
2174 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 7, JULY 2023

Training-Free Stuck-At Fault Mitigation for
ReRAM-Based Deep Learning Accelerators

Chenghao Quan , Mohammed E. Fouda , Senior Member, IEEE, Sugil Lee , Giju Jung,
Jongeun Lee , Member, IEEE, Ahmed E. Eltawil , Senior Member, IEEE,

and Fadi Kurdahi , Fellow, IEEE

Abstract—Although Resistive RAMs can support highly effi-
cient matrix–vector multiplication, which is very useful for
machine learning and other applications, the nonideal behav-
ior of hardware, such as stuck-at fault (SAF) and IR drop is
an important concern in making ReRAM crossbar array-based
deep learning accelerators. Previous work has addressed the non-
ideality problem through either redundancy in hardware, which
requires a permanent increase of hardware cost, or software
retraining, which may be even more costly or unacceptable due
to its need for a training dataset as well as high computation
overhead. In this article, we propose a very lightweight method
that can be applied on top of existing hardware or software solu-
tions. Our method, called forward-parameter tuning (FPT), takes
advantage of a certain statistical property existing in the activa-
tion data of neural network layers, and can mitigate the impact
of mild nonidealities in ReRAM crossbar arrays (RCAs) for deep
learning applications without using any hardware, a dataset, or
gradient-based training. Our experimental results using MNIST,
CIFAR-10, and CIFAR-100, and ImageNet datasets in binary and
multibit networks demonstrate that our technique is very effec-
tive, both alone and together with previous methods, up to 20%
fault rate, which is higher than even some of the previous remap-
ping methods. We also evaluate our method in the presence of
other nonidealities, such as variability and IR drop. Furthermore,
we provide an analysis based on the concept of the effective fault
rate (EFR), which not only demonstrates that EFR can be a
useful tool to predict the accuracy of faulty RCA-based neural
networks but also explains why mitigating the SAF problem is
more difficult with multibit neural networks.

Index Terms—Accelerator, artificial neural network, batch
normalization (BN), ReRAM crossbar array, stuck-at fault (SAF).

Manuscript received 6 March 2022; revised 30 June 2022, 15 September
2022, and 19 October 2022; accepted 21 October 2022. Date of publica-
tion 15 November 2022; date of current version 20 June 2023. This work
was supported in part by IITP Grant through Artificial Intelligence Graduate
School Program (UNIST) under Grant 2020-0-01336, IITP Grant through
ITRC Support Program under Grant IITP-2021-0-02052, and NRF under
Grant 2020R1A2C2015066 funded by MSIT of South Korea; and in part
by the Free Innovative Research Fund of UNIST under Grant 1.170067.01.
The EDA tool was supported by the IC Design Education Center (IDEC),
South Korea. This article was recommended by Associate Editor Y. Li.
(Corresponding author: Jongeun Lee.)

Chenghao Quan, Sugil Lee, Giju Jung, and Jongeun Lee are with the
Department of Electrical Engineering, Ulsan National Institute of Science and
Technology, Ulsan 44919, South Korea (e-mail: jlee@unist.ac.kr).

Mohammed E. Fouda and Fadi Kurdahi are with the Center for Embedded
and Cyber-Physical Systems, University of California at Irvine, Irvine,
CA 92697 USA.

Ahmed E. Eltawil is with the CEMSE Division, King Abdullah University
of Science and Technology, Thuwal 23955, Saudi Arabia.

Digital Object Identifier 10.1109/TCAD.2022.3222288

I. INTRODUCTION

AS ARTIFICIAL intelligence and neural networks have
become more widely used in many diverse applications,

there is also a growing interest in hardware architectures that
can accelerate them. ReRAM crossbar arrays (RCAs) are a
promising technology that can offer extremely fast matrix–
vector multiplication (MVM), which is a crucial operation
in many deep neural networks (DNNs). Typically, a weight
matrix is mapped as conductance to RCA memristors whereas
input activations are mapped as voltage to input vector, and the
resulting output current represents the MVM result via Ohm’s
law. Such RCA-based DNN accelerators (e.g., [1], [2], [3], [4],
and [5]) comprise of many RCAs, due to the limited size of
an RCA and the difficulty of reprogramming RCA memristors
for different weight parameters.

Despite its promising effectiveness, RCAs come with some
challenges, such as high peripheral circuit overhead (e.g.,
analog-to-digital converters [6]) and functional inaccuracy due
to device and circuit nonidealities. In particular, nonidealities
in RCAs, such as stuck-at fault (SAF) [7], [8], IR drop [9],
[10], [11], [12], and device variabilities [13], [14], have been
shown to degrade the quality of application results severely.
In this article, we focus on SAF, which is a very common
problem where a memristor is permanently set to either a
high-resistance state (HRS) or a low-resistance state (LRS).
We refer to the case where a memristor is permanently stuck
to LRS as stuck-at-one (SA1) and the other as stuck-at-zero
(SA0).

Previous work on mitigating the effect of SAF for RCA-
based DNN accelerators includes hardware and software
approaches. The hardware approach [15], [16] typically adds
redundancy in RCA hardware such as adding an extra row [15]
which can be used to remap the faulty memristor values
or recover the correct output values. However, such a hard-
ware method comes with permanently increased hardware cost
along with higher energy consumption. The hardware redun-
dancy methods (e.g., [15] and [16]) add extra rows to recover
the correct output values, which requires larger crossbar arrays.
While the cost increase due to extra rows may seem inex-
pensive, having extra rows also requires additional circuitry
to correctly route the input for the extra rows. Moreover,
such methods depend on the extra rows being free of SAF,
which is hard to guarantee in general. In addition, remap-
ping [16] requires suppressing the current contribution from

1937-4151 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIST. Downloaded on January 09,2024 at 04:10:06 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7754-7467
https://orcid.org/0000-0001-7139-3428
https://orcid.org/0000-0003-3092-6501
https://orcid.org/0000-0003-1523-2974
https://orcid.org/0000-0003-1849-083X
https://orcid.org/0000-0002-6982-365X

QUAN et al.: TRAINING-FREE SAF MITIGATION FOR ReRAM-BASED DEEP LEARNING ACCELERATORS 2175

the now unused rows, which can add to the hardware overhead.
Recovery method [15], on the other hand, requires detecting
the output current for each RCA. Such a detection step must
be done for all of the testing data to get the average difference
of the current shift between real output and ideal output, as
well as reprogramming the extra row for each RCA to correct
output values, all of which could be expensive.

The most straightforward software approach [17], [18], [19]
is to retrain the DNN with the knowledge of the SAF
information in the hardware. However, such a retraining must
be done for each DNN accelerator, leading to a large com-
putation cost, since the SAF pattern must be different from
accelerator to accelerator. Also, even detecting the SAF pat-
tern [20], [21], which is necessary for SAF-aware retraining,
can be a costly operation because there can be hundreds, if not
thousands or more, RCAs in a typical accelerator. Furthermore,
acquiring a train dataset may be difficult, and reprogram-
ming after retraining can be another very time-consuming step.
Though some researchers have proposed online retraining [21],
implementing backpropagation and weight update in hardware
is very costly, not to mention the energy and endurance issue
with frequent write operations to memristors.

In this article, we propose a novel approach called forward
parameter tuning (FPT), which is similar to retraining (as it
updates network parameters) but does not require datasets,
additional hardware, gradient-based training, or any back-
ward pass.1 Unlike remapping, which is completely agnostic
to the kind of computation being performed, our technique
exploits the statistical property of DNN computation, and is
hence complementary to remapping techniques. Our technique
mainly targets binary ReRAM devices as they are more mature
and practical with minimal variability issues but it also works
well on multibit ReRAM devices.

Our experimental results demonstrate that our FPT method
can increase the resilience of ReRAM-based accelerators with-
out retraining, achieving offline-retraining-level accuracy even
at 20% fault rate (FR) in the binarized neural network (BNN)
and quantized neural network (QNN). FPT also produces
better results in comparison with, and on top of, previous
methods [17], [23], [24]. We also evaluate our method in
the presence of other nonidealities, such as variability and IR
drop. Finally, we present an effective fault rate (EFR) analysis,
which not only demonstrates that EFR can be a useful tool to
predict the accuracy of faulty RCA-based neural networks but
also shows that SAF is more a serious problem in multibit
neural networks.

The remainder of this article2 is organized as follows.
After discussing related work in Section II, we present our
FPT method in Section III, and provide an analysis of our
method based on the concept of EFR in Section IV. Section V

1It was called Free Parameter Tuning in the conference version [22], but
we rename it to Forward Parameter Tuning to emphasize the fact that it only
involves forward computation.

2This article extends our earlier conference paper [22] as follows.
Section IV is added to provide a new analysis based on EFR, which is ver-
ified experimentally in Section V-F. We have also extended our method to
multibit networks, along with more experimental results using larger datasets
and deeper networks in Section V.

TABLE I
CLASSIFICATION AND COMPARISON OF PREVIOUS WORK

presents our experimental results, and this article concludes in
Section VI.

II. RELATED WORK

A. SAF Mitigation Techniques

Previous work on the SAF mitigation in RCAs can be
divided into three categories (see Table I). The first is retrain-
ing, which is simply to train the DNN again using a gradient-
descent training algorithm while fixing some weight elements
to constant values based on SAF information [17], [18],
[19], [21]. Retraining can recover the accuracy in the high-
est level without hardware cost. A retraining approach can
employ a very elaborate training scheme in order to maximize
fault recovery; for instance, knowledge distillation (KD)-based
retraining, which uses a teacher–student model, is demon-
strated to help improve fault recovery [19]. Furthermore,
retraining does not require any postprocessing, and can be
easily combined with postprocessing methods such as remap-
ping (see below). On the other hand, two things are required
for retraining, a fault map [8], [27] and a training dataset.
Obtaining an exact fault map can be very time consuming.
Besides, the computational demand of retraining is high, and
retraining must be repeated for each individual DNN chip,
adding to the computation complexity.

The second category is correction, which is to correct the
output of a faulty ReRAM crossbar array via a postprocessing
step [19], [20], [24], [25]. A faulty ReRAM crossbar array
can lead to distortion of MVM result. A simple technique was
proposed in [25] which can correct this by postprocessing. The
contribution of faulty ReRAM devices toward MVM result is
calculated in the postprocessing step with full access to the
input vector and the faulty ReRAM cells. They observe that
it is essentially the same as doing another sparse MVM oper-
ation. In order to avoid reliability issues, they implement this
postprocessing in CMOS circuit. Although it gives very high
accuracy recovery, it has very high cost due to the additional
MVM operation, and requires a digital hardware module. The
other techniques [19], [24] are very similar to [25], though
RSA [19] aims to reduce the overhead of the correction step
by exploiting weight importance. One interesting method in
this category is the application of algorithm-based fault tol-
erance (ABFT) to RCAs [20], which is based on checksum
vectors and fault-detection signatures. However, this approach
still requires hardware redundancy, which is found to be about
33% in the case of [20].

Authorized licensed use limited to: UNIST. Downloaded on January 09,2024 at 04:10:06 UTC from IEEE Xplore. Restrictions apply.

2176 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 7, JULY 2023

The third category is remapping, which adds a prepro-
cessing step before a faulty ReRAM crossbar array, thereby
enhancing the quality of result despite the presence of SAFs.
An example of remapping is matrix permutation [17], [21],
[23], [24], which is based on the idea that by reshaping
or rearranging a weight matrix one can increase the num-
ber of matches, or the cases where a weight value at a cell
location happens to be the same as the fault value at the
cell. Matrix permutation can be divided into row permu-
tation (RP) [17], [24], which requires an additional router,
and neuron permutation [21], [23], which does not require
a router. However, matrix permutation requires considerably
larger processing time to find the optimal permutation as
the network size increases. Furthermore, in the case of neu-
ron permutation, weight positions must be reshaped, which
becomes a problem if a convolution layer is performed with
RCAs due to the weight sharing property of a convolution
filter. Thus, neuron permutation is not feasible in the con-
volution layers and is limited to fully connected layer only
model.

The idea of row flipping (RF) [23] is to flip the sign of an
entire row (that has one or more SAF cells) and shift the values
of the row to be as close as possible to the SAF value(s).
This method is fairly straightforward as it only changes the
sign and does not require a time-consuming postprocessing
step. However, to recover the correct output, the RF method
requires a scalar value that is the sum of an input vector [23],
calculation of which requires extra hardware.

There are some techniques to tolerate variation or SAF in
ReRAM arrays. Sun et al. [28] proposed a training-free method
to overcome variation. They use a new coding scheme where
each bit has the same significance, and the encoded value is
expressed as the sum of all the bits. However, for BNNs, the
new coding scheme is the same as the general binary cod-
ing. In other words, this new coding scheme does not give
any benefits in BNNs. Our FPT method can work for BNNs
as well. Long et al. [29] proposed a variation-aware training
methodology where stochastic noise is added intentionally dur-
ing training to enhance the robustness. Our method, FPT, does
not require any training or training dataset if there is a pre-
trained model, whereas the method in [29] would still require
additional training with a training dataset even if a pretrained
model is given. Finally, [26] is a calibration method similar to
ours. However, it relies on input preprocessing (called input
splitting), which must be performed at runtime and therefore
requires extra hardware unlike ours.

B. Weight Realization

It is straightforward to implement a weight tensor as resis-
tance matrices of RCAs except that the required size and
value range of a weight tensor may exceed those of a RCA.
Partitioning [1] can solve the size problem; after that, the out-
put summation of RCAs needs to be done before the activation
function. Negative weights can be handled by adding a con-
stant offset so that all the weight values become non-negative.
An extra column in RCAs is required to implement the offset,
which needs to be subtracted from the RCA output. This is

TABLE II
WEIGHT TO RESISTANCE MAPPING. LRS AND HRS REFER TO LOW

AND HIGH RESISTANCE STATES, RESPECTIVELY

(a)

(b)

(c)

Fig. 1. BN layers run differently during training, FPT, and inference.
Variables in red are updated by gradient descent, and those in blue are by
the forward phase.

called unbalanced weight realization [30]. Alternatively, one
can use a pair of RCA arrays (or ReRAM cells), so that signed
weight values can be implemented by subtracting the output
of one (negative array) from that of the other (positive array),
which is referred to as balanced weight realization [1]. For our
experiments with BNNs and QNNs, we use the weight real-
ization schemes listed in Table II, where (x, y) in the balanced
cases refers to a resistance value pair for positive/negative
arrays.

C. Batch Normalization

Batch normalization (BN), which is known to reduce the
internal covariate shift problem [31], is essentially an affine
transformation. Equation (1) is the formula of a BN layer,
where x is the output of the preceding layer which is either
a convolution or fully connected layer. A BN layer is widely
used in CNN models to improve training performance. For
each output channel, it contains four parameters, which are
updated during training only. They can be classified into
two categories: 1) forward parameters (μ, σ), which are the
input statistics per batch, and 2) backward parameters (β, γ).
Forward parameters and backward parameters are updated
in the forward phase and backward phase, respectively, [see
Fig. 1(a)]. For inference, μ and σ are replaced with constant
values, which may be obtained from the EMA (exponen-
tial moving average) of μ, σ during training [see Fig. 1(c)].
To further simplify computation, BN layers can be folded
into the preceding layers, resulting in modified weight/bias
values [32]

y = γ

(
x − μ√
σ 2 + ε

)
+ β. (1)

Authorized licensed use limited to: UNIST. Downloaded on January 09,2024 at 04:10:06 UTC from IEEE Xplore. Restrictions apply.

QUAN et al.: TRAINING-FREE SAF MITIGATION FOR ReRAM-BASED DEEP LEARNING ACCELERATORS 2177

(a) (d)

(b) (e)

(c) (f)

Fig. 2. Distribution of output activation (after BN) at the last layer before
soft-max in BNN, where (a)–(c) show the results with the MNIST dataset,
and (d)–(f) show the results with the fashion-MNIST dataset. Different colors
mean different output neurons (stuck-at-open 9%, stuck-at-close 1%).

III. FORWARD PARAMETER TUNING

A. Motivation

Optimization Perspective: Our original motivation comes
from the need to reduce cost. Given enough hardware
resources, the correction approach can almost achieve 100%
accuracy recovery, but the cost is very high. It would be ideal
to restore accuracy by changing biases only without explicit
gradient backpropagation-based training, which requires a
dataset and incurs high computation cost. The fact that a BN
layer can be folded into the preceding layer motivates us to use
BN layers as an alternative to directly modifying bias values.

Statistical Perspective: To see the effect of device defect,
we plot the distribution of output activation with and without
SAFs in Fig. 2. Without faults, output distribution is almost
identical across neurons, with one large peak around zero and
one small peak around 3. With faults, however, we observe
varying degrees of distortion among neurons (mean is shifted
and standard deviation is increased). Thus, one may expect to
see improved accuracy if the distribution graphs are changed
back to their original shapes, which is, coincidentally, one of
the primary objectives of BN. Indeed, we observe that most
of accuracy degradation caused by SAFs can be recovered by
just BN training (see Table V). Since BN-only training is still
a training, we explore a variation of BN-only training, which
we call Forward Parameter Tuning, in which we adjust the
forward parameters (μ, σ) only. Our FPT method updates for-
ward parameters during the forward phase and does not require
back propagation or a full dataset. Therefore, FPT represents

(a)

(b)

(c)

Fig. 3. Example of our FPT method. (a) Without SAF. (b) With SAF. (c) With
SAF and FPT.

a computationally cheap operation that is free of dataset or
extra hardware.3

B. Detailed Method

Fig. 3 illustrates an example showing how our FPT method
may help recover the correct output despite SAFs. Here, we
assume that the input (X) to a BN layer follows a Gaussian
distribution with μ = 1 and σ = 1. Then, the running mean
(μ̂) and standard deviation (σ̂) parameters of the BN layer
would be 1 and 1, respectively, and the output (Y) of the BN
layer should follow a Gaussian distribution with μ = 0 and
σ = 1 [see Fig. 3(a)]. Now, with SAFs in the preceding layer,
the statistics of X may be changed as illustrated in Fig. 3(b).
However, because the BN layer parameters are not updated
during inference, the distortion in the input will be reflected
in the output as well, ultimately distorting in the final output.
In Fig. 3(c), the FPT method updates the BN layer parameters,
which can bring back the original, correct distribution of the
output data. In reality, however, the effect of SAFs can be more
devastating (e.g., data belonging to different categories may be
affected differently), which explains why the FPT method may
not be enough to recover the original output.

Fig. 4 shows our experimental flows for the BNN and QNN
(or multibit weight network) case. For each case, there are two
flows. When not using our method, the default flow, labeled
simple inference, is to first train a neural network, then fold
BN layers if it is a BNN, and deploy the network, which is
to run inference with the network on ReRAM arrays possibly
laden with various nonidealities. The Inference with Hardware
Simulation step means that network inference is performed
while simulating SAFs injected into RCAs. Alternatively, an
already trained model is taken, and the mean and std. deviation
of BN layers are updated by running a few dozen additional
iterations using a calibration dataset. BN layer folding is done
only for BNNs, since for a multibit weight network, updat-
ing BN layer parameters (μ and σ) means that the weight
parameters can change when the BN layer is folded to the
preceding layer. But the changed weight parameters may not
be programmed correctly due to SAFs. Therefore, for multi-
bit weight networks, we assume BN layers not to be folded
but to be implemented in digital hardware in order to guar-
antee accuracy. For BNNs, on the other hand, folding a BN
layer changes only the bias but not the weight parameters.
Therefore, we can use BN folding for BNNs.

3We do need a calibration set to get the statistics of input, which however
can be unlabeled and small.

Authorized licensed use limited to: UNIST. Downloaded on January 09,2024 at 04:10:06 UTC from IEEE Xplore. Restrictions apply.

2178 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 7, JULY 2023

Fig. 4. Our experimental flow (note: BN Layer Folding is enabled only for
BNN). After network training, there are two scenarios, which are shown by
colored arrows. The blue arrow shows the simple inference scenario. The red
arrows show the scenario of adopting our FPT method. In both scenarios, BN
layers can be folded in the case of a BNN. Gray blocks are common steps
while transparent ones are unique for the FPT method.

The FPT step is not a training step, and is more like infer-
ence since there is no backward update. Only the running mean
and std. dev. in BN layers are updated during forward pass.
In the absence of SAFs, the statistics (i.e., mean and std. dev.)
of each batch will be very similar to the (final) running statis-
tics. But the existence of SAFs will change the batch statistics,
which is averaged over several iterations using EMA to gen-
erate a new running statistics (EMA is initialized to the final
running statistics of training). For DNNs without BN layers,
new BN layers can be added next to convolution/fully con-
nected layers to mitigate SAF, and can be removed after FPT
by BN layer folding [32].

C. Analysis: Whether Adding Affine Transformation Can
Improve the Classification Accuracy at All

One might ask how adding a simple operation like BN can
help improve accuracy at all. To answer, we model a neuron
output and distortion as random variables and see if adding an
affine transformation can result in higher classification accu-
racy. For generality, we assume that the neuron output can
have up to two peaks and the distortion can have different
distribution parameters depending on the target output.

Let X0 and X1 be random variables with Gaussian distribu-
tion modeling the output of a neuron, representing two peaks
(see Fig. 2)

p(x0) = N
(

x | μx0, σ
2
x0

)
(2)

p(x1) = N
(

x | μx1, σ
2
x1

)
. (3)

The decision boundary θ can be chosen to be the point where
the two Gaussian probability density functions (PDFs) meet.

Let us assume that the effect of SAF in the weight
parameters can be modeled as Gaussian noise with different
parameters depending on the target output

G0 ∼ N
(
μg0, σ

2
g0

)
(4)

G1 ∼ N
(
μg1, σ

2
g1

)
. (5)

Then, X′
0 = X0 + G0 ∼ N (μ0, σ

2
0) and X′

1 = X1 + G1 ∼
N (μ1, σ

2
1), where μi = μxi + μgi and σ 2

i = σ 2
xi + σ 2

gi with
i = 0, 1.

We add an affine layer modeling BN as Yi = aX′
i + b, where

the computation of BN is assumed to be free of SAF. Now,
we can estimate the error probability with the SAF-induced
Gaussian noise. Using the previous decision boundary θ , the
probability of error with noise and BN applied is given as

e0 = P(Y0 > θ) when the true output is 0 (6)

e1 = P(Y1 < θ) otherwise. (7)

Now, our objective is to find a and b that can minimize the
total error rate L = φ0e0 + φ1e1, where φ0 and φ1 are the
prior probability of the true output (φ0 + φ1 = 1). We take
partial derivatives of L to find a minimum, which gives us the
following equation to find the optimal values of a and b:

φ0

σ0
g

(
θ − b

aσ0
− μ0

σ0

)
= φ1

σ1
g

(
θ − b

aσ1
− μ1

σ1

)
(8)

where g is the standard Gaussian PDF. For a simple case where
σ0 = σ1 = 1, (8) becomes φ0g(x − μ0) = φ1g(x − μ1), where
x = (θ − b)/a, meaning that x is the point at which the two
Gaussians centered at μ0 and μ1 meet. Clearly, x will coincide
with θ if the two Gaussians (at μ0 and μ1) had the same
parameters as in (3), i.e., if there were no noise. With noise,
(a, b) minimizing L can be different from (1, 0).

Though finding a closed-form solution to the above equation
is difficult, this analysis shows that an affine transformation
such as BN can indeed help reduce classification error in the
presence of random noise. Note that we only show optimal
(a, b) �= (1, 0) can exist, but we do not claim our FPT method
can find the optimal values; our method is only a heuristic.

D. Note on Implementation

BN inference itself [Fig. 1(c)] is very simple, involving just
an affine transformation (one multiplication and one addition
per output), which can be implemented in digital hardware.
We will discuss it in detail in Section V-I.

BN tuning [Fig. 1(b)] updates the statistical parameters in
the forward path by running a few dozen additional iterations
using a calibration set. This can be done either by software
running on a host machine or by additional hardware. Here, we
assume that the statistical parameter tuning is done by software
running on a host machine. We get the input of each BN
layer (the output of each convolution and fully connected layer
followed by BN layer) and then send it to the host machine
to compute and update the mean and standard deviation. Once
the BN layers are tuned with these statistical parameters, we
can fold BN layers for BNNs, so that no additional hardware
is needed for inference. In multibit weight networks, we use a
simple affine transformation as mentioned above to implement
each BN layer. Note that the tuning process only requires the
input of BN layer, unlike [21] which requires full knowledge of
the location and state of the faults, and needs to be performed
once unless the fault state changes.

Authorized licensed use limited to: UNIST. Downloaded on January 09,2024 at 04:10:06 UTC from IEEE Xplore. Restrictions apply.

QUAN et al.: TRAINING-FREE SAF MITIGATION FOR ReRAM-BASED DEEP LEARNING ACCELERATORS 2179

IV. ANALYSIS OF EFFECTIVE FAULT RATE

To better understand the effect of FR on computation accu-
racy, we introduce a new measure called EFR. We also present
an analytical method to calculate EFR for any given FR under
certain assumptions, namely uniform weight distribution and
balanced weight mapping. Recall that balanced weight map-
ping (see Section II-B) maps a weight parameter to a pair
of ReRAM devices, which may be arranged in two columns
or two arrays, and the correct result can be obtained by sub-
tracting the output of one column (such columns or arrays
are referred to as negative) from that of the other column
(positive).

A. Effective Fault Rate

The term FR is defined as the probability of a cell being
stuck at a certain, usually extreme, state, such as LRS or HRS.
If a value that is to be written to a device happens to be the
same as the stuck-at value of the device, it will not result in
any observable error. Therefore, we define EFR to be the prob-
ability of a device having an observable error due to SAFs. To
distinguish the original FR from EFR, we call the former raw
fault rate. Unlike raw fault rate, EFR considers programmed
weight values as well, and can be a more direct predictor
of application performance as we show in our experimental
results.

To illustrate the idea of EFR, consider the scenario of writ-
ing +1 to a ReRAM cell that can represent a binary value
({+1,−1}). Fig. 5a illustrates how +1 can be programmed
using two ReRAM devices. Suppose that the raw FR is 10%
and that the probabilities of SA0 and SA1 are the same (i.e.,
5% each). Then, each of the ReRAM devices has three possi-
bilities: 1) No SAF, whose probability is 90%; 2) SA0 with 5%
probability; and 3) SA1 with 5% probability. Considering the
two devices together, we have nine cases. Among them, the
following four cases will have no observable error, because
the stuck-at values happen to be the same as the write val-
ues: {(No SAF, No SAF), (No SAF, SA0), (SA1, No SAF),
(SA1, SA0)}. Therefore, the probability of observing an error
is 9.75% (= 1−(0.9·0.9 + 0.9·0.05 + 0.05·0.9 + 0.05·0.05)),
which is the EFR. This example shows that EFR can be differ-
ent from raw FR (lower in this case), and depends on weight
distribution.

In the multibit weight case, the likelihood of having no
observable error diminishes, resulting in greater EFR for the
same raw FR. Consider a ReRAM device with three resis-
tive states that correspond to {0, 0.5, 1}. Then, with two such
devices one can create a cell that can represent any value
from a set {−1,−0.5, 0, 0.5, 1}, which has one more state
than a 2-bit integer can represent. Suppose we represent a
weight value of 0.5 as shown in Fig. 5b. Then, there are only
two cases in which there is no observable error: {(No SAF,
No SAF), (No SAF, SA0)}. Therefore, the EFR is 14.5%
(= 1 − (0.9 · 0.9 + 0.9 · 0.05)), which is higher than that
of the binary example. The above examples also show that
EFR can be both lower and higher than raw FR depending on
device precision.

(a) (b)

Fig. 5. Example fault analysis (balanced weight realization; raw FR is 10%).
(a) In the binary case programming +1, four out of nine combinations result
in no observed error. (b) In the multibit case programming +0.5, only two
out of nine combinations result in no observed error.

TABLE III
EFR FORMULAS (R: RAW FR)

B. Effective Fault Rate Analysis

Using the definition of EFR, we derive EFR formulas for 1
bit ({+1,−1} as in BinaryNet [33]) as well as multibit cases.
Here, we make one assumption that the weight values are
equally distributed; for instance, in the BinaryNet case, the
number of +1 weight parameters is the same as that of −1
parameters.4

The result is summarized in Table III and Fig. 6. Here,
OCR means Open-Close-Ratio, the ratio between stuck-at-
open faults versus stuck-at-close faults. In other words, if
FR = 10% and OCR = 4, we can expect about 8% of ReRAM
devices stuck to HRS, regardless of target resistance value, and
about 2% stuck to LRS. For OCR = 1 and OCR = 0.2, this
result suggests that for any given raw FR, EFR of 2 bit (or
4 bit) is greater than that of 1-bit (or 2-bit) weight. In other
words, EFR increases as weight precision increases, regard-
less of raw FR. However, for OCR = 5 case, EFR of 2 bit
is less than that of 1-bit weight. For higher OCR, the EFR of
multibit weight can be lower than 1-bit weight, but for most of
cases, multibit has higher EFR. As a consequence, it is more
difficult to mitigate the effect of SAF in multibit networks by
using the FPT method because of the higher EFR.

Our definition of EFR has a limitation that it does not con-
sider error distance. For instance, a cell stuck at zero will
have an observable fault as long as the cell has a nonzero
weight value; however, the error distance will be different if
the weight value is 0.5 versus 1.0. Our definition does not

4This assumption is to simplify our analytical model. Weight parameters
of a multibit network typically follow a bell-shaped distribution (i.e., more
values are found around zero), in which case the EFR will be different with
the case of uniform distribution.

Authorized licensed use limited to: UNIST. Downloaded on January 09,2024 at 04:10:06 UTC from IEEE Xplore. Restrictions apply.

2180 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 7, JULY 2023

(a) (b) (c)

Fig. 6. Effective versus raw FR. (a) OCR = 1. (b) OCR = 0.2. (c) OCR = 5.

TABLE IV
BASELINE ACCURACY FOR ALL MODELS

consider such differences, which can limit the accuracy of our
EFR formulas in predicting the output distortion due to SAF.

V. EXPERIMENTS

A. Experimental Setup

To evaluate the effectiveness of our proposed method, we
use BNNs as well as QNNs. Table IV lists the models used in
our experiments as well as their baseline accuracy. For BNN
experiments, we use the MNIST, CIFAR-10, CIFAR-100,
and ImageNet datasets. The MNIST BNN model, which is
from [33], is an multilayer perceptron (MLP), and the CIFAR-
10 BNN, which is also from [33], is a VGGNet [34] with
3× inflation factor, and the CIFAR-100 BNN is the ResNet20
from [33]. For ImageNet, we use the ReActNet model [35].

For QNN experiments, we use the CIFAR-10 dataset and a
VGGNet model with 1× inflation factor. We denote the acti-
vation precision x and weight precision y of a QNN model as
AxWy, where 1 bit means {−1,+1} instead of {0, 1}, 2 bit
includes five states ({−1,−0.5, 0,+0.5,+1}), and similarly,
4 bit includes 17 states.

Our experimental flow (Fig. 4) is implemented in PyTorch,
and supports weight partitioning and mapping to RCAs as well
as our FPT method as described in Fig. 4. BNN models are
trained using the training procedure in [33]. The QNN models
are trained using progressive fine-tuning [36], which provides
better initialization. That is, we first train the floating-point
model, and a higher precision model using the floating-point
model as the initial weight, and a lower precision model using
a higher precision model as the initial weight, and so on.

In this work, we consider a multibit device [37], which
has resistance range of 1 k�–1 M� with linear voltage-
conductance relation and up to 5-bit precision. For SAF
injection we follow the methodology in [25].

For the calibration set, we use a randomly selected subset
of the training dataset. We vary FR, which is raw FR, and use
OCR values of 5, 1, 1/5.5 Our baseline accuracy is the test
accuracy of each BNN or QNN model without any nonideality.

5Previous work uses various OCR values including 0.225 [18] and 5.1 [8].

TABLE V
COMPARING VARIOUS TRAINING METHODS AND OUR FPT FOR MNIST

BNN (UNBALANCED CASE, OCR = 1, 10 EPOCHS). SI REFERS

TO SIMPLE INFERENCE WITHOUT RETRAINING

Fig. 7. ResNet20-CIFAR100 results (Binary, OCR = 1, balanced). y-axis is
the accuracy degradation from the binary baseline (without SAF).

B. Effectiveness of Our FPT Method

Table V compares various partial retraining/full retraining
methods with our FPT method and simple inference (as
defined in Fig. 4). BN training updates backward parameters
(β, γ) of BN using backpropagation, but weight parameters
of convolution/fully connected layers are not touched. Bias
training updates the bias of each convolution/fully connected
layer only. Up to FR 20%, our FPT result is comparable to
that of other training methods; only 3% drop is observed at
FR 40% in MNIST. This result suggests that our FPT method
can closely follow (partial) retraining methods.

Fig. 7 shows the ResNet20 result on the CIFAR-100 dataset
and Table VI shows the ReActNet result on the ImageNet
dataset. These results show that our FPT method can recover
nearly half of the accuracy degradation, demonstrating that
our FPT method can be useful for deeper neural networks and
larger datasets as well.

When we have a large FR such as 30%, the model capac-
ity is reduced to 70% which leads to significant drop in the

Authorized licensed use limited to: UNIST. Downloaded on January 09,2024 at 04:10:06 UTC from IEEE Xplore. Restrictions apply.

QUAN et al.: TRAINING-FREE SAF MITIGATION FOR ReRAM-BASED DEEP LEARNING ACCELERATORS 2181

TABLE VI
PERFORMANCE OF FPT ON IMAGENET (REACTNET, OCR = 1,

BALANCED). NOTE HERE THAT SAF IS NOT INJECTED

TO THE FIRST AND THE LAST LAYER

(a) (b)

Fig. 8. Comparison between (a) unbalanced and (b) balanced realizations of
the weights (MNIST BNN). Different colors mean different OCR values.

TABLE VII
PERFORMANCE OF FPT WHEN USING TRAIN VERSUS TEST DATASET AS

THE CALIBRATION DATASET (CIFAR-10 BNN, OCR = 1, UNBALANCED)

baseline model accuracy. Our FPT method does not change
the weight. It only fine-tunes the statistics parameters in the
BN layer, so it is hard to recover the accuracy at a higher FR,
which is a potential limitation of our approach.

C. Effect of OCR and Weight Realization

In this section we explore several cases of OCR to explore
more realistic ReRAM SAF cases, the result of which is sum-
marized in Fig. 8a. The OCR values of 5 and 1/5 are chosen
based on [8] and [18]. The graph shows that our FPT method is
sensitive to OCR value for unbalanced weight realization, with
OCR = 1 being the best. On the other hand, using balanced
realization (see Fig. 8b) gives great fault recovery regardless
of OCR values. We observe that even the most skewed OCR
values result in quite small accuracy drop of up to 1.04% when
FR = 40%.

D. Calibration Dataset

In constructing the calibration dataset, we need to know
from where to get data and how many images to use. Table VII
compares the training versus test dataset as the source of
our calibration set. For this experiment, we use the maxi-
mum size, i.e., 10 000 images, which is the size of the test
dataset. Overall, the training set is slightly better than the
test set, which may suggest that using independent data (i.e.,
data that is not used during inference) causes no performance
degradation.

Fig. 9. Performance versus the number of iterations for FPT, with varied
batch size (CIFAR-10 BNN, Unbalanced, FR = 10%, OCR = 1/9). Different
colors mean different batch sizes.

TABLE VIII
COMPARISON WITH OTHER MITIGATION METHODS. CIFAR-10 BNN

TEST ACCURACY (OCR = 1/5, BALANCED). SI REFERS

TO SIMPLE INFERENCE

Fig. 9 provides an answer to the minimum number of
images for the calibration set. We use unbalanced, OCR = 1/9
for the worst case simulation. The graph shows the number of
iterations used in FPT by specific batch sizes. The calibration
dataset size is the product of the number of iterations and the
batch size. Each graph is the average accuracy of ten indepen-
dent experiments. The graph clearly shows that the accuracy
has stronger correlation with the number of iterations, rather
than the batch size. Overall, 1024 images (32 iterations, batch
size 32) shows only 0.5% drop from the best case, and thus
can be recommended as the minimum calibration set size. In
the case where there are not enough images, one guideline is
to divide the available data into 32 iterations, possibly with a
rather small batch size.

E. Comparison With Previous Methods

We focus on the comparison with the remapping meth-
ods, and among them, especially RF [23] and RP [17], since
they can be applied to any network with relatively low cost
(especially compared with the correction methods). Table VIII
summarizes the result of applying various combinations of RF
and RP, with and without our FPT method. At 10% FR, all
mitigation methods tend to show quite high accuracy recov-
ery. However, at 20% FR, the performance of the previous
methods starts to deteriorate very badly, that is, unless the
FPT method is used together. While FPT alone gives a simi-
lar result as applying RF and RP together with FPT (only 1%
difference), between the two, RF may be more cost effective
to apply together due to the differences in the hardware cost
and implementation complexity of RF and RP.

F. Accuracy of Our Analytical Formulas

To validate the accuracy of our analytical formulas for EFR,
we compare our formula’s predictions with simulation results.

Authorized licensed use limited to: UNIST. Downloaded on January 09,2024 at 04:10:06 UTC from IEEE Xplore. Restrictions apply.

2182 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 7, JULY 2023

Fig. 10. EFR formulas (curves) versus simulation results (points). Balanced
weight realization (OCR = 1). Three curves are 1, 2, and 4-bit cases from
bottom to top.

Our fault injection simulation is performed as follows. For
each raw FR, we generate SAFs randomly for each given raw
FR 25 times, adding SAFs to weight values. For weight val-
ues, we use a 4-D tensor of quantized weight (the shape of
which is 170 × 3 × 3 × 3) generated according to a uniform
distribution. The weight tensor is generated once and reused
in all the experiments. Fig. 10 shows the result, which con-
firms that our formulas are correct. We have repeated the same
experiment for the other values of OCR, and their results are
also very similar (not shown).

G. Results for Multibit Networks

Fig. 11 shows the effect of FPT on CIFAR-10 QNN test
accuracy. The results suggest that our FPT can recover the
baseline accuracy, which is the accuracy without any SAF,
when raw FR is around 20% or less. However, when FR is
over 20%, the A1W2, A1W4, and A4W4 cases start to show
much lower accuracy than the baseline. Also, there is a gap
between the binary (A1W1) case and the multibit cases, which
is increasing as FR increases.

To better understand the differences between the binary
versus multibit cases, Fig. 12(a) and (b) plots accuracy as a
function of EFR for different weight precision cases (inputs
are all binary). First, the results suggest that there is greater
accuracy degradation with the multibit weight cases than with
the binary case. This trend is common regardless of whether
FPT is used. The larger accuracy drop with QNNs seems to be
a side effect of highly tuned networks; more precise weights
afford the network a higher level of tuning capability, but
the degradation is also greater when weights are damaged by
imperfections.

Second, all three networks show similar accuracy when FPT
is enabled, with the exception of the OCR-5 case, which sug-
gests that our FPT is at least as effective with QNNs as with
BNNs. Third, in the case of the OCR-5 case, accuracy degra-
dation is so steep with QNNs that even after FPT there is still
a large accuracy gap between BNNs and QNNs. These graphs
suggest that the effectiveness of FPT can be seen as reducing
the EFR by 3–4 times; that is to say, what may be achieved at
EFR = 10% without FPT can be achieved with FPT at EFR =

30%–40%. However, the exact contribution of FPT in terms of
EFR reduction is difficult to quantify due to the large degree
of variation of such experimental results.

Finally, a comparison between OCR = 1 case in Figs. 12(b)
and 13, which plot the same data using differently scaled x-
axes, reveals that EFR is indeed a better predictor of network
accuracy, demonstrating that EFR can be a useful tool for
predicting the accuracy of faulty neural networks.

To understand the reason for QNN’s particular underperfor-
mance in the case of OCR-5, we compare weight distributions
with and without SAF in Fig. 14. The weights here are the
quantized weights in the last fully connected layer of CIFAR-
10 QNNs. The graphs show that one effect of SAF is to distort
the weight distribution so that even though the number (or
probability density) of near-zero weights is not particularly
high in the case of “no SAF,” it becomes so when there is SAF.
Moreover, in multibit case, the number of near-zero weights
is disproportionately large when OCR is 5, severely impacting
the network accuracy, regardless of whether FPT is used.

H. Effect of Other RCA Nonidealities

ReRAM has many other nonidealities, such as variability
and IR drop [9], [10]. Variability is considered as one of
the major problems for ReRAM especially when compared
to other emerging technologies such as STT-RAM. Variability
problem may occur during either device programming, read-
ing or both. We have tested the effect of FPT in the presence
of both SAF and variability in binary ReRAM.

IR drop effect is simulated by a SPICE-equivalent simulator,
presented in [38]. Variability is modeled as additive Gaussian
noise to RCA resistance as follows: R′ = R(1+ε), where ε ∼
N(0, σ 2). We vary σ from 0.1 to 0.5. We use the following
device parameters: RHRS = 1 M�, RLRS = 1 k�, and crossbar
size = 64 × 64.

Fig. 15a shows the result, where variability is modeled as
the Gaussian noise to ReRAM resistance values.

The graph shows that accuracy drop steadily increases as
variability increases. The graph also suggests that the impact
of variability depends on the FR; the higher the FR, the greater
the impact of variability, which is not surprising. Between
device variability and SAF, our result indicates that SAF may
be more critical. For instance, while the variability of σ = 0.5
is quite manageable up to FR = 20% (<10% drop), FR =
40% makes RCAs quite unacceptable for DNN accelerators
regardless of variability. In the case of IR drop (see Fig. 15),
accuracy drop is generally smaller than that in the variability
case, though it has a strong dependence on rw. Again, our FPT
method shows very high resilience, and even up to 40%, we
observe only about 6% drop from the baseline accuracy when
wire resistance is low (rw = 0.1). But in the case of high wire
resistance (rw = 1), FPT shows about 5% accuracy drop up
to FR = 20%, but then a very large drop at FR = 40%, which
cannot be tolerated without retraining.

I. Hardware Overhead Estimation

As we mentioned in Section III-D, BN tuning is done in
software. To estimate the tuning cost, we test the time cost

Authorized licensed use limited to: UNIST. Downloaded on January 09,2024 at 04:10:06 UTC from IEEE Xplore. Restrictions apply.

QUAN et al.: TRAINING-FREE SAF MITIGATION FOR ReRAM-BASED DEEP LEARNING ACCELERATORS 2183

Fig. 11. CIFAR10-QNN results (OCR = 1, balanced). Different colors are different models. Light colored bars are without FPT, and dark-colored bars with
FPT.

(a)

(b)

Fig. 12. Accuracy versus EFR. (a) Before FPT. (b) After FPT.

per iteration for different approaches as shown in Table IX.
The result shows that our FPT method has a much lower cost
compared to other training approaches. The time per iteration

Fig. 13. Accuracy versus raw FR (with FPT, OCR = 1).

(a) (b)

(c)

Fig. 14. Weight distributions of different OCR. (a) 1-bit case. (b) 2-bit case.
(c) 4-bit case.

of our technique is around 2.48 times smaller than other train-
ing techniques since it does not require backpropagation. The
total time cost of our approach is 152.07 times smaller than
others. The main reason is that our FPT method requires much
fewer iterations as discussed in Section V-D. Moreover, the
calibration set for FPT can be much smaller than the training
set as observed in Section V-D. Note that we compare against
these techniques on GPU which is not the case for hardware,
so the cost of all the training techniques is close. However,

Authorized licensed use limited to: UNIST. Downloaded on January 09,2024 at 04:10:06 UTC from IEEE Xplore. Restrictions apply.

2184 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 7, JULY 2023

(a)

(b)

Fig. 15. Nonidealities experiment on CIFAR-10 BNN (OCR = 0.2, bal-
anced). The x-axis shows the standard deviation (σ) of variability [top row in
(a)] and the wire resistance [top row in (b)], as well as the raw FR (bottom
row). Light colored bars are without FPT (i.e., baseline), and dark-colored
ones with FPT. (a) Variability result. (b) IR drop result.

Fig. 16. BN hardware flow.

TABLE IX
TIME COMPARISON WITH OTHER TRAINING METHODS. (CIFAR-10,

BNN, BATCH SIZE=256) WE ASSUME TEN EPOCHS OF FINE-TUNING

FOR THE RETRAINING METHODS

practically, retraining methods need to rewrite the resistance
in RCAs. Besides, for all the training techniques, it is manda-
tory to get precise fault information from the hardware, which
is cumbersome and costly because a typical accelerator may
include hundreds of RCAs or more. Therefore, the training
techniques could take more time in reality.

During inference, a BN layer is just an affine transforma-
tion, which can be efficiently implemented in digital hardware.
Fig. 16 shows the flow of our BN hardware. According to (1),
BN can be implemented as a multiplication operation and an
addition operation, where X is the input activation to BN, and
A = (γ /[

√
σ 2 + ε]), B = β − (μ/[

√
σ 2 + ε]). Note that the

statistical parameters are updated by FPT in software, and the
BN hardware only uses the parameters. X, A, and B are all
fixed-point values, X and A are 8 bit, and B is 16 bit. We
have designed BN hardware in Verilog HDL, which is syn-
thesized with a Synopsys Design Compiler using Samsung 65

nm technology. The estimated power dissipation is 3.62 mW
with input size of 64 at 100 MHz. Using the RCA power
consumption data from [1], we estimate the power consump-
tion of BN to be around 2.56% of the total power, which
is low. Moreover, [1] uses 32-nm technology, which is not
available for us. If we scale our BN implementation to 32-nm
technology, the BN hardware overhead would be much lower.

VI. CONCLUSION

In this article, we presented a novel method to mitigate
the effect of permanent faults in RCAs. Our method does not
require additional hardware or large datasets, but only updates
mean and variance of the BN layers using a tiny fraction of
unlabeled data. BN layers are folded back into preceding lay-
ers, thus incurring no additional computation either. In addition
our method is orthogonal to remapping techniques as demon-
strated by our experimental results, and shows a similar level
of fault recovery as backpropagation-based training methods,
up to about 20% FR. We have also applied FPT to multi-
bit networks and developed the EFR measure to analyze the
relationship between accuracy loss and FR. Our experimental
results demonstrated that our FPT method works equally well
on multibit networks as well as the efficacy of our EFR as a
tool for predicting the accuracy of faulty RCA-based neural
networks. Our FPT method also demonstrates good harmony
with techniques for other nonidealites, including variability
and IR drop.

From our experimental results, it seems that FPT can also
help mitigate the effect of other nonidealities, such as vari-
ability and IR drop, but quantifying its effectiveness requires
a more careful study and evaluation. Finally, analogue or
continuous-valued ReRAM devices can be more useful as they
provide higher integration density. Extending our technique to
such cases is left for future work.

REFERENCES

[1] A. Shafiee et al., “ISAAC: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” ACM SIGARCH Comput.
Archit. News, vol. 44, no. 3, pp. 14–26, 2016.

[2] M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam,
K. K. Likharev, and D. B. Strukov, “Training and operation of an inte-
grated neuromorphic network based on metal-oxide memristors,” Nature,
vol. 521, no. 7550, pp. 61–64, May 2015. [Online]. Available: http://dx.
doi.org/10.1038/nature14441

[3] L. Song, X. Qian, H. Li, and Y. Chen, “PipeLayer: A pipelined ReRAM-
based accelerator for deep learning,” in Proc. IEEE Int. Symp. High
Perform. Comput. Archit. (HPCA), 2017, pp. 541–552.

[4] S. Lee et al., “Architecture-accuracy co-optimization of ReRAM-based
low-cost neural network processor,” in Proc. 30th ACM Great Lakes
Symp. VLSI (GLSVLSI), Sep. 2020, pp. 427–432.

[5] K. Smagulova, M. E. Fouda, F. Kurdahi, K. Salama, and A. Eltawil,
“Resistive neural hardware accelerators,” 2021, arXiv:2109.03934.

[6] A. Azamat, F. Asim, and J. Lee, “Quarry: Quantization-based ADC
reduction for ReRAM-based deep neural network accelerators,” in Proc.
Int. Conf. Comput.-Aided Des. (ICCAD), Nov. 2021, pp. 1–7.

[7] L. Xia et al., “Stuck-at fault tolerance in RRAM computing systems,”
IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 8, no. 1, pp. 102–115,
Mar. 2018.

[8] C.-Y. Chen et al., “RRAM defect modeling and failure analysis based on
march test and a novel squeeze-search scheme,” IEEE Trans. Comput.,
vol. 64, no. 1, pp. 180–190, Jan. 2015.

[9] S. Lee, M. Fouda, J. Lee, A. Eltawil, and F. Kurdahi, “Learning to
predict IR drop with effective training for ReRAM-based neural network
hardware,” in Proc. DAC, Jul. 2020, pp. 1–6.

Authorized licensed use limited to: UNIST. Downloaded on January 09,2024 at 04:10:06 UTC from IEEE Xplore. Restrictions apply.

QUAN et al.: TRAINING-FREE SAF MITIGATION FOR ReRAM-BASED DEEP LEARNING ACCELERATORS 2185

[10] S. Lee, M. E. Fouda, J. Lee, A. Eltawil, and F. Kurdahi, “Offline training-
based mitigation of IR drop for ReRAM-based deep neural network
accelerators,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
early access, May 23, 2022, doi: 10.1109/TCAD.2022.3177002.

[11] M. E. Fouda, S. Lee, J. Lee, A. Eltawil, and F. Kurdahi, “Mask technique
for fast and efficient training of binary resistive crossbar arrays,” IEEE
Trans. Nanotechnol., vol. 18, pp. 704–716, Jul. 2019.

[12] M. E. Fouda, S. Lee, J. Lee, G. H. Kim, F. Kurdahi, and A. M. Eltawi,
“IR-QNN framework: An IR drop-aware offline training of quantized
crossbar arrays,” IEEE Access, vol. 8, pp. 228392–228408, 2020.

[13] J. Kim, C. Lee, J. Kim, Y. Kim, C. S. Hwang, and K. Choi, “VCAM:
Variation compensation through activation matching for analog binarized
neural networks,” in Proc. IEEE/ACM Int. Symp. Low Power Electron.
Des. (ISLPED), 2019, pp. 1–6.

[14] S. Lee, M. Fouda, J. Lee, A. Eltawil, and F. Kurdahi, “Fast and low-
cost mitigation of ReRAM variability for deep learning applications,” in
Proc. IEEE 39th Int. Conf. Comput. Des. (ICCD), 2021, pp. 269–276.

[15] C. Huang, N. Xu, K. Qiu, Y. Zhu, D. Ma, and L. Fang, “Efficient and
optimized methods for alleviating the impacts of IR-drop and fault in
RRAM based neural computing systems,” IEEE J. Electron Devices Soc.,
vol. 9, pp. 645–652, 2021.

[16] J.-Y. Hu, K.-W. Hou, C.-Y. Lo, Y.-F. Chou, and C.-W. Wu, “RRAM-
based neuromorphic hardware reliability improvement by self-healing
and error correction,” in Proc. IEEE Int. Test Conf. Asia (ITC-Asia),
2018, pp. 19–24.

[17] L. Chen et al., “Accelerator-friendly neural-network training: Learning
variations and defects in RRAM crossbar,” in Proc. Des. Autom. Test
Europe Conf. Exhibit. (DATE), Mar. 2017, pp. 19–24.

[18] C. Liu, M. Hu, J. P. Strachan, and H. H. Li, “Rescuing memristor-
based neuromorphic design with high defects,” in Proc. 54th Annu. Des.
Autom. Conf., Jun. 2017, pp. 1–6.

[19] G. Charan, A. Mohanty, X. Du, G. Krishnan, R. V. Joshi, and Y. Cao,
“Accurate inference with inaccurate RRAM devices: A joint algorithm-
design solution,” IEEE J. Explor. Solid-State Computat. Devices Circuits,
vol. 6, no. 1, pp. 27–35, Jun. 2020.

[20] M. Liu, L. Xia, Y. Wang, and K. Chakrabarty, “Algorithmic fault detec-
tion for RRAM-based matrix operations,” ACM Trans. Des. Autom.
Electron. Syst., vol. 25, no. 3, pp. 1–31, May 2020. [Online]. Available:
https://doi.org/10.1145/3386360

[21] L. Xia, M. Liu, X. Ning, K. Chakrabarty, and Y. Wang, “Fault-tolerant
training enabled by on-line fault detection for RRAM-based neural com-
puting systems,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 38, no. 9, pp. 1611–1624, Sep. 2019. [Online]. Available:
https://doi.org/10.1109/TCAD.2018.2855145

[22] G. Jung, M. Fouda, S. Lee, J. Lee, A. Eltawil, and F. Kurdahi, “Cost- and
dataset-free stuck-at fault mitigation for ReRAM-based deep learning
accelerators,” in Proc. Des. Autom. Test Europe Conf. Exhibit. (DATE),
2021, pp. 1733–1738.

[23] B. Zhang, N. Uysal, D. Fan, and R. Ewetz, “Handling stuck-at-faults in
memristor crossbar arrays using matrix transformations,” in Proc. 24th
Asia South Pac. Des. Autom. Conf., Jan. 2019, pp. 438–443.

[24] F. Zhang and M. Hu, “Defects mitigation in resistive crossbars for analog
vector matrix multiplication,” in Proc. 25th Asia South Pac. Des. Autom.
Conf. (ASP-DAC), 2020, pp. 187–192.

[25] Z. He, J. Lin, R. Ewetz, J.-S. Yuan, and D. Fan, “Noise injection adap-
tion: End-to-end ReRAM crossbar non-ideal effect adaption for neural
network mapping,” in Proc. 56th Annu. Des. Autom. Conf., Jun. 2019,
pp. 1–6.

[26] S.-Y. Sun et al., “Cases study of inputs split based calibration method
for RRAM crossbar,” IEEE Access, vol. 7, pp. 141792–141800, 2019.

[27] M. Liu, L. Xia, Y. Wang, and K. Chakrabarty, “Fault tolerance in neuro-
morphic computing systems,” in Proc. 24th Asia South Pac. Des. Autom.
Conf., Jan. 2019, pp. 216–223.

[28] Y. Sun et al., “Unary coding and variation-aware optimal mapping
scheme for reliable ReRAM-based neuromorphic computing,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 40, no. 12,
pp. 2495–2507, Dec. 2021.

[29] Y. Long, X. She, and S. Mukhopadhyay, “Design of reliable DNN accel-
erator with un-reliable ReRAM,” in Proc. Des. Autom. Test Europe Conf.
Exhibit. (DATE), 2019, pp. 1769–1774.

[30] C.-C. Chang et al., “Mitigating asymmetric nonlinear weight update
effects in hardware neural network based on analog resistive synapse,”
IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 8, no. 1, pp. 116–124,
Mar. 2018.

[31] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. 32nd
Int. Conf. Mach. Learn. Vol. 37, 2015, pp. 448–456.

[32] H. Yonekawa and H. Nakahara, “On-chip memory based binarized
convolutional deep neural network applying batch normalization free
technique on an FPGA,” in Proc. IEEE Int. Parallel Distrib. Process.
Symp. Workshops (IPDPSW), May 2017, pp. 98–105.

[33] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks: Training deep neural networks with weights
and activations constrained to +1 or -1,” 2016, arXiv:1602.02830.

[34] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. 3rd Int. Conf. Learn. Represent.
(ICLR), San Diego, CA, USA, May 2015, pp. 1–14.

[35] Z. Liu, Z. Shen, M. Savvides, and K.-T. Cheng, “ReActNet: Towards
precise binary neural network with generalized activation functions,”
2020, arXiv:2003.03488.

[36] S. Jung et al., “Learning to quantize deep networks by optimizing quan-
tization intervals with task loss,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), 2018, pp. 4345–4354.

[37] M. Hu et al., “Memristor-based analog computation and neural network
classification with a dot product engine,” Adv. Mater., vol. 30, no. 9,
2018, Art. no. 1705914.

[38] M. E. Fouda, A. M. Eltawil, and F. Kurdahi, “Modeling and analysis
of passive switching crossbar arrays,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 65, no. 1, pp. 270–282, Jan. 2018.

Chenghao Quan received the B.E. degree in mea-
surement and control technology and instrumenta-
tion from the Qingdao University of Science and
Technology, Qingdao, China, in 2020. He is cur-
rently pursuing the combined master’s–Ph.D. degree
in electrical engineering from the Ulsan National
Institute of Science and Technology, Ulsan, South
Korea.

His current research interests include efficient
deep learning and hardware-aware deep learning.

Mohammed E. Fouda (Senior Member, IEEE)
received the B.Sc. degree (Hons.) in electronics and
communications engineering and the M.Sc. degree
in engineering mathematics from the Faculty of
Engineering, Cairo University, Cairo, Egypt, in 2011
and 2014, respectively, and the Ph.D. degree from
the University of California at Irvine, Irvine, CA,
USA, in 2020.

He worked as an Assistant Researcher with the
University of California at Irvine from April 2020
to March 2022. He is currently a Senior Research

Scientist with Rain Neuromorphics Inc., Redwood City, CA, USA. He has
published more than 150 peer-reviewed journal and conference papers, one
Springer book, and three book chapters. His H-index is 26, and he has been
cited more than 2400 times. His research interests include analog AI hardware,
neuromorphic circuits and systems, brain-inspired computing, memristive cir-
cuit theory, fractional circuits and systems, and analog circuits.

Dr. Fouda was the recipient of the Best Paper Award in ICM for 2013
and 2020 and the Broadcom Foundation Fellowship for 2016/2017. He also
serves as an associate editor for many journals in addition to serving as a
technical program committee member for many conferences. He serves as a
peer reviewer for many prestigious journals and conferences.

Authorized licensed use limited to: UNIST. Downloaded on January 09,2024 at 04:10:06 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCAD.2022.3177002

2186 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 7, JULY 2023

Sugil Lee received the B.S. degree in mathemati-
cal science from the Korea Advanced Institute of
Science and Technology, Deajeon, South Korea,
in 2017, and the M.S. degree in computer sci-
ence and engineering from the Ulsan National
Institute of Science and Technology, Ulsan, South
Korea, in 2019, where he is currently pursuing
the Ph.D. degree with the Department of Electrical
Engineering.

His current research interests include HW-aware
deep neural network training and their energy-

efficient implementation methodologies.

Giju Jung received the B.Sc. degree in computer
engineering and the M.Sc. degree in biotechnology
from the Ulsan National Institute of Science and
Technology, Ulsan, South Korea, in 2018 and 2021,
respectively.

After graduation, he joined 3View.Com Inc.,
Suwon, South Korea, as an Engineer specialized
in AI. His research interests include neuromorphic
computing systems and efficient deep learning.

Jongeun Lee (Member, IEEE) received the B.S. and
M.S. degrees in electrical engineering and the Ph.D.
degree in electrical engineering and computer sci-
ence from Seoul National University, Seoul, South
Korea, in 1997, 1999, and 2004, respectively.

He has been with the Faculty, Ulsan National
Institute of Science and Technology, Ulsan, South
Korea, since 2009, where he is a Professor of
Electrical Engineering. His research interests include
neural network processors, reconfigurable architec-
tures, in-memory computing, and compilers.

Ahmed E. Eltawil (Senior Member, IEEE) received
the B.Sc. (Hons.) and M.Sc. degrees from Cairo
University, Giza, Egypt, in 1999 and 1997, respec-
tively, and the Doctoral degree from the University
of California at Los Angeles, Los Angeles, CA,
USA, in 2003.

He is a Professor of Electrical and Computer
Engineering with The King Abdullah University of
Science and Technology (KAUST), Thuwal, Saudi
Arabia, where he joined the Computer, Electrical and
Mathematical Science and Engineering Division in

2019. Prior to that, he was a Professor of Electrical Engineering and Computer
Science with the University of California at Irvine, Irvine, CA, USA, in
2005. At KAUST, he is the Founder and the Director of the Communication
and Computing Systems Laboratory. His current research interests are in the
general area of mobile communication and computing platforms, with an
emphasis on spectrally efficient, low power design.

Dr. Eltawil is the recipient of two certificates of recognition from the
United States Congress acknowledging his contributions in the area of wire-
less communication technologies. He received several awards, including the
NSF CAREER Grant supporting his research in low power computing and
communication systems. He was selected as the “Innovator of the Year” by
the Henry Samueli School of Engineering at the University of California at
Irvine, in 2021. He has been on the technical program committees and steer-
ing committees for numerous workshops, symposia, and conferences in the
areas of low power computing and wireless communication system design.
He is a Senior Member of the National Academy of Inventors, USA.

Fadi Kurdahi (Fellow, IEEE) received the B.E.
degree in electrical engineering from the American
University of Beirut, Beirut, Lebanon, in 1981, and
the Ph.D. degree from the University of Southern
California, Los Angeles, CA, USA, in 1987.

He has been a Faculty Member with the
Department of Electrical Engineering and Computer
Science, University of California at Irvine, Irvine,
CA, USA, since then, where he conducts research
in the areas of computer-aided design, high-level
synthesis, and design methodology of large-scale

systems, and serves as the Director of the Center for Embedded & Cyber-
physical Systems, comprised of world-class researchers in the general area of
embedded and cyber–physical systems.

Dr. Kurdahi received the Best Paper Award of the IEEE TRANSACTIONS

ON VERY LARGE SCALE INTEGRATION in 2002, the Best Paper Award
in 2006 at ISQED, and four other Distinguished Paper Awards at DAC,
EuroDAC, ASP-DAC, and ISQED, and also the Distinguished Alumnus Award
from his Alma Mater, the American University of Beirut, in 2008. He was the
Program Chair or the General Chair of program committees of several work-
shops, symposia, and conferences in the area of CAD, VLSI, and system
design. He served for numerous editorial boards. He is a Fellow of AAAS.

Authorized licensed use limited to: UNIST. Downloaded on January 09,2024 at 04:10:06 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

