subgraph
model, (k, d)-core, by considering neighbourhood and degree
constraints simultaneously. The (k, d)-core is defined the max-
imal subhypergraph in which every node has at least k neigh-
bours and degree of every node is at least d in strongly induced
subhypergraph. However, this approach could not capture the
strength of the neighbours due to the lack of consideration for
co-occurrence.
Clique-core [26]. The Clique-core is the same with traditional
k-core by converting a hypergraph as clique-structured graph.
After preprocessing, it aims to find a maximal set of nodes of
which every node has at least k neighbour nodes in the clique
graph. This clique-based approach is known as inflating the
problem-size [21].
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Figure 1: Motivating example

(α, β)-core [27]. The (α, β)-core is another model widely used
in the study of bipartite networks. It aims to find a set of nodes
in the bipartite graph where each side has at least α and β bi-
partite edges, respectively. A hypergraph can be converted to a
bipartite graph that consists of nodes as the first set of nodes,
and the hyperedge as other node set and creates an edge be-
tween two node sets if the hyperedge in the second set involves
a node in the first set. While this model has proven useful in
bipartite networks, it cannot be directly utilised to find cohesive
subgraphs in hypergraphs due to the lack of neighbour structure
information. In addition, constructing a bipartite graph may suf-
fer from size inflating problem [21].

3. PROBLEM STATEMENT

A hypergraph network can be modelled as a graph G =

(V, E) with nodes V and edges E. Following previous studies [13,
15], we consider that G is undirected and unweighted. In hyper-
graph notation, we use the term degree to represent the count of
hyperedges incident to a particular node. Moreover, we employ
the term neighbour to refer to any two nodes that appear to-
gether in a hyperedge.

Definition 1. ((k, g)-core). Given a hypergraph G, k ≥ 1 and
g ≥ 1, (k, g)-core is the maximal set of nodes in which each node
has at least k neighbours which appear in at least g hyperedges
together in an induced subhypergraph by the (k, g)-core.

We next discuss two essential properties of (k, g)-core: unique-
ness and containment. These properties are fundamental for un-
derstanding the behaviour and structure of the (k, g)-core.

Property 1. Uniqueness: (k, g)-core is unique.

Proof. (k, g)-core is unique due to the maximality constraint, as
it represents the maximal set of nodes in which all nodes have
at least k neighbours which appear in at least g hyperedges,
achieved by iteratively removing nodes until satisfying the con-
straints.

Property 2. Containment: (k, g)-core has hierarchical struc-
ture, i.e., (k+1, g)-core ⊆ (k, g)-core and (k, g+1)-core ⊆ (k, g)-
core.

Proof. The hierarchy structure of the (k, g)-core is a result of a
gradual node removal process, ensuring that if a node belongs
to the (k, g)-core, it also belongs to all higher-order cores due to
the cumulative neighbour and co-occurrence constraints. satis-
fied by the remaining nodes.

Algorithm 1: Peeling Algorithm for (k, g)-core
Input: Hypergraph G = (V, E), parameters k and g
Output: The (k, g)-core of G

1 H ← V ; // Initialise H as the set of all nodes

2 Initialise neighbour occur. map NOM;
3 foreach v ∈ H do
4 foreach hyperedge e that contains v do
5 foreach u ∈ e do
6 if u , v then
7 Increment the occur. count of u in NOM[v];

8 Keep neighbours in NOM[v] for each v ∈ V where the occur. count is
≥ g;

9 changed ← True;
10 while changed do
11 changed ← False;
12 for w ∈ H do
13 if |NOM[w]| < k then
14 H ← H \ {w};
15 Update the occur. map;
16 changed ← True;
17 return H

Example 1. Let us consider an example using a simple hyper-
graph with 9 nodes and 7 hyperedges, as illustrated in Figure 1.
This example demonstrates the distinct results and characteris-
tics of different cohesive subgraph models.

• The (k, q)-core yields {u1, u2, u3, u4, u7, u8} with k = 2 and
q = 2. This is because the nodes u5, u6, and u9 are iteratively
removed due to the degree constraint. The remaining graph
then satisfies the (k, q)-core constraint.

• The nbr-k-core returns the entire graph when k=2, and {u2, u3,
u5, u6} when k=3 since there are hyperedges involving only
u2,u3,u5 and u6, every node has 3 neighbours.

• The (k, d)-core returns the entire graph for k = 2 and d = 1,
{u2, u3, u5, u6} for k = 3 and d = 1. When k = 2 and d = 2,
it returns an empty set. We can observe that u1, u2, u3, u4, u7,
and u8 have two or more neighbours and belong to at least
two hyperedges. Note that the (k, d)-core is a strongly in-
duced subhypergraph. Thus, hyperedges such as {u1, u3, u9}

and {u2, u3, u5, u6} are not considered. Therefore, the node u3
must be removed. This removal process is repeated iteratively
until no nodes remain in the resulting graph.

• Clique-core returns the entire graph for k = 2, and returns
{u2, u3, u5 , u6} for k = 3 due to the neighbour constraint.

• The (α, β)-core returns {u1, u2, u3, u4, u7, u8} for α = 2 and
β = 2. Since every node is included in at least 2 hyperedge,
and a hyperedge has at least two nodes, u5, u6 and u9 cannot
be included because they belong to only a single hyperedge.

• Lastly, the (k, g)-core gives {u1, u2, u3} for k = 2 and g = 2.
In this case, each node has at least k neighbours and each
node pair appears in at least g edges together, signifying a
cohesive structure within the hypergraph.
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Table 2: Real-world dataset

Dataset |V | |E| Avg. nbr size Avg. edge card.
Contact 242 12,704 68.74 2.42

Congress 1,718 83,105 494.68 8.81
Enron 4,423 5,734 25.35 5.25

Meetup 24,115 11,027 65.27 10.3
DBLP 1,836,596 2,170,260 9.05 3.43

Aminer 27,850,748 17,120,546 8.39 3.77

4. PEELING ALGORITHM

In this section, we present the peeling algorithm to find
(k, g)-core. We extend the existing peeling algorithm for the k-
core computation [28]. Basically, it iteratively removes a set of
nodes until satisfying the cohesiveness constraint. For each iter-
ation, it finds nodes which do not satisfy the (k, g)-core criteria,
and removes them from the hypergraph. The algorithm contin-
ues until no more nodes can be removed. Finally, the remaining
subgraph can be the (k, g)-core.

The pseudo description of the algorithm can be checked in
Algorithm 1. It starts by initialising H as the set of all nodes
in the hypergraph. It then initialises the neighbour occurrence
map, NOM, for each node in V with an empty dictionary data
structure. The algorithm iterates over each node in H and counts
the occurrences of its neighbours on the hyperedges. After that,
it keeps only the neighbours in NOM[v] for each node v where
the occurrence count is ≥ g. The algorithm proceeds in a loop
that continues until no more changes are made. Within the loop,
it iterates over each node w in H. If NOM[w] does not contain at
least k nodes, indicating that node w does not satisfy the (k, g)-
core criteria, it is removed from H, and the occurrence map
is updated accordingly. This process continues until no more
nodes can be removed. Finally, it returns the nodes H as a result.

This peeling method is efficient to find the (k, g)-core in a
hypergraph. The time complexity of the peeling algorithm is
O(|V |2|E|). In the worst-case, the algorithm iterates over each
node and its corresponding hyperedges to construct the occur-
rence map. As each hyperedge can contain up to |V | nodes, con-
structing the occurrence map for each node takes O(|V ||E|) time,
resulting in a time complexity of O(|V |2|E|) for this step. During
the iterative removal procedure, the algorithm performs a max-
imum of |V | iterations, and each removal operation has a time
complexity of O(|V |). As a result, the overall time complexity
is O(|V |2|E|). However, it’s important to note that the algorithm
may terminate earlier as nodes can be removed together.

5. EXPERIMENTS

To validate effectiveness of the proposed (k, g)-core and ef-
ficiency of the peeling algorithm, we conducted extensive ex-
periments on real-world hypergraphs.
Experimental setup. We implemented the (k, g)-core model in
Python using the NetworkX library [29]. The experiments were
run on a Linux machine with Intel Xeon 6248R and 256GB of
RAM.
Dataset. Table 2 provides the essential statistics of six real-
world datasets. These datasets are publicly available and can be

accessed from the sources mentioned in the references [13, 30].
In the table, the term ‘nbr’ denotes a neighbour, and ‘card’ in-
dicates cardinality.
Evaluation measure. We evaluated the performance of the (k, g)-
core model by checking the number of nodes and the running
time.
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Figure 2: Comparison of number of nodes

Performance of (k, g)-core. We varied the user parameters to
analyse the behaviour of the (k, g)-core. In Figure 2a, we fix
the value k as 3 and vary g as 3, 5, 7, and 9. The experimental
results report the number of nodes in the (k, g)-core for each g
value. The results show that an increase in the value of g also
leads to a decrease in the number of nodes within the (k, g)-
core. Similarly, in Figure 2b, the value of g is fixed as 3, while
k is varied as 3, 5, 7, and 9. It is observed that when k increases,
the number of nodes in the (k, g)-core decreases. Both results
indicate that a higher value of k and g results in more densely
connected.
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Figure 3: Comparison of running time

Next, we focus on analysing the running time of the algo-
rithm while keeping the parameters fixed. Figure 3 presents the
results obtained by varying the values of k and g. The exper-
imental results indicate that increasing k and g does not have
a significant impact on the running time. This implies that the
running time of the (k, g)-core is not primarily determined by
the user-defined parameters k and g. Instead, the majority of
the computational complexity arises from calculating the oc-
currence of the neighbours as we have discussed in Section 4.
Scalability test. To evaluate scalability of the algorithm, we
conducted a scalability test using k-uniform hypergraph genera-
tion models [31]. With a fixed value of k (100) and a set number
of nodes (10, 000), we varied the number of hyperedges from
4,000 to 20, 000 to observe the impact on running time. By con-
verting the hypergraph into a bipartite network, we obtained a
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Figure 4: Scalability test

bipartite graph with 30, 000 nodes and 2 million bipartite edges
when the number of hyperedges was 20, 000. Figure 4 shows
the experimental result. It reveals a linear increase in running
time when the number of hyperedges increases, indicating that
the algorithm scales efficiently with larger hypergraphs. This
scalability test demonstrates the algorithm’s capability to han-
dle large-sized hypergraphs.

6. CONCLUSION

In this paper, we introduce the (k, g)-core model for cohe-
sive subgraph discovery in hypergraphs, an extension of the ex-
isting k-core model that takes into account node co-occurrence
within hyperedges. We also propose a peeling algorithm that ef-
fectively identifies the (k, g)-core by iteratively removing nodes
that do not satisfy the specified criteria. Experimental evalua-
tions on six real-world networks demonstrate the characteristics
of proposed (k, g)-core. In future work, we plan to recommend
appropriate values for k and g to identify meaningful cohesive
subgraphs, thereby eliminating the need for user-specified pa-
rameters.
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