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Specializing CGRAs for Light-Weight
Convolutional Neural Networks
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Abstract—Deep neural network (DNN) processing units, or
DPUs, are one of the most energy-efficient platforms for DNN
applications. However, designing new DPUs for every DNN model
is very costly and time consuming. In this article, we propose
an alternative approach: to specialize coarse-grained reconfig-
urable architectures (CGRAs), which are already quite capable
of delivering high performance and high energy efficiency for
compute-intensive kernels. We identify a small set of architectural
features on a baseline CGRA to enable high-performance map-
ping of depthwise convolution (DWC) and pointwise convolution
(PWC) kernels, which are the most important building block in
recent light-weight DNN models. Our experimental results using
MobileNets demonstrate that our proposed CGRA enhance-
ment can deliver 8∼18× improvement in area-delay product
(ADP) depending on layer type, over a baseline CGRA with a
state-of-the-art CGRA compiler. Moreover, our proposed CGRA
architecture can also speed up 3-D convolution with similar effi-
ciency as previous work, demonstrating the effectiveness of our
architectural features beyond depthwise separable convolution
(DSC) layers.

Index Terms—Coarse-grained reconfigurable architecture
(CGRA), convolutional neural network (CNN), depthwise sep-
arable convolution (DSC), neural processing unit.

I. INTRODUCTION

TODAY deep learning is one of the most important work-
loads to accelerate, due to its vast set of applications

across several different areas, including image, speech, video,
language, and game, just to name a few. To provide energy-
efficient acceleration beyond those of graphics processing units
(GPUs) and field-programmable gate arrays (FPGAs), sev-
eral deep neural network (DNN) processing units, or DPUs,
have been designed [1]. However, since DNNs are still rapidly
evolving, there is a certain risk in creating and committing new
DPUs.

In this article, we propose to use existing domain-specific
accelerators such as coarse-grained reconfigurable architecture
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(CGRA) with specialization for DNN acceleration. Although
the definition of CGRA is so broad as to include many dif-
ferent architectural styles [2]–[7], in this article we consider a
very common CGRA architecture family, which is built around
a 2-D array of processing elements (PEs), where each PE is a
very small processor with a limited set of instructions, and PEs
work together in a lock-step manner (e.g., [2] and [3]). CGRAs
are known to provide very high energy efficiency beyond that
of FPGAs for the right kind of applications [8], [9], and they
are also flexible enough to support many different kinds of
loops [7]. Since CGRAs are designed to support a range of
applications especially in the domain of multimedia and digi-
tal signal processing [9], [10], it is possible to utilize CGRAs
even when DNN is not used. Also CGRAs can more easily
support future application changes in DNNs, such as support-
ing leaky rectified linear unit (ReLU) [11] and adding skip
connections to an existing network.

Previous work on using CGRAs for mapping DNNs
includes new architectures [4], [5] and new compilation meth-
ods [6], which all target conventional 3-D convolution only.
However, for mobile applications, conventional 3-D convolu-
tion layers are superseded by light-weight models exploiting
depthwise separable convolution (DSC) as exemplified in
MobileNets [12], [13], ShuffleNet [14], and EfficientNets [15],
due to their significantly higher inference performance and
greatly reduced model size and computation complexity. DSC
consists of a sequence of depthwise convolution (DWC) and
pointwise convolution (PWC) layers. While PWC may account
for over 90% multiply accumulate (MAC) operations, DWC
can account for up to 40% in terms of runtime due to its
low computation-to-data-transfer ratio and difficulty of map-
ping DWC kernels. Hence, it is important to provide optimized
mapping for both DWC and PWC.

In this article, we first present our analysis showing that
CGRAs are not necessarily slower than DPUs when it comes
to machine learning workloads, if a right set of archi-
tectural features are provided. Based on our analysis, we
present three generic architecture extensions for CGRAs—
crossbar-style memory bus, dual-mode MAC unit, and operand
reuse network—along with a mapping scheme that can
greatly enhance CGRA’s performance for DSC kernels. We
also present a cross-channel optimization to ameliorate the
memory bottleneck problem in DWC stemming from its low
computation-to-data-transfer ratio.

Our experimental results using MobileNet V1 and
V2 [16], [17] demonstrate that our proposed features can
improve the efficiency of CGRA for DWC and PWC layers
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by 8× and 18×, respectively, in terms of area-delay product
(ADP) over a compiler approach [7]. Moreover, though not
explicitly optimized for, 3-D convolution on our architecture
is also quite efficient, generating competitive performance and
ADP as a CGRA [5] explicitly optimized for machine learning
algorithms including 3-D convolution.

The contributions in this article include the following. First,
we analyze the performance bottleneck of CGRAs for DNN
acceleration. Second, we propose a small set of generic archi-
tecture extensions and a mapping scheme for DWC and
PWC kernels. Third, to further increase PE utilization in
DWC we propose cross-channel optimization for DWC map-
ping. Finally, we evaluate our proposed CGRA called neural
processing-CGRA (NP-CGRA) for MobileNet models. An
earlier version of this work was presented in [18], compared
with which this version presents cross-channel optimization
as well as more details of the proposed architecture and
algorithms.

II. BACKGROUND AND RELATED WORK

A. Baseline CGRA

While CGRA is a generic term encompassing many differ-
ent architecture families [2]–[7], we consider the ADRES-like
CGRA architecture [3] as our baseline, which is one of the
most extensively studied. The main datapath of our base-
line CGRA consists of a 2-D array of PEs interconnected
with a mesh-like network, plus local memory implemented
as multibanked static random access memory (SRAM) blocks
for high on-chip bandwidth. PEs can perform arithmetic logic
unit (ALU) operations and memory operations though details
vary depending on architecture instances. A PE has a local
register file [3], [19], [20], whose size is implementation-
dependent. Some CGRAs [3], [21] assume a global register
file (GRF) as well, also called central register file, which we
include only in our extended architecture (but not in our base-
line architecture). The PE operations and inter-PE connections
are dynamically reconfigurable with no runtime reconfigura-
tion overhead, thereby supporting pipelining of loops with
Initiation Interval (II) greater than 1.

There are two kinds of memory operations on CGRAs in
the literature: addressed versus streamed load store. Addressed
load store [3] is more common among CGRA compilers as it
supports random memory access but requires explicit address
computation, which uses PE cycles. Streamed load store [2]
does not use PE cycles but requires dedicated address genera-
tion units (AGUs), which support only a limited set of access
patterns. In either case, it is possible for all connected PEs to
simultaneously read data from a memory bus when needed.

B. Application Mapping for CGRA

Loops are the main target of CGRAs, and variants of
modulo scheduling have been proposed to schedule loops
on CGRAs [8], [9], [21]–[23]. Integer linear programming
is also used to find optimal mapping for CGRAs [24].
While most CGRA scheduling algorithms deal with inner-
most loops only, methods to handle nested loops have been
proposed, based on outer-loop parallelism [25] as well as

loop flattening [26]. Conditional statements within a loop
body pose a challenge in mapping [27], [28]. To go beyond
loops and achieve high utilization of CGRAs at the appli-
cation level, a model-of-computation-based approach has
been proposed [10]. CCF [29] is a recent CGRA compiler
framework.

A compiler approach has been proposed to optimize map-
ping of convolutional neural networks (CNNs) to CGRAs [6].
It uses an existing modulo-scheduling-based compiler infras-
tructure, but aims to find the best set of loop transformations
(such as loop interchange and loop unrolling) for given layer
parameters. However, being a pure compiler approach, this
approach has limited efficiency as shown in our comparison
(see Table VI). Also it has yet to be applied to DWC lay-
ers, where the lack of interchannel data reuse is very likely
to limit its efficiency further. Outside of CNNs, compilation
strategies to map other types of networks (e.g., recurrent neural
networks [30]) have also been proposed. However, the problem
with architectures or CGRAs supporting fully connected layers
only, when it comes to mapping DWC, is that they have very
low PE utilization because there is no way to transform DWC
into matrix multiplication. DWC can only be transformed into
matrix-vector multiplication, which can utilize only one row
(or column) of PEs at most.

C. CGRA Architecture Exploration

CGRA architecture exploration has been performed
in [31] and [32], which however does not take into account
DNN workload or specific mapping schemes. While single-
cycle MAC operation is common in DPUs, it is rarely
supported on CGRAs by default. Our dual-mode MAC is con-
figurable at the application granularity to minimize the cycle
time impact of operation chaining. An extreme version of oper-
ation chaining has been proposed [33] in order to accelerate
narrow acyclic subgraphs at subcycle granularity, which how-
ever complicates datapath, control, and compiler scheduling
significantly. Our operand reuse network is an input-to-input
network, whereas operand networks in [34] and [35] generally
refer to output-to-input networks. Xiong et al. [36] proposed
a reconfigurable cache architecture (shared versus private) for
a tile-based architecture, which may be useful in supporting
DNNs with different characteristics.

D. DPU Optimization

DSC computation has been targeted by both hard DPUs [17]
and soft DPUs, but not by CGRAs. Some previous
work [4], [5] proposes CGRAs optimized for DNNs. While
these architectures may be called CGRAs as they are orga-
nized as arrays of simple PEs, they represent new architectures
designed from scratch for DNNs, rather than exploiting exist-
ing CGRAs for DNN workloads. In this work we do not
consider pruning [37] directly, but DSC already has a form
of sparsity at a coarse (i.e., channel wise) granularity [38]
while being much more amenable to hardware parallelization
than fine-grained (i.e., element-wise) sparsity. Also we do not
consider aggressive quantization, but the width of datapath is
trivially configurable at design time.
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TABLE I
THEORETICAL MIN LATENCY (MS, SUM OF SEVEN DWC LAYERS)

III. NP-CGRA ARCHITECTURE

A. CGRA Performance Bottleneck Analysis

To analyze performance bottleneck of CGRAs, we com-
pare a baseline CGRA [6] with Eyeriss [16], a reference hard
DPU, in terms of minimum theoretical latency, using seven
DWC layers from MobileNet V2, one from each bottleneck
(we see similar results with other layers as well). The result
is summarized in Table I. The baseline CGRA has 4×4 PEs
running at 500 MHz with 4-byte word size, and Eyeriss has
168 PEs running at 200 MHz with 2-byte word size.

We calculate the minimum theoretical latency simply by
taking the max of compute time (assuming 100% PE utiliza-
tion), L1 transfer time (i.e., on-chip memory access latency),
and external memory direct memory access (DMA) time, the
last of which is very small for all the cases compared, and not
shown. To estimate L1 transfer time for the baseline CGRA,
we assume all four load-store units (one per row) are 100%
utilized, and consider two scenarios: 1) the least and 2) most
data reuse of input feature map (IFM). For Eyeriss we assume
32 load-store units, and most data reuse.

Our result suggests that there is ∼8× compute time differ-
ence between the baseline CGRA and Eyeriss DPU even if we
assume 100% PE utilization, which may be harder to realize
for CGRA. The difference would grow if CGRA fails to reuse
IFM data optimally.

To fill the gap, we consider CGRA enhanced, which is the
same CGRA but with 8×8 PEs and 2-byte word size. Also,
the PEs of CGRA enhanced can do MAC operation in a sin-
gle cycle like Eyeriss (CGRA baseline can do either MUL
or ADD, not both). These changes can bring compute time
to Eyeriss level, but layer performance would still suffer due
to L1 transfer bottleneck. To make it compute-bound, CGRA
enhanced needs to have 16 load-store units, or one per row
and column, and the most-data-reuse scenario.

To summarize, our analysis suggests that CGRAs can be
made to deliver hard DPU-level performance, but need a few
major changes: single-cycle MAC, larger array size, at least
2× on-chip memory bandwidth, and very high PE utilization.
We observe similar trends with 3-D convolution layers and
PWC layers though bottleneck is not always the same. Next,
we present such an architecture.

B. Our Proposed Architecture Extension

Our driving application is PWC, which is also known as
1×1 convolution and algorithmically equivalent to matrix
multiplication. While one can use a CGRA compiler
(e.g., [29] and [39]) to compile matrix multiplication for a
CGRA, it would yield a vastly suboptimal schedule. In the
case of matrix multiplication, it is straightforward to find an
optimal schedule manually, if one is allowed to modify the

Fig. 1. Mapping PWC (or matrix mult.) to a 2×2 CGRA.

architecture slightly. The most critical architectural change is
crossbar-type memory busses, as opposed to parallel busses.

1) Crossbar-Style Memory Bus: Fig. 1 illustrates our
proposed mapping for a 2×2 CGRA. In this article when refer-
ring to a PE of a CGRA, we use a zero-based subscript to
specify its position (e.g., PE0,1 denotes the PE at the first row
and second column). Similarly, zero-based subscripts are used
for elements of a tensor (e.g., Xi,j = X[i][j]). In the example
mapping we use the first two rows of one source matrix (X)
and the first two columns of the other source matrix (W), to
generate the top-left 2×2 submatrix of the result matrix. The
result submatrix is generated on the 2×2 PEs through a series
of MAC operations (thus output stationary), as indicated by
the schedule.

To provide the four PEs with correct operands, all we need
is two horizontal busses and two vertical busses. Note that the
data on a bus can be accessed by all connected PEs, and we
add only vertical busses; horizontal busses already exist. For
instance, PE0,0 and PE0,1 can access the same X(0, i) at cycle i
(0 ≤ i ≤ 8) through a horizontal bus (called H-bus), and PE1,0
and PE1,1 can share X(1, i) through another H-bus. Similarly,
PE0,0 and PE1,0 share W(i, 0) through a vertical bus (V-bus),
and PE0,1 and PE1,1 share W(i, 1) through another V-bus. To
use all PEs for MAC operations, streamed load store is nec-
essary. This mapping achieves 100% PE utilization, each PE
performing MUL (multiplication) and ADD (addition) oper-
ations every cycle, given dual-mode MAC units, explained
next.

2) Dual-Mode MAC: In most CGRAs a PE performs only
one operation per cycle, either MUL or ADD, which is fine if
they are used intermittently. We propose configurable chain-
ing of MUL and ADD operations, which can reduce PWC
latency to half, though it may also increase cycle time. We
make chaining configurable at the application granularity, so
that higher clock speed is selected if the application does not
use MAC chaining. We call this dual-mode MAC.

Fig. 2 illustrates the datapath of our dual-mode MAC. In the
MAC mode, the multiplication and accumulation operations
are chained together to realize A× B+ C, where operands A
and B are provided through MUX A and MUX B, respectively,
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(a) (b)

Fig. 2. Datapath of our dual-mode MAC. In (b), orange lines show the
datapath for the MUL operation, green lines show the datapath for the ALU
operation. (a) MAC mode. (b) MUL/ALU mode.

Fig. 3. Proposed PE architecture (our extension shown in red).

and operand C is provided by the output register (OutReg). In
the MUL/ALU mode, on the other hand, a PE can choose
either a multiplication or an ALU operation for each cycle.
Note that even in the MAC mode, a PE can still perform the
MUL and ALU operations individually, but enabling the MAC
mode reduces the operating frequency of the entire CGRA, and
thus should be done judiciously.

3) Operand Reuse Network: To make it easy to realize spa-
tial data reuse on CGRAs we propose operand reuse network,
which enables input-to-input routing as opposed to output-to-
input routing. Consider an finite impulse response (FIR) filter
example: yi ← w0xi + w1xi+1 + w2xi+2, where i is the index
variable of a loop that is pipelined. One way to map this loop
to a CGRA is to place output variables yi to different PEs
(i.e., yi to PEi), called output stationary, and route input and
coefficients to PEs. In this scheme, the same input data is
used by multiple PEs at different cycles (e.g., x2 is used by
PE0, PE1, and PE2 at consecutive cycles). Thus, the operand
reuse network allows one of the source operands of a PE to
be passed to neighbor PEs without affecting other computation
that the PEs may be doing. As illustrated in Fig. 3, a PE has
another output called OutA, which is the output of MUX A.

While a weight stationary scheme could realize spatial data
reuse without an operand reuse network, it cannot easily utilize
more PEs than the number of weight parameters. Also, the
output stationary scheme is more amenable to 2-D extension.

Note that our extension requires additional MUXes only
(see Fig. 3), but the local register file itself is a common

Fig. 4. Extended CGRA architecture.

Fig. 5. Instruction definition.

feature, which we assume. Also our mapping schemes (see
Section IV) use data for only one cycle. Thus, we do not use
more than one entry in the local register file.

4) Other Changes: Fig. 4 shows our extended CGRA
architecture. Our CGRA architecture has vertical memory
(V-MEM), memory access units (MAUs), GRF, etc. Also, we
change the PE structure for dual-mode MAC and operand
reuse network. GRF [3], [21] is a simple register file with nine
16-bit registers, and has the following ports: one 4-bit index
port (called index), one 16-bit read data port (GRF_rdata), and
one 144-bit write data port (GRF_wdata). The GRF_wdata
port is connected to the weight buffer and the GRF_rdata port
is connected to all the PEs (one-to-all connection) through
MUX B (see also Fig. 3).

The crossbar-style memory bus implies that the local
memory should be divided into two, V-MEM connected to
V-bus and H-MEM connected to H-bus. We set the combined
size of V-MEM and H-MEM equal to that of the baseline
CGRA’s local memory. Also, AGUs are needed for streamed
load store. In addition, for efficient mapping of DWC with
stride of 1, our architecture includes a small single-port GRF,
which is used to broadcast DWC weights to all PEs. The index
for the GRF is given in the configuration. GRF can be filled
either by DMA or through a dedicated buffer, called weight
buffer, which can be very small as it is used for DWC only.

C. Instruction Format and Global Configuration

Fig. 5 illustrates our instruction (also called context in [2])
format to accommodate the architectural changes, where the
updated fields are shown in red. We use the 32-bit instruction
format from the CCF framework [29] as the baseline. The
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TABLE II
PARAMETERS AND VARIABLES

Fig. 6. DWC kernel (a bias term is omitted).

RegA and RegB fields indicate the register indices for MUX
A and MUX B, respectively (see Fig. 4). We assume four local
registers per PE, following previous work [7], [20]. WrEn is
write-enable for the private register file whereas WrReg is the
register index for the register write operation. WrSrc selects
the data to write between the MAC output and a neighbor PE’s
OutA (i.e., the control signal for the new 2-to-1 MUX), while
InOpnd determines which neighbor’s OutA passes the 4-to-1
MUX. address bus (AB) is the bit indicating to send a read
request to on-chip memory (the output of the PE acts as the
address, thus supporting addressed access), and data bus (DB)
is the write request bit indicating that the PE output is the write
data. In total, our instruction requires four more bits compared
to that of the baseline PE, resulting in 36-bit instructions. In the
configuration memory, four more bits are needed for the index
of the GRF, plus 2 bits for H- and V-memory read request.
Thus, the total number of bits of the configuration is 36 ·
Nr · Nc + 6, where Nr and Nc are the number of rows and of
columns of a CGRA PE array.

IV. APPLICATION MAPPING FOR NP-CGRA: DWC CASE

We now present our application mapping for DWC kernels
(PWC mapping is already outlined in Section III-B1). Table II
lists parameters and variables used. First we present a general
method that works for any stride, then an optimized version
for S = 1, which is most common. While in this article we
mainly describe PE scheduling and data routing, which is cru-
cial for maximizing PE utilization and minimizing memory
access, our implementation and evaluation results include com-
plete mapping including data layout and AGU algorithms (see
Section V).

A. Depthwise Convolution

Fig. 6 illustrates a DWC kernel. Contrary to 3-D convo-
lution, DWC requires the same number of channels (Ni, also

(a)

(b)

Fig. 7. Mapping DWC on a 2×2 CGRA (K = 3 and S = 2). (a) IFM data
(shown in gray is an input tile). (b) Schedule.

known as depth) in all of IFM, output feature map (OFM), and
weight tensors. Also, DWC computes each output channel (Y)
by a 2-D convolution between one input channel (X) and one
weight channel (W).

B. Tiles and Blocks

A common technique to maximize data reuse in a multi-
nested loop is to divide the work into blocks such that the
entire input and output data for a block of computation can
fit in the local memory, which is commonly known as loop
blocking (or tiling) transformation. The same transformation
can also be used to specify parallelism employed by array
processors [40]. To distinguish the two different use cases, we
use the term block to refer to the first usage, and tile for the
second. In other words, a block is the amount of work that can
be done using only the local data. A tile is the amount of work
that is done simultaneously by a CGRA; therefore, tile size is
determined by the CGRA size. Block size is determined by
the local memory size, and is usually a multiple of the tile
size.

C. Depthwise Convolution With Arbitrary Stride

Consider mapping DWC with K = 3 to a 2×2 CGRA.
Here, we parallelize the computation of one channel across
the PE array. The following equations reveal the terms needed
to compute the first 2×2 output, an output tile:

y0,0 = w0,0x0,0 + w0,1x0,1 + w0,2x0,2 + w1,0x1,0 + · · · + w2,2x2,2

y0,1 = w0,0x0,2 + w0,1x0,3 + w0,2x0,4 + w1,0x1,2 + · · · + w2,2x2,4

y1,0 = w0,0x2,0 + w0,1x2,1 + w0,2x2,2 + w1,0x3,0 + · · · + w2,2x4,2

y1,1 = w0,0x2,2 + w0,1x2,3 + w0,2x2,4 + w1,0x3,2 + · · · + w2,2x4,4.

The input tile, which is the set of IFM data needed to
produce an output tile, is the gray-filled rectangle in Fig. 7(a).

Fig. 7(b) illustrates our proposed schedule. For instance, to
compute the top row of the output tile, the top three rows of
the input tile are needed, which are given sequentially through
an H-bus. Each PE performs MAC operations when they see
the corresponding input data on the H-bus, which simplifies
schedule. One can see that our schedule achieves maximal data
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(a)

(b)

(c)

(d)

Fig. 8. Schedule and data movement for DWC (S = 1). (a) Weight processing
order. (b) Phase definition. (c) How IFM data is accessed. (d) Data reuse and
loading.

reuse within each row, since the data needed for each row
is presented only once. Weight parameters can be provided
through V-busses because each column of PEs use the same
weight parameters every cycle.

D. Depthwise Convolution With S = 1

Consider an example where K = 3 and the CGRA size
is 2×2. Again we handle one channel at a time. Similar to
the general version, our scheme is output stationary such that
after a certain number of cycles the 2×2 PE array will contain
the data for the first 2×2 output. The key problem is how to
feed all the PEs with necessary input/weight data every cycle
without oversubscribing memory access resources.

Fig. 8 illustrates our solution. During the initial Nc−1 cycles
(called prologue), IFM data [the top-left Nr × (Nc − 1) sub-
matrix] is loaded through H-busses into all PEs except the
first column. For the next K cycles, the PE array processes
the first row of the weight matrix using IFM data partially
reused from the previous cycle (from the east-side PEs) and
partially loaded from local memory (for the easternmost col-
umn), which is called expand east (EE) phase. In the next
cycle, the PE array processes W1,2, which requires reusing
IFM data from the south-side PEs and the southernmost PEs
to load new IFM data, called the shift south (SS) phase. In the
next K − 1 cycles, the PE array processes the remaining ele-
ments of the second row of weight, which is similar to the EE
phase except that we expand west (EW), thus called EW. This
pattern of EE-SS-EW-SS is repeated until we finish process-
ing all weight. In this schedule all PEs use the same weight
element, which is provided by GRF, indexed by the CGRA
controller.

This schedule takes Nc−1+K2 cycles, including prologue,
except for initial memory streaming delay and final cycles for
writing output data back to local memory (see Fig. 10 for
the complete schedule). The data layout and AGU logic to
support the above access pattern are a little complicated due
to the SS phase. An alternative would be to load data for
the southernmost PEs through H-bus over Nc cycles, which

(a)

(b)

Fig. 9. Data access patterns in DWC. (a) Weight data access pattern. (b) IFM
data access pattern.

increases latency significantly. We place the full IFM data in
H-MEM and the part needed for the SS phases in V-MEM.
Loading data to both H-MEM and V-MEM is done by DMA.

Fig. 9 illustrates how data reuse can help achieve high
performance in DWC. In this example, the DWC weight
matrix is 3× 3 matrix (for one channel), stride is one, and
the CGRA size is 2 × 2. Only one channel is considered in
this mapping, which is repeated for all channels to complete
DWC.

To achieve 100% PE utilization, we must generate 2×2 out-
put in 9 cycles (= K2 for our example), assuming each PE
can do one MAC operation per cycle. Fig. 9(b) shows how to
achieve that, with details such as which elements of the IFM
(indicated by red boxes) and which weight element are used
by the CGRA in each cycle. Moreover, only the gray elements
are loaded from the memory and the white IFM elements in
red boxes are received from neighbor PEs and thus reused,
which is crucial to achieving optimal mapping with limited
memory bandwidth. Most of the memory accesses can be ful-
filled by H-busses, with a few exceptions; T = 6 (or T = 9)
can be done in a single cycle by utilizing V-busses, and step 1
takes two cycles but can be done as part of initialization and
potentially merged with other operations.

Fig. 10 is a cycle-by-cycle diagram showing how data flows
among PEs and on-chip memories for the same example.
Cycles 0–1 are due to the initial data streaming delay while
cycle 1 is prologue. One can note that the memory access pat-
tern is the same for the cycles belonging to the same phase
(e.g., cycles 3–5, 10 and 11). The diagram confirms that this
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TABLE III
PERFORMANCE ANALYSIS

Fig. 10. Detailed dataflow of DWC (S = 1) mapped to 2×2 CGRA.

schedule takes ten cycles excluding the initial and final delays
due to memory access.

E. Performance Analysis

Table III summarizes latency of each mapping, where λ

is used to capture constant delay due to initial/final delay
in pipelining. Note that the analytical performance models
are provided only to characterize our mapping scheme. Our
performance evaluation is based on cycle-accurate simulation
(see Section VI-A).

PWC: PWC mapping multiplies Nw × Ni IFM matrix with
Ni×No weight matrix Nh times. In order to multiply IFM and

(a)

(b)

Fig. 11. PWC IFM data in external memory and H-MEM. (a) Logical view
of IFM data, and H-MEM bank assignment. (b) Partitioning of IFM data into
banks, and IFM data layout.

weight matrix, these matrix should be divided into BrNr ×Ni

and Ni×BcNc blocks. The number of blocks is �Nw/(BrNr)�×
�No/(BcNc)�, each of which takes BrBcT cycles, producing the
layer latency.

DWC: DWC General (i.e., arbitrary stride) mapping divides
IFM data by block size per channel. To compute one channel,
�Nh/(BrNr)�×�Nw/(BcNc)� blocks are generated. When pro-
cessing one tile, ((Nc − 1) · S + K) IFM data is used, along
with 1×K weight data, which is repeated K times. Thus, the
tile latency is K · ((Nc− 1) · S+K)+ λ. DWC General shares
the layer latency formula with DWC Optimized (i.e., S = 1),
though tile latency is different.

V. DATA LAYOUT AND ADDRESS GENERATION

We now present our mapping methods for PWC and DWC
kernels in more detail, focusing on data movement within the
PE array and between PEs and memories.

A. Pointwise Convolution

Fig. 11(a) illustrates how IFM data can be stored in the
external memory. To move this block of data to the local
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memory (H-MEM), we first assign consecutive rows of the
IFM data into different banks as illustrated in Fig. 11(b). Then
the rows assigned to the same bank are combined together in a
sequential manner and stored into the local memory banks as
illustrated in the IFM data layout. This ensures that all the IFM
data can be fed to correct PEs without ceasing. Weight data are
stored in the V-MEM local memory in a similar fashion, with
one difference that weight data need to be partitioned along
the column direction, requiring matrix transpose or reshap-
ing. However, since weight data are constant during inference,
any preprocessing, if needed, can be done in advance before
runtime.

To utilize all PEs for MAC operations, we delegate address
generation to AGUs in MAUs. For PWC, generating addresses
to access V-MEM and H-MEM is straightforward. The
V-MEM address is given as follows:

addr = (AIDc � Na) |
(
tidc · Ni + tcycle

)
(1)

where � and | represent the bitwise left shift and bitwise OR
operations (same as in C). This address value, addr, can be easily
computed by an AGU from tcycle variable, and is shared among
all AGUs. The H-MEM address should distinguish between
load and store, since H-MEM is used for both OFM and IFM.
The detailed algorithms to generate memory addresses for our
PWC and DWC mappings are given in the Appendix.

B. Depthwise Convolution With Arbitrary Stride

The data layout to support the proposed mapping is illus-
trated in Fig. 12. First the rows of the IFM data (which can
be regarded as 2-D since we consider only one channel at a
time) are mapped to banks as Fig. 12(a), where the idea is to
map each set of continuous S rows starting from the top to the
next bank. Second, all the rows mapped to a bank are com-
bined and placed into the bank in a sequential manner [see
Fig. 12(b)].

Note that contrary to PWC, the data layout for DWC does
not place all the IFM data needed for one row of CGRA PEs
into one bank. But this does not cause a problem, since 1) there
is a crossbar switch between the set of H-AGUs and the set
of memory banks and 2) there is no bank conflict (i.e., all H-
AGUs access different memory banks all the time). To show
the absence of bank conflict, it suffices to see that the second
H-AGU always accesses an input row that is S-rows below
what the first H-AGU accesses, and so on.

The weight parameters needed by PEs are uniform verti-
cally but not uniform horizontally, which suggests that using
V-busses is beneficial. Thus, we store weight parameters in
V-MEM (duplicated in all banks) and use V-busses to provide
weight parameters for PEs as in PWC mapping.

The address generated by V-AGUs is: addr = (AIDc �
Na)|(twcycle − AIDc · S + twrap · K). Here, twrap tracks which
IFM row the CGRA is currently processing, or the row number
of weight parameters accessed by PEs.

C. Depthwise Convolution With S = 1

DWC with S = 1 uses the same method for storing data
in H-MEM. But this method cannot be used for V-MEM

(a)

(b)

Fig. 12. DWC with arbitrary stride IFM data in external memory and
H-MEM. (a) Logical view of IFM data, and H-MEM bank assignment.
(b) Partitioning of IFM data into banks, and IFM data layout.

because V-MEM stores only the data required for the SS phase.
The data layout to support the proposed mapping is illus-
trated in Fig. 13(a). Since they are separated by the interval
of the CGRA column size, they store in V-MEM based on
this interval. For example, X3,2, X3,5, and X3,8 are stored in
Bank 0. Fig. 13 shows the data layout in the external memory
and partial IFM data partitioned into banks and laid out on
V-MEM. Weight data for DWC with S = 1 is stored in GRF.

D. Cross-Channel Optimization for DWC

DWC kernels have relatively high data-transfer-to-
computation ratio, which can cause performance degradation
due to some portion of L2 data transfer latency not hidden
behind the CGRA’s computation time. Often this problem
is caused not by the lack of bandwidth with the external
memory, but rather access latency, which is exacerbated
when the unit of access is small. This is what happens in
our DWC mapping. Our DWC mapping algorithm discussed
so far processes one channel at a time; i.e., our CGRA does
the computation for one channel and the loading/storing of
necessary data before moving on to the next channel. In
such a mapping we find that it takes more time to transfer
data between the external memory, which is often dynamic
random access memory (DRAM), and local memories
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(a)

(b)

Fig. 13. IFM data in external memory and in V-MEM for DWC with
stride 1 (shown in red is a tile). (a) Logical view of IFM data and V-MEM
bank assignment. (b) Partial IFM data partitioned into banks, and laid out on
V-MEM.

(H- and V-memories) compared with computation time, if the
height and width of IFM are small.

To solve this problem we change the mapping such that
multiple channels are processed continuously. It is very similar
to prefetching data for the next channel, which can ameliorate
the memory bottleneck problem for DWC layers at the expense
of higher on-chip memory usage. The memory requirement for
cross-channel optimization is given as follows:

2 · (N′h · N′w + Nh · Nw
) ≤ H-MEM size (2)

where N′h and N′w are the height and width of IFM. The
requirement states that the (on-chip) H-memory size should
have enough to contain two channels’ worth of data for DWC
mapping. Our cross-channel optimization enables the prefetch-
ing of the next channel’s data while the PE array is doing
computation for the current channel.

VI. EXPERIMENTS

A. Experimental Setup

To evaluate the effectiveness of our proposed architecture,
we use MobileNets and compare against previous CGRA
approaches as well as other DPUs. However, since MobileNet
results are not reported by previous CGRA architectures, we
also map AlexNet convolution layers to NP-CGRA and com-
pare our result with those of previous CGRAs and DPUs as
reported in the literature.

Our main comparison metric is inference throughput
(frames/s) and cost efficiency (in ADP). We have developed a
cycle-accurate simulator and also created a register transfer
level (RTL) design for the baseline CGRA and our NP-
CGRA, including PE array, AGUs, GRF, and the CGRA con-
troller, which we have validated in terms of functionality and

TABLE IV
NP-CGRA SPECIFICATIONS

cycle-level behavior. For area and power estimation we have
synthesized RTL designs using Synopsys Design Compiler
with Samsung 65 nm standard-cell library. The area and power
of on-chip memories are estimated using Cacti 7.0 [41].

Table IV summarizes the specification of NP-CGRA. The
off-chip memory bandwidth is set to 12.5 GB/s as in SDT-
CGRA [5]. H-MEM and V-MEM have the same size, which
is set to NiK2 × Nr words, to make mapping AlexNet easier,
although smaller memory sizes can also be accommodated by
our mapping strategy. The number of configuration bits per
cycle is 2312 = 36 × 64 + 8; each PE needs four more bits
than the baseline PE due to increased input MUX sizes (1 bit)
and the operand reuse network’s MUXes (3 bits), and eight
more bits globally for GRF index and to control streamed load
store. The number of contexts supported in our implementation
is 32, which gives the total configuration memory size as listed
in Table IV. weight buffer, which is optional, is set to hold 64
copies of GRF contents.

B. Depthwise Separable Convolution Results

We use the first three layers right after the first standard
convolution (i.e., 3-D convolution) layer in MobileNet V1 [12]
(width multiplier 1, resolution 224). We compare three cases:

1) Baseline+CCF: Baseline CGRA with CCF
compiler [29].

2) Matmul DWC: NP-CGRA + Matrix multiplication-
based DWC.

3) Our Mapping: NP-CGRA + Our mapping scheme for
PWC/DWC.

For this experiment only, the CGRA size is set to 4×4 due
to CCF compilation flow (for all three cases). The clock speed
is 500 MHz for both the baseline and NP-CGRA.

The first case represents the state-of-the-art CGRA solution.
For CCF, we apply loop pipelining to the loop level with the
largest trip count, which is image height (Nh). The second case
uses our mapping scheme for PWC only. DWC is converted
into matrix multiplication by im2col, essentially using only
one column of a CGRA, to which the K2 dimension is mapped.
The im2col time is not taken into the account in this part.

Table V summarizes the result. The architectural factor is
about 2×, since our NP-CGRA has 2× faster arithmetic and
memory operation rate than the baseline CGRA. So the large
performance difference is attributed to mapping. A close look
at the generated code has revealed that CCF generates extra
one MUL and three ADD ops for every MAC operation (one
MUL and one ADD) in the program, which is due to address
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TABLE V
MOBILENET V1 DSC RESULT (MD: MATMUL DWC)

(a) (b)

Fig. 14. Area comparison. (a) Core area comparison. (b) Total area
comparison.

generation as it uses addressed load store. Also the sched-
uled code has some empty slots, which further lowers the
PE utilization. Overall, the mapping efficiency difference is
about 10× in the case of PWC for the relatively small CGRA
size. We expect the difference to increase for larger CGRA
sizes. All in all, our NP-CGRA generates over 20× speed up
and close to 18× ADP reduction for PWC over the baseline
(our architecture has 20% larger total area including SRAM
memory; synthesis result is discussed in Section VI-C).

For DWC our NP-CGRA continues to deliver better
performance and ADP than the baseline. While the utilization
of the Matmul DWC case is around 16% (and cannot exceed
25% using only one CGRA column), our DWC mapping gen-
erates about 1.75∼3× higher performance and efficiency than
the matmul-based mapping. Note that DWC (S = 2) layers are
the rarest in MobileNets while PWC accounts for the major-
ity of MAC operations, which may justify relatively low effort
made in optimizing for the former case.

C. Hardware Overhead Evaluation

Fig. 14 compares the synthesized areas of two 8×8 CGRAs
at the target frequency of 500 MHz (timing met in both). The
largest area increase in the core area comes from AGUs, which
may be justified given the so many freed PEs by AGUs. The
common logic and variables used by AGUs such as iterators
are implemented in the controller, shown in the graph. The
increase in the PE array is modest (the baseline architecture
has a homogeneous operation set, meaning all PEs support
MUL and ADD operations). On the other hand, the total area
is dominated by SRAM memories, putting the overall area
overhead of NP-CGRA at 20%.

While we use the same clock frequency for both CGRAs in
our ADP evaluation, our dual-mode MAC does increase the
critical path delay. When driven for maximum speed, the crit-
ical path delay is increased from 1.23 (baseline) to 1.65 ns
(NP-CGRA), which is due to the difference between MAC
delay (1.08 ns) and MUL delay (0.68 ns). Considering the
potential 2× increase in computation throughput, the 34%

increase in cycle time seems justifiable. On the other hand,
MAC operations are not utilized by current CGRA compilers
(e.g., CCF), which can limit applicability.

D. Comparison With Previous Work Using MobileNet

No previous CGRA reports MobileNet or DSC
performance. A few MobileNet accelerators for FPGAs
exist but the lack of reported standard-cell result makes it
difficult to compare with them directly. Eyeriss v2 [17] targets
MobileNet V1 with width multiplier 0.5 and resolution 128,
which we compare in Table VI. Eyeriss v2 has much more
capable PEs than NP-CGRA, performing two MAC ops per
cycle, which partially explains higher absolute performance
compared with NP-CGRA. On the other hand, NP-CGRA is
much smaller. Also Eyeriss v2 uses 8-bit data width, so we
convert the gate count to 16-bit equivalent by multiplying
it by 2, which we believe is conservative. Overall, the
NP-CGRA turns out to have much higher cost efficiency
compared with Eyeriss v2. Even if we assume the same clock
speed for both architectures, NP-CGRA can deliver over 2×
higher performance per logic area.

We have also compared energy efficiency. The energy num-
bers for the previous work were obtained from their respective
papers. Our energy estimation includes both dynamic and
leakage power of the CGRA core as well as all the on-
chip memories. Similar to the area breakdown of Fig. 14, the
configuration memory accounts for about 31% of the total
energy consumption regardless of the layer type, while the
CGRA core accounts for about 25% (in the case of PWC
and DWC with S = 2) ∼ 45% (DWC with S = 1), with
the rest being mostly due to data memories. We find that
for MobileNet V1, NP-CGRA consumes about 27% higher
energy than Eyeriss v2. One reason for this is the higher clock
frequency of NP-CGRA, but the use of configuration memory
also makes NP-CGRA not as energy-efficient as DPU hard-
ware. Also note that in practice CGRAs are used with a main
processor, which can further add to its energy overhead.

E. AlexNet Convolution Layer Results

While our architecture is not explicitly optimized for 3-D
convolution, we map AlexNet convolution layers to NP-
CGRA, for quantitative comparisons with previous CGRA
results as well as to see broader applications of our extensions
outside DSC layers (see Table VI). For NP-CGRA, we con-
vert convolution into matrix multiplication using im2col and
use PWC mapping. The im2col part is assumed to be done
on the ARMv8 processor on Xilinx Ultra96-V2 board, which
we have used to measure the runtime of im2col functions.
The auto-tuning approach [6] applies various combinations of
loop transformations (e.g., interchange and unrolling) to find
the best loop nest for CGRA mapping, which is done by an in-
house CGRA compiler. SDT-CGRA [5] is a novel architecture
optimized for machine learning algorithms including CNNs.
Eyeriss [16] and Eyeriss v2 [17] are hard DPUs optimized for
CNNs.

As expected, the auto-tuning approach has the lowest
performance and efficiency, attributed to poor scheduling.
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TABLE VI
COMPARISON WITH PREVIOUS CGRA AND DPU IMPLEMENTATIONS

Fig. 15. PE utilization for different array sizes.

Eyeriss and Eyeriss v2 are among the fastest. Our NP-CGRA
result does not include the area of the ARM processor, but it
is quite competitive with other CGRA or DPU architectures
in terms of both speed and cost efficiency, demonstrating the
efficacy of our extensions beyond DSC layers.

F. Effect of CGRA Size

Fig. 15 shows PE utilization of each mapping for different
CGRA sizes. For this study we use the first three layers after
the first 3-D convolution layer in MobileNet V1, which include
one PWC and two DWC layers. We observe that PWC map-
ping generates the highest PE utilization ranging 73%–91%,
which is good because PWC accounts for the most MAC
operations in light-weight CNNs. The main reason why PWC
mapping shows less than 100% utilization is the output data
writeback phase, which takes Nr or Nc cycles after each PWC
kernel execution, as well as fragmentation, which occurs due
to boundary tiles being less than the CGRA size. The general
trend of decreasing PE utilization as the PE array size increases
is due to the fragmentation, which also explains why 4×4 and
8×8 arrays have higher utilization than smaller arrays in PWC.

The next common layer type is DWC with stride 1, which
can be mapped with 25%–68% PE utilization, substantially
higher than that of DWC mapping with arbitrary stride. One
factor that contributes to the lower PE utilization in DWC
mappings is the initial and final cycles due to memory access
and the prologue phase. These overheads increase in propor-
tion to Nr or Nc, which explains the rather steep reduction

(a)

(b)

Fig. 16. Effect of cross-channel optimization (MobileNet V1).
(a) Runtime before cross-channel optimization. (b) Runtime after cross-
channel optimization

in utilization for larger arrays. Finally, DWC mappings with
arbitrary stride yield 15%–50% PE utilization when stride is
2. In this case, data is reused within a row only, which is the
main reason for lower utilization.

G. Effect of Cross-Channel Optimization

To evaluate the effect of cross-channel optimization we use
MobileNet V1. Fig. 16(a) shows the cycle counts for each
layer without cross-channel optimization. The cycle count is
broken down into two parts. Computation time is the num-
ber of cycles that it takes for a layer if DMA is ignored
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Algorithm 1 Generate H-MEM Addresses for PWC
1: if tcycle < Nc then
2: // generate load address
3: addr← tidr · Ni + tcycle + addrIFM
4: else
5: // generate store address
6: addr← tidc · Nc + tidr · Nc · Bc + tcycle − Ni + addrOFM
7: end if
8: // prepend bank index
9: return (AIDr � Na) | addr

(i.e., input data is already in the on-chip memory, and out-
put data need not be stored in the off-chip memory). DMA
time is the difference between the actual layer latency (which
is the total number of cycles for a layer) and computa-
tion time. We can see that DMA time is much higher in
DWC layers, and particularly high in later DWC layers. This
is because the height and width of IFM tensors decrease
while the number of channels increases in later layers. In
other words, DMAs get smaller in size but much more fre-
quent as we go toward later layers, which can exacerbate the
memory bottleneck problem. Fig. 16(b) shows the result after
our cross-channel optimization. The computation time is not
affected, nor is the PWC result, but only the DMA time in
DWC layers is improved dramatically. As a result of cross-
channel optimization, the latency of MobileNet V1 is reduced
by 44.7% or its speed improved by 81%, demonstrating the
effectiveness of our optimization.

VII. CONCLUSION

The fast evolution of DNNs poses both opportunities and
challenges for hardware acceleration. Too specific to an appli-
cation, and it can quickly become obsolete; too generic, and
it may not be competitive enough. To solve this dilemma
we proposed in this article to use CGRA with a small set
of generic architecture extensions, which we have shown can
greatly improve performance and efficiency for emerging light-
weight DNN models. We also demonstrated that our proposed
features are useful beyond DSC. As future work we plan
to apply our architecture, NP-CGRA, to accelerating other
machine learning algorithms and digital filters, many of which
are based on matrix multiplication and convolution. Automatic
generation of efficient code that exploits the new architectural
features is also future work.

APPENDIX

A. AGU Algorithms

1) PWC: Algorithm 1 shows the algorithm to generate
H-MEM addresses for PWC mapping. See Table II for the def-
inition of symbols. The operators � and | denote bit-shift left
and bit concatenation, respectively, as in the C programming
language.

The algorithm is self-explanatory. Whether we generate load
versus store address can be determined by comparing tcycle
with Nc. The constants addrIFM and addrOFM represent the
start address of IFM and of OFM data, respectively.

2) DWC With Arbitrary Stride: Algorithm 2 gives the
algorithm to generate the H-MEM addresses for our DWC

Algorithm 2 Generate H-MEM Addresses for DWC With
Arbitrary Stride
1: blockw ← S · (Bc · Nc − 1)+ K
2: if twrap < K then
3: // generate load bank index and address
4: over_bank← ((twrap/S)+ AIDr)/Nr
5: //generate load bank index
6: banknumber ← ((twrap/S)+ AIDr)%Nr
7: addr← tidr ·blockw ·S+ tidc ·S ·Nc+over_bank ·blockw ·S+ twcycle+

(twrap%S) · blockw
8: else
9: // generate store bank index and address

10: banknumber ← AIDr
11: addr← AIDc · Nc + tidr · Nc · Bc + twcycle − 1+ addrOFM
12: end if
13: return (banknumber � Na) | addr

Algorithm 3 Generate H-MEM Addresses for DWC With
S = 1
1: blockw ← 2+ Bc · Nc
2: tile_latency← 1+ 2 · Nc + K2

3: // generate bank index
4: if twrap ≥ K then
5: banknumber ← AIDr
6: else
7: over_bank← (twrap + AIDr)/Nr
8: //generate load bank index
9: banknumber ← (twrap + AIDr)%Nr

10: end if
11: if twrap ≥ K then
12: // generate store address
13: addr← tidc ·Nc+tidr ·Nc ·Bc+Nc+cycle−tile_latency+1+addrOFM
14: else
15: std_addr← tidc · Nc + tidr · blockw
16: // generate load address
17: if twrap = 0 then
18: // Kernel 0 row
19: addr← std_addr+ twcycle + over_bank ∗ blockw
20: else
21: if twrap%2 = 1 then
22: // Kernel odd row
23: addr← std_addr+ K − 1− twcycle + over_bank · blockw
24: else
25: // Kernel even row
26: addr← std_addr+ Nc − 1+ twcycle + over_bank · blockw
27: end if
28: end if
29: end if
30: return (banknumber � Na) | addr

mapping with arbitrary stride as explained in Section V-B.
Note that the division operator is integer division (i.e., the
result is truncated), and % denotes the modulo operator.

3) DWC With Stride of One: Algorithm 3 gives the algo-
rithm to generate the H-MEM addresses for DWC mapping
with S = 1 as explained in Section V-C.
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