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Abstract

In this work, we address the problem of scene-aware 3D hu-
man avatar generation based on human-scene interactions.
In particular, we pay attention to the fact that physical con-
tact between a 3D human and a scene (i.e., physical human-
scene interactions) requires a geometrical alignment to gen-
erate natural 3D human avatar. Motivated by this fact, we
present a new 3D human generation framework that consid-
ers geometric alignment on potential contact areas between
3D human avatars and their surroundings. In addition, we in-
troduce a compact yet effective human pose classifier that
classifies the human pose and provides potential contact ar-
eas of the 3D human avatar. It allows us to adaptively use
geometric alignment loss according to the classified human
pose. Compared to state-of-the-art method, our method can
generate physically and semantically plausible 3D humans
that interact naturally with 3D scenes without additional post-
processing. In our evaluations, we achieve the improvements
with more plausible interactions and more variety of poses
than prior research in qualitative and quantitative analysis.
Project page: https://bupyeonghealer.github.io/phin/.

1 Introduction
Visual understanding of humans, from 2D human keypoint
detection (Li et al. 2019a; Khirodkar et al. 2021; Jin et al.
2020), skeleton estimation (Jiang, Camgoz, and Bowden
2021) to 3D human mesh estimation (Kanazawa et al. 2018),
has been actively studied in both academic and industry
fields for several decades. With the advent of deep learning,
visual understanding of humans has shown promising results
and its applicability has been proved by interests of AR/VR
companies such as Meta. In particular, generating a 3D hu-
man avatar1 in 3D space has started to gain a lot of attention
as a medium describing a human and communicating with
others in the coming metaverse era. To generate a natural
3D human avatar in a given scene, it is essential to consider
scene context information as well as the kinematically feasi-
ble pose of 3D human avatars. Based on parametric human
model (Loper et al. 2015), recent works on 3D human gen-
eration use scene context information, such as semantic or

*Corresponding author.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1We will interchangeably use terms such as 3D human avatar,
human mesh, and human body to describe 3D humans in a scene.

Figure 1: Examples of the proposed pose-guided 3D human
generation. We visualize such geometric interactions using
different colors; blue color indicates a part of the 3D human
avatar that interacts with the scene, and red color denotes the
opposite case. Green and purple boxes are enlarged view of
scenes and human avatars to show interaction.

depth maps of a scene (Zhang et al. 2020a,b). These studies
also exploit physical rules to avoid collision and interpene-
tration with scene objects, which enables to generate plausi-
ble 3D human avatars with the scene. Inspired by this fact,
we pay attention to physical contacts between 3D human
avatars given a scene. Specifically, when we interact with
various objects in indoor environments, contact areas of 3D
human and scene objects are geometrically aligned. In addi-
tion, the contact areas of the human body in contact with the
environment change depending on the posture of the 3D hu-
man. For example, when we sit on a chair, our thigh mainly
contacts the chair or when we lie on a bed, the back of our
body in contact with the bed. We observed that this geomet-
rically aligned physical contact could be a clue for natural
3D human generation given a scene.

Based on these observation, we propose a pose-guided 3D
human generation framework that considers geometrically
aligned physical contacts between 3D human avatars and
scene context information (see Fig. 1). Concretely, we lever-
age two types of geometric alignments; close distance and
surface normal alignment on potential contact areas between
3D human avatars and given a scene. It encourages mak-
ing physically feasible contacts of a 3D human avatar with
a scene. In addition, we introduce a compact yet effective
pose classifier that classifies the pose of the generated hu-
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man avatar and provides potential contact areas of the human
body parts. Thus, depending on the pose of the 3D human
avatars, we can adaptively enforce the geometric alignments
within the conditional Variational Autoencoder (cVAE)-
based 3D human generation framework (Zhang et al. 2020b)
in the form of geometric alignment loss. We show that our
method can generate physically and semantically plausible
3D humans that interact naturally with 3D scenes without
additional post-processing. In particular, our method results
in improvements that have higher diversity metrics, gain
physical plausibility metrics and more suitably interact with
surroundings in quantitative experiments. In summary, our
main contributions are as follows:
• We propose a pose-guided 3D human generation frame-

work conditioned on a scene. Through the pose-guided
model, generated 3D human avatars are geometrically
aligned with scenes in terms of feasible contacts.

• We present a compact yet effective pose classifier to clas-
sify generated human avatar poses. According to the clas-
sified pose of the human avatar, we adaptively concen-
trate on different potential contact areas between 3D hu-
man avatars and 3D scenes for geometric alignment.

• We propose a geometric alignment loss, which jointly
leverages the potential contact area between 3D human
avatars and a given scene. It enables close distance and
surface normal alignment on potential contact areas.

2 Related Work
Human Affordance Prediction. Affordance is defined as
the relationship between human and object, more broadly,
scene. It means that the possible set of actions that an actor
can perform should concern surrounding environment (Has-
sanin, Khan, and Tahtali 2018, 2021). Affordance can be
considered in various tasks that involve the visual under-
standing of the human, such as hand pose estimation (Grady
et al. 2021; Corona et al. 2020; Williams and Mahapatra
2019), 3D human avatar generation (Li et al. 2019b; Zhang
et al. 2020a; Hassan et al. 2021), 3D pose generation (Wang
et al. 2019), motion prediction (Huang et al. 2022; Cao et al.
2020; Wang et al. 2021), object affordance prediction (Do,
Nguyen, and Reid 2018; Kim and Sukhatme 2014; Fang
et al. 2018), and shape estimation (Clever et al. 2020).

We aim to answer the question of how a 3D human avatar
can be placed appropriately in a 3D indoor scene while rec-
ognizing its surroundings. We believe that when humans in-
teract with scenes, surface normal and distance are related
to placing a human geometrically correctly.
Scene-Aware Human Mesh Generation. The development
of methods to populate 3D human avatars in 3D scenes has
received considerable attention in recent years (Kim et al.
2014; Li et al. 2019b; Zhang et al. 2020b; Wang et al. 2021;
Hassan et al. 2021) Putting humans into feasible locations
in a scene is a complicated task. Various body poses should
be considered, and humans should be placed without colli-
sion with the surroundings. Li et al. (Li et al. 2019b) pro-
pose a 3D pose generative model to place 3D body skele-
tons into the input scene represented by depth image, RGB,
or RGB-D. Zhang et al. (Zhang et al. 2020a) use Basis

Point Sets (BPS) (Prokudin, Lassner, and Romero 2019)
to encode the relationship between human and objects a
given 3D scene. Hassan et al. (Hassan et al. 2021) pre-
dict which part of the body is in contact with an object
given a fixed posture. In particular, Zhang et al. (Zhang
et al. 2020b), our baseline, bring up the idea that placing
3D people in scenes will be useful for numerous applica-
tions such as securing training data for human pose esti-
mation, video games, and VR/AR. They use the Chamfer
distance between generated human mesh and scene to prop-
erly induce interaction between them. Unfortunately, only
distance-based human-scene interaction sometimes causes
undesirable effects, e.g., initially generated 3D avatar on the
wrong side of a scene, occurring collision when there are
small parts of the body such as feet or hands, or not sitting
upright in a chair. To avoid those unexpected effects, they
perform additional post-processing. For the purpose of al-
leviating this limitation, we exploit distance measurement
with normal alignment as geometric alignment. In addition,
we propose a pose-guided network focused on building a 3D
human generation model with generalization capabilities for
unseen scenes and various postures geometrically aligned.

3 Proposed Approach
In this section, we propose a new 3D human generation
framework that utilizes pose-guided human-scene interac-
tion in a geometric manner. The overall architecture of the
proposed approach is illustrated in Fig. 2. Before describ-
ing details, we briefly recap the human and scene represen-
tations in Sec. 3.1. We then present how we exploit pose-
guided human-scene interaction for generating geometri-
cally plausible 3D human avatars in Sec. 3.2. In Sec. 3.3,
we explain the proposed architecture and loss function.

3.1 Representation
Human Representation We utilize the SMPL-X
model (Pavlakos et al. 2019) to represent the 3D human
body. SMPL-X is a differentiable function that maps from
a set of low-dimensional body parameters to a 3D human
body mesh. The SMPL-X representation is composed of the
translation t ∈ R3, which is defined by 3D vector in meters,
the rotation R ∈ R6, which is defined by a 6D continuous
rotation feature (Zhou et al. 2019), the body shape param-
eter β ∈ R10, the body pose parameter θb ∈ R32, which
is defined in the latent space of VPoser (Pavlakos et al.
2019), which is a VAE trained on a large motion capture
dataset, AMASS (Mahmood et al. 2019), and the hand pose
parameter θh ∈ R24, which is parameterized the poses of
the left and right hands, respectively. We denote this human
representation as xh := (t, R, β, θb, θh)

⊤ ∈ R75.
In addition, the SMPL-X model has a fixed body topol-

ogy, which consists of 10, 475 vertices and 20, 908 faces. We
additionally annotate the local body parts to geometrically
align humans with 3D scenes. Concretely, unlike (Zhang
et al. 2020b) that divide the body into 8 body parts, we di-
vide the fixed body topology into 26 body parts. For exam-
ple, we split the thigh into a left thigh and a right thigh to
independently use geometric alignments depending on the
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Figure 2: Overview of the proposed framework. Our framework generates a 3D human avatar in a given 3D scene using pose-
guided human-scene interaction. During training, we encode a stack of depth maps and semantic segmentations xs and encode
the human avatar xh into the latent space. The latent variable z is sampled with the VAE re-parameterization trick (Kingma and
Welling 2014) (orange dashed arrow). Given the latent variable z and scene context information, we generate the 3D human
avatar xrec

h . In addition, the pose classifier takes xrec
h as an input and then classifies its pose and provides potential contact areas

of the generated 3D human avatar, which allows us to apply our geometric alignment loss adaptively.
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Figure 3: Illustration of how geometric alignment loss
works. Left: Overall appearance of the human avatar and the
object for each geometric alignment loss (i.e., distance and
normal losses). Right: Illustration of the before/after effect
of minimizing each geometric loss. Distance loss computes
the point-wise distance between the human avatar and the
object of the scene and operates in the direction of minimiz-
ing it. Normal loss operates in the direction of minimizing
the cosine similarity between the normal vector of human
avatars and the normal vector of objects.

body parts. We use these body parts for pose-guided human-
scene interaction in Sec. 3.2.

Scene Representation To encode scene context informa-
tion, we use the semantic and depth data stack as the scene
representation as in (Zhang et al. 2020b). We denote the
scene representation as xs, the camera perspective projec-
tion from 3D to 2D as π (·), and an inverse perspective pro-
jection from 2D to 3D as π−1 (·). We normalize the 3D co-
ordinates to the range of [−1, 1] using π (·). Furthermore,
we additionally extract surface normal vectors of 3D scenes
for geometric alignment. To place a human avatar in a 3D

scene, the camera extrinsic parameter, Tw
c , transforms the

3D human body mesh coordinates to the world coordinates.

3.2 Pose-Guided Human-Scene Interaction
Scene-aware human generation aims to generate plausible
poses of human avatars given a scene (Zhang et al. 2020b).
In this task, valid human-scene interaction (i.e., avoiding
collisions or interpenetration) is critical for generating re-
alistic 3D human avatars, where we can explain this physi-
cally proper interaction as feasible contact between 3D hu-
man and scene (see Fig. 1).

To this end, we exploit geometric alignment on con-
tact between human and scene in terms of physically valid
human-scene interaction. In addition, we adaptively con-
sider this geometric alignment according to human pose, that
is, pose-guided human-scene interaction. Thus, we propose
a compact yet effective pose classifier for guidance. It allows
us to generate more realistic human avatars.

Geometric Alignment on Potential Contact Area In-
spired by 3D point cloud registration (Rusinkiewicz and
Levoy 2001), we utilize two types of geometric alignments
on potential contact areas: point-wise distance and point-
wise surface normal alignment. Given potential contact ar-
eas between the human body and the scene object, point-
wise distance allows us to make the human body close to the
scene object. Point-wise surface normal alignment enables
correct alignment, as shown in Fig. 3.

Specifically, as point-wise distance, we minimize the sum
of the Chamfer distance:

Ldist=
1

|Pb|

 ∑
pb

i∈Pb

min
ps

i∈Ps

∥pb
i−ps

i∥2+
∑

ps
i∈Ps

min
pb

j∈Pb

∥ps
i−pb

j∥2

,

(1)
where Pb is the set of vertices on the selected human body
part, Ps is the set of point clouds on the scene, and |·| denotes
the cardinality. For each vertex point pb

i ∈ Pb, the Chamfer
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Figure 4: Illustration of contact areas of human body parts.
We illustrate the potential contact areas of body parts ac-
cording to the posture of 3D human avatars. Top: Regardless
of posture, prior research (Zhang et al. 2020b) uses fixed
body parts (red color regions). Bottom: Depending on the
posture of 3D human avatars, contact areas of human body
parts vary in ours (blue color regions), which enables adap-
tive geometric alignment.

distance finds the nearest point ps
i ∈ Ps by measuring the

Euclidean distance, and as for each scene point ps
i ∈ Ps vice

versa. Note that for the selected body part Pb, we limit the
corresponding scene points Ps to the nearest scene points
with respect to Pb. Without this constraint, let the nearest
scene point of a vertex on feet be a point psk on a chair seat,
the nearest body vertex of psk can be on thighs, for example.

To align point-wise surface normal, we minimize the co-
sine distance between the surface normal vector of the se-
lected body vertex and the surface normal vector of the scene
point. If a body part and scene object are in contact, the sur-
face normals of the body part and scene object should be
parallel ideally. Thus, the cosine similarity between them is
π (or zero). Our surface normal alignment loss is:

Lnormal =

|Pb|∑
i=1

(
1 +

⟨nb
i ,n

s
i ⟩

∥nb
i∥2∥ns

i∥2

)
, (2)

where ⟨·, ·⟩ denotes the inner product, and nb
i and ns

i are the
surface normal vectors of pb

i and ps
i , respectively. We pre-

process the surface normal outward from the central mass.
It should be worth noticing that if we consider only point-

wise distance as (Zhang et al. 2020b) did, it may cause in-
terpenetration between generated human body and scene ob-
ject, as shown in Fig. 6.

Pose Classification for Guidance Although considering
geometric alignment between the human avatar and scene
helps to generate a plausible pose of the human avatar, one
thing to keep in mind is that humans have numerous body
poses. We observed that the contact areas of the human body
change according to human pose. For example, when we
are sitting, our feet and thighs contact scene objects, such
as chairs and sofas, but our thighs do not generally reach

scene objects when standing (see Fig. 1). Based on this ob-
servation, we propose a compact yet effective pose classifier
that classifies a given pose of humans and provides guidance
in applying geometric alignment.

We design the pose classifier as an MLP-based network.
Our pose classifier takes as input SMPL-X parameters xh

representing the pose of the generated human and then clas-
sifies it into four categories: standing, sitting, lying, and am-
biguous poses. According to the classified poses, we can
provide potential contact areas for geometric alignment in
an adaptive manner (see Fig. 4). Note that the contact area
of the ambiguous pose is a combination of contact areas of
standing, sitting, and lying. We perform a separate pose clas-
sification task using our PROX-P dataset, which is an addi-
tionally annotated dataset based on the PROX dataset (Has-
san et al. 2019); more details are provided in Sec. 4.1.

3.3 Architecture and Loss Function
Network Architecture The proposed network is built
upon a cVAE-based human generation approach (Zhang
et al. 2020b) that generates the human avatars conditioned
on a given scene. Overall, during the training, the latent dis-
tribution learns how to generate a geometrically plausible
human given training scene using the geometric alignment
loss adaptively. During the test, 3D human avatar is gener-
ated using a learned latent vector, semantic and depth scene.

Specifically, our architecture consists of encoder, de-
coder, and pose classifier parts, as shown in Fig. 2. Follow-
ing (Zhang et al. 2020b), we have two encoder parts: human
encoder and scene encoder. The scene encoder takes as in-
put the stack of semantic and depth maps xs (i.e., scene in-
formation), and then encodes this scene information, which
allows us to enforce scene-aware conditions on the human
encoder and decoder. In the case of the human encoder, it
takes as input SMPL-X parameters of human avatar xh and
the scene information and encodes it into a latent vector z.
Given this latent vector and scene information, the decoder
generates 3D human avatar. In addition, the pose classifier,
composed of an MLP-based network, classifies the SMPL-X
parameters of the generated human, which provides poten-
tial contact areas to calculate the geometric alignment loss
for enhancing pose-guided human generation.

Loss Function The loss function for training the proposed
framework consists of two parts. One is for adaptive geomet-
ric alignment according to pose classification, and the other
is for the generating part.
Pose Classification Loss Lpose. For human pose classifica-
tion, we use cross-entropy defined as:

Lpose = −
N∑
i=1

ti log (ci) , (3)

where N is the number of human pose, ti is the ground-
truth label and ci is the softmax probability for the i-th class.
We pre-train the pose classification model using Lpose and
utilize the trained classifier in our generative model.
Geometric Alignment Loss Lgeo. The geometric alignment
term encourages geometrically accurate alignment of poten-
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tial contact areas between human and scene:

Lgeo = αdistLdist + αnormalLnormal, (4)

where Ldist and Lnormal denote the Chamfer distance loss
in Eq. (1) and the surface normal loss in Eq. (2), respec-
tively, and αdist and αnormal indicate the weight factors for
each loss term. Note that we adaptively use this geometric
alignment loss according to the pose of the generated hu-
man avatar. Compared to utilizing whole body parts, utiliz-
ing only specific body parts based on the posture can pre-
vent interpenetration with scenes and generate geometrically
plausible 3D human avatars.
Generation Loss Lgen. Following the previous
work (Zhang et al. 2020b), we use the following loss
term for 3D human generations:

Lgen = αklLKL + αvpLV Poser + αcollLcoll + αrecLrec,
(5)

where αkl, αvp, αcoll, and αrec denote the weight factors
for the KL-divergence, VPoser, collision, and reconstruction
losses, respectively. KL-divergence loss LKL is given by:

LKL = DKL (q (z | xh) ∥N (0, I)) , (6)

where q (z | xh) denotes the VAE encoder and N (0, I) in-
dicates the Multivariate Gaussian distribution. VPoser loss
LV Poser (Pavlakos et al. 2019) encodes natural poses with
a normal distribution in latent space:

LV Poser = |θrecb |2 , (7)

where θrecb denotes the body feature of the generated human
avatar. VPoser loss encourages the generated human avatar
to have natural poses. Collision loss Lcoll is designed to pre-
vent conflicts with human avatars and scenes:

Lcoll = E
[∣∣Ψ−

s (Tw
c M (xrec

h ))
∣∣], (8)

where M (·) denotes the body mesh. We generate the body
mesh from the SMPL parameter and transform it to world
coordinates by Tw

c . Then, we compute the negative signed
distance field (SDF) Ψ−

s (·). Collision loss minimizes the
mean absolute value of the negative SDF. Reconstruction
loss Lrec is:

Lrec =
|xh − xrec

h |+ |π (xh)− π (xrec
h )|

2
, (9)

where xrec
h denotes the human representation of the gener-

ated human avatar. π(·) denotes the projected and normal-
ized translation.

The entire training loss can be formulated as

L = Lgeo + Lgen, (10)

4 Experiments
We evaluate the proposed 3D human generation frame-
work in various aspects. Specifically, we first describe our
implementation details including datasets in Sec. 4.1. We
then quantitatively and qualitatively evaluate the proposed
method in Sec. 4.2 and perform ablation study in Sec. 4.3.
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Figure 5: Generated human bodies in different test scenes of
the PROX dataset (Hassan et al. 2019). Each row represents
3D human avatars generated in a given scene.

4.1 Implementation Details
Dataset We use the most widely used benchmarks in
3D human generation methods for evaluation: the PROX
dataset (Hassan et al. 2019) and the PROX-E dataset (Zhang
et al. 2020b). The PROX dataset contains various and natu-
ral actions of 3D human model, represented by the SMPL-
X model (Pavlakos et al. 2019), in different 3D indoor
scenes. In addition, the PROX data contains 12 in-the-wild
3D scenes. In the case of the PROX-E dataset, which is an
extended version of the PROX dataset, it additionally pro-
vides scene information such as semantic and depth maps
in image domain, and downsampled scene point clouds and
Signed Distance Function (SDF) in 3D domain. Follow-
ing (Zhang et al. 2020b), we use ‘MPH16’, ‘MPH1Library’,
‘N0SittingBooth’ and ‘N3OpenArea’ as test scenes, and the
rest of scenes for training. For more details on both datasets,
we refer to (Zhang et al. 2020b).

For the 3D human pose classification, we modify the
PROX and PROX-E datasets in terms of human pose, and we
call it PROX-Pose, in short the PROX-P dataset. Concretely,
we add additional three types of annotations: the pose of 3D
human in PROX videos, the body part segments, and the sur-
face normal vector of scenes. We extract frames from human
capture 8 videos in PROX scenes every 0.1 seconds and then
manually annotate the human pose into 4 classes. In detail,
we set up the additional class for ambiguous pose except for
sitting, standing, and lying. We obtain about 12.5k pose an-
notations in total. A 10k data is utilized for training, while
a 2.5k data is used for testing. For the annotation of the lo-
cal body parts, we mainly considered body areas that come
into contact with the scene. We divide human point clouds
into 26 body parts carefully, unlike (Zhang et al. 2020b). For
example, we separately annotated the human thigh consider-
ing left/right and front/back. Our body segments are refined
and better suited for learning kinematic relationships in 3D
space. As for the surface normal of scene point clouds, we
extract the surface normal vectors of 3D scenes. Addition-
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Figure 6: Qualitative comparison with PSI (Zhang et al.
2020b). The first and second rows show the generated 3D
human by PSI without and with scene geometry-aware fit-
ting, respectively. The last row shows the result of our
method. Red rectangles denote penetration between human
and scene.

ally, we refine the extracted surface normal by using neigh-
bor points (Tombari, Salti, and Stefano 2010) to deal with
holes in the 3D scene. Our data will be available for research.

Implementation To train our model, we use about 70k
frames in the training scenes, including semantic and depth
maps, scene point clouds and SDF, and the ground truth
SMPL-X parameters of humans (same as in (Zhang et al.
2020b)). Concretely, we use 128× 128 size of semantic and
depth images to encode scene data. Our framework uses 68k
point clouds of uniformly downsampled scene data and the
corresponding SDF for computing the geometric alignment
loss. We adopt three fully-connected layers to classify hu-
man poses and pre-train this classification model in advance.

We set {αdist, αnormal}= {0.002, 0.003} for the ge-
ometric alignment loss. For the generation loss, we set
{αkl, αvp, αcoll, αrec}= {1, 0.001, 0.1, 0.001}, where αkl

increases linearly in an annealing scheme (Bowman et al.
2015) for training. We use the Adam optimizer (Kingma
and Ba 2014) with the learning rate 3e−4. The batch size
is set to 32. Our model is trained 30 epochs, which takes
around 1 day. All experiments are implemented in Pytorch
v1.7.1 (Paszke et al. 2019) with Nvidia RTX 3090 GPU.

4.2 Evaluation
Comparison Methods We compare our method with
three state-of-the-art methods in 3D human generations.
PSI (Zhang et al. 2020b), which is our baseline, gener-
ates 3D human given the scene depth and the semantic
segmentation. PLACE (Zhang et al. 2020a) encodes scene-
human relationship using a basis point set (BPS) represen-
tation (Prokudin, Lassner, and Romero 2019), which is a

Method non-coll contact entropy cluster size

PSI 0.94 0.99 2.97 2.53

PLACE 0.98 0.99 2.91 2.72

POSA 0.97 1.0 2.94 2.28

Ours 1.0 1.0 2.98 4.69

Table 1: Evaluation of physical plausibility and diversity
metrics.

sparse distance information. POSA (Hassan et al. 2021) uses
human-centric formulation given a fixed human pose.

Quantitative Evaluation We adopt the same quantitative
evaluation metrics used in (Zhang et al. 2020b,a; Hassan
et al. 2021). In addition, we evaluate the pose classifier using
the pose prediction accuracy.
Physical Plausibility. We evaluate the non-collision and
contact scores between the generated body mesh and scene
mesh, defined by Zhang et al. (Zhang et al. 2020b). The non-
collision score is the ratio of body mesh vertices with pos-
itive SDF values divided by the total number of SMPL-X
vertices. The contact score is 1 if at least one vertex of the
human body mesh has a non-positive scene SDF value. We
report the average non-collision score and the average con-
tact score of 4,800 samples. PSI, PLACE, and POSA are
comparable under these metrics. Table 1 shows the results
on the physical plausibility metric, where the arrows next
to the metric indicate the direction of better performance.
Thanks to pose-guided alignment, our method achieves a
higher non-collision score and contact score compared to
the comparison methods, which indicates that our proposed
method can geometrically align between human avatar and
scenes. Note that the PROX-P data is only used for training
the pose classifier, not for generation.
Diversity Metric. This metric evaluates how diverse the gen-
erated human bodies are. We compute the diversity metric
using 4, 800 generated SMPL-X sampling data. Like (Zhang
et al. 2020b), we perform K-means clustering (K = 20) to
cluster the SMPL-X parameters of the generated bodies. We
evaluate the entropy of the cluster ID histogram of all the
samples and the average size of all the clusters. The higher is
the better for both metrics. Table 1 shows the diversity met-
ric. Overall, our method outperforms the baseline. Remark-
ably, our method significantly enhances the average cluster
size, which indicates the generated human avatars have a
wide range of poses and positions in the scene. We believe
that this is because our method considers the kinematic rela-
tionship between the human pose and the scene.
Pose Classifier. We evaluate the pose classifier on the
PROX-P dataset including annotated human poses. In the
2.5k test set, we achieve 98% classification accuracy. We
deduce that since we properly simplify the pose of 3D hu-
man avatars into four feasible categories, we can get high
classification performance with an even compact classifica-
tion network. In addition, by virtue of this high classification
accuracy, we can adaptively and robustly exploit geometric
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Method non-coll contact entropy cluster size

Distance 1.0 1.0 2.94 2.65

Normal 1.0 1.0 2.94 2.63

Ours 1.0 1.0 2.98 4.69

Table 2: Ablation study on physical plausibility and diversity
metrics.

alignments depending on the pose of the 3D human avatar.

Qualitative Evaluation Figure 5 shows generated 3D hu-
man avatars in different test scenes. We can observe various
postures of 3D human avatars, geometrically aligned with
the scene in test scenes. Our model achieves competitive vi-
sual performance. Note that our results are directly gener-
ated by our method without any independent optimization-
based refinement, unlike PSI using post-processing for re-
finements. However, despite the proper geometric alignment
between the scene and the human avatars, our method may
generate the human avatars penetrating the object.

In addition, we perform a more detailed comparison with
PSI. In Fig. 6, the first and second rows show the gen-
erated 3D human avatars by PSI without and with post-
processing, respectively. The last row shows the result of
our method. When PSI generates plausible 3D humans, the
post-processing (i.e., refinement step) improves the quality
of the generated 3D human, as shown in the last row in
Fig. 6. However, since PSI uses only distance-based inter-
actions regardless of the pose of 3D human, it sometimes
generates interpenetration. In addition, the post-processing
can rather make the generated 3D human worse than be-
fore, as shown in the first two rows in Fig. 6. In contrast, our
method robustly generates plausible 3D human avatars with-
out additional post-processing, since we consider the geo-
metric alignment between human pose and scene using the
pose-guided framework.

Generalization Performance We validate the generaliza-
tion performance of our method from two perspectives in
Fig. 7. We first experiment with how our method works de-
pending on different body types. We modify the SMPL-X
parameters associated with body shape to generate different
body shape avatars. In particular, we used height and weight
to find specific parameters of the desired body type using
Virtual Caliper software (Pujades et al. 2019). Although we
did not use different body shapes, such as thin or fat shapes,
for training, our method shows reasonable results, as shown
in Fig. 7(a). We believe that geometric alignment, especially
surface normal alignment, enables us to generate plausible
3D humans with even different body shapes. We also apply
our method to unseen scene data to show the possibility of
generalization performance. For an unseen 3D scene from
the MP3D-R dataset (Chang et al. 2017), the proposed ap-
proach generates plausible 3D human avatars (see Fig. 7(b)).
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Figure 7: Generalization performance. (a) Results with dif-
ferent body shapes, such as thin or fat shapes. (b) Results on
the unseen MP3D-R data (Chang et al. 2017).

4.3 Ablation Study
We analyze the influence of the geometric alignment loss to
validate the effectiveness of our method. In this case, we use
the physical plausibility and diversity metrics. As shown in
Table 2, we present model performances when trained with
or without distance loss Ldist and normal loss Lnormal in
Eq. (10), respectively. We found that the loss term Ldist in
training increase the cluster size over normal loss Lnormal.
Notably, when combining the distance loss Ldist with the
normal loss Lnormal, we can observe that the cluster size is
significantly improved.

5 Conclusion
We propose a pose-guided framework for generating a para-
metric model of a 3D human in an indoor scene. We ex-
plore the problem of generating 3D human while consider-
ing geometric alignment on potential contact areas between
3D human avatars and 3D scenes. Notably, by virtue of the
proposed human pose classifier, we can adaptively apply ge-
ometric alignment on potential contact areas according to
the classified human pose. The experimental results demon-
strate the effectiveness of the pose-guided human generation
networks without additional post-processing for refinement.
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