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ABSTRACT
Traffic incidents are a common occurrence in urban traffic networks, but
predicting their impacts is challenging because of network complexity and
the dynamic spatial and temporal dependencies inherent in traffic data.
Nevertheless, the prediction of traffic incident impacts is crucial for global
positioning systems to provide drivers with real-time route recommenda-
tions for bypassing congested roads. To this end, we formulated nonre-
current congestion measures to quantify these impacts and developed a
new method to identify the influential features that locally affect individ-
ual incidents. Because traffic incident impacts are determined by a complex
entanglement of local features, a meaningful feature that can explain their
impacts globallymay not exist. Consequently, to identify all influential local
features, we applied the local interpretable model-agnostic explanations
(LIME) technique to the proposed nonrecurrent congestion measures. The
proposedmethodwas validatedusing real user trajectory data and incident
data provided by the NAVER Corporation and the Korean National Police
Agency, respectively.
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1. Introduction

Traffic congestion has become a universal problem in cities as a result of exponential population
growth and the corresponding increases in number of vehicles, infrastructure, and the proliferation of
delivery services. Congestion can cause various social, environmental, and economic problems such
as impairing the use of transportation infrastructure and increasing travel time, air pollution, and fuel
consumption.

The traffic congestion caused by a particular event, rather than by regular traffic congestion during
peak hours, is called nonrecurrent traffic congestion (Hall 1993). This type of congestion occurs as a
result of unexpected events such as vehicle collisions, road maintenance, or debris. Traffic incidents
are themost difficult type of nonrecurrent traffic congestion to predict, but theymust be handled in a
timely and effectivemanner tominimize their impact on road capacity and travel time, and to obviate
the potential for secondary crashes.

To mitigate the adverse impacts of traffic incidents, traffic agents such as transport informa-
tion centers or navigation platforms must have prior knowledge regarding the characteristics of
impacts and their influential features. Such knowledge enables them to provide timely and reliable
information regarding route guidance in real time. Because traffic incidents occur spontaneously, a
well-coordinated traffic incident management process can improve safety, traffic flow, and clearance

CONTACT Sungil Kim sungil.kim@unist.ac.kr

© 2022 Hong Kong Society for Transportation Studies Limited

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/21680566.2022.2063205&domain=pdf&date_stamp=2023-02-15
http://orcid.org/0000-0002-4619-925X
http://orcid.org/0000-0002-8631-657X
http://orcid.org/0000-0002-8027-3433
http://orcid.org/0000-0003-0208-4378
mailto:sungil.kim@unist.ac.kr


280 J.-Y. LEE ET AL.

time (Haghani et al. 2006). Because the influence of a detected incident is typically unknown until it is
completely cleared, it is essential for traffic agents to predict incident impacts beforehand.

Various attempts have beenmade tomeasure the impact of traffic incidents and construct incident
impact prediction models to identify influential features. However, existing approaches are limited
in various ways. First, they rely predominantly on quantitative measurements that, in practice, are
not available for nonrecurrent traffic congestion. For example, the incident duration, which is one of
the most popular measures related to incident impacts (Hurdle, Merlo, and Robertson 1997), requires
the time interval between incident occurrence and incident site clearance to be both available and
measured correctly (Ghosh, Savolainen, and Gates 2014). In the real world, such information is often
unavailable, which limits the ability to define a reasonable incident duration and justify the entire pro-
cess of predicting and analyzing incident impacts. Second, existing studies are primarily focused on
the temporal impact of incidents without considering the spatial or speed dynamics aspects. These
aspects of nonrecurrent traffic congestion require new quantitative measurements. Third, predicting
nonrecurrent congestion measures is notoriously difficult because the underlying physics and inter-
connected congestion propagation processes are complex nonlinear turbulent dynamics problems
(Chi-Sen Li and Chen 2014). The reason for this is that, in practice, perfect knowledge regarding the
characteristics of an incident is never available. Consequently, errors are inevitable in the development
of congestion propagation prediction models and the identification of influential features.

A global positioning system (GPS) trajectory consists of a series of points with latitude, longitude,
and timestamp information generated when navigation service users travel. Based on GPS trajectory
data provided by the NAVER Corporation, we previously aligned the sequence of observed user posi-
tions with the road network using a map-matching process (Newson and Krumm 2009) to obtain
the average speed of each road. However, trajectory-based average road speeds are highly volatile,
depending on the availability of user data over a specific period on a given road.

To overcome the limitations and difficulties outlined above, we propose newnonrecurrent conges-
tionmeasuresusing trajectory-basedaverage road speeds andanewmethod to identify the influential
features that locally affect individual incidents. The main contributions of our study are summarized
as follows.

• We formulated three new nonrecurrent congestion measures using trajectory-based average road
speeds: incident duration, congestion propagation level, and speeddrop ratio. Unlike themeasures
used in previous studies, thesemeasures are applicable in the absence of accurate time information
regarding an incident and can measure both the temporal and spatial impacts of incidents.

• We applied the local interpretable model-agnostic explanations (LIME) technique to the develop-
ment of congestion propagation prediction models, to extract meaningful information regarding
influential features related to the proposed nonrecurrent congestion measures.

The remainder of this paper is organized as follows. Section 2 reviews related work, and Section 3
defines the notations used herein. Section 4 presents our proposed novelmethodology formeasuring
nonrecurrent traffic congestion and identifying influential features for such measures. A case study in
which the proposed measures are used is presented in Section 5 and related experimental results are
presented in Section 6. Finally, the conclusions of this study are summarized in Section 7.

2. Related work

2.1. Incident delay estimation

Several analytical methods have been developed to estimate the total delay of incoming roads
connected to incident areas, based on classical traffic flow theory. These can be divided into two
main categories, according to their approach: (1) deterministic queuing diagrams (Highway Capac-
ity Manual 1994; Goolsby 1971; Chung and Recker 2012) and (2) shockwave theory (Wirasinghe 1978;
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Chow 1976; Al-Deek, Garib, and Radwan 1995). A queuing model is constructed such that the queue
lengths and wait times can be measured. The traffic shockwave theory determines the delay time by
measuring the difference between the average traffic flow and density. Wirasinghe (1978) used shock-
wave theory to develop formulas for calculating the individual and total delays of incoming roads
connected to incident areas. The formulas developed are based on the areas and densities of regions
representing different traffic states. Chow (1976) compared queuing analysis and shockwave analysis
for calculating the total incident delay on highways. They assumed a unique flow–density relationship
and derived equations for the total delay. These methods can be used independently or combined.
Wong andWong (2016) analyzed the trajectories of GPS-equipped vehicles encountering an incident
site and proposed six measures for evaluating the impact of the incident on traffic patterns based on
classical traffic flow theory.

However, these approaches have limited ability to measure the impact of nonrecurrent traffic con-
gestion propagation. First, to quantify incident impacts, they rely on various traffic features which are
typically unavailable in practice, such as traffic flow, density, and occupancy. Second, they presume
that the exact times of traffic incident occurrence and recovery are known, which is not always the
case in reality.

2.2. Traffic congestionmeasures

Numerous studies have considered urban traffic conditions using various methods based onmultiple
measures that evaluate traffic states. The speed reduction index (SRI) ratio was proposed to measure
the relative speed variation between a congested state and free-flow conditions, where congestion
was defined as an index value exceeding a specific threshold (He et al. 2016; Shunping, Hongqin, and
Shuang 2011). The Urban Congestion Report of 2019, published by the Federal Highway Adminis-
tration, defines the free-flow speed as the 85th percentile of off-peak speed measures. This refers to
the average speed from 9:00 AM to 4:00 PM and from 7:00 PM to 10:00 PM on Mondays through Fri-
days, and on Saturdays and Sundays from 6:00 AM to 10:00 PM. He et al. (2016) developed the speed
performance index by considering the maximum permissible speed as the free-flow speed.

The methods discussed above define traffic congestion based on measurements falling below a
certain threshold. However, these measures overly simplify actual incident duration periods and the
durationof the incident impacts. Additionally, any incident that significantly affects neighboring roads,
but does not exceed the threshold, would be ignored if the threshold speed limit determined the start
and recovery times of an incident. Therefore, it is reasonable to capture nonrecurrent congestion by
measuring the relative speed decline compared to the regular road speed.

2.3. Feature importance for incident impacts

Existing approaches to modeling incident impacts can be divided into twomain categories: statistical
methods and machine learning (ML).

The most popular statistical approaches to modeling incident duration are regression models and
hazard-basedmodels. These similarly rely on rigorousmathematical assumptions to interpret the rela-
tionships between estimators and explanatory features (Karlaftis and Vlahogianni 2011). Regression
models include both linear and nonparametric regression (Garib, Radwan, and Al-Deek 1997; Peeta,
Ramos, andGedela 2000; Khattak, Schofer, andWang1994). Hazard-basedmodels are superior for cap-
turing duration effects (Chung 2010; Hojati et al. 2013; Chung and Yoon 2012) and can be categorized
into threemainmethods: proportional hazardmodels (Breslow 1975), accelerated failure timemodels
(Nam and Mannering 2000; Hojati et al. 2013), and Cox proportional hazard regression models (Ben-
nett 1999; Lee and Fazio 2005). Another frequently used method for modeling traffic incident impact
is the cell-transmissionmodel (CTM) proposed byDaganzo (1994). Yaping Li et al. (2015) and Ji, Zhang,
and Sun (2011)modified CTM to analyze and predict the impact of traffic incidents. Ji et al. (2009) used
CTM to model the incident recovery time.
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However, because these statistical methods operate under several hypotheses and constraints,
they often lose interpretive and prediction power, leading to the necessity of nonlinear methods such
as machine learning (ML).

ML approaches have been employed successfully to estimate and predict traffic incident duration
and interpret models, because they can describe influential features (Ruimin Li, Pereira, and Ben-
Akiva 2018). In particular, to identify features that contribute to incident impacts, the interpretability of
various models is used to confirm other important desiderata in ML systems. There are many auxiliary
criteria that one may wish to optimize. Notions regarding fairness or unbiasedness imply that pro-
tectedgroups (explicit or implicit) are not discriminated againstDoshi-Velez andKim (2017). Generally,
feature importance can be divided into modular global importance and local importance (Guidotti
et al. 2018; Molnar 2020). While modular global feature importance measures the importance of a
feature for an entiremodel, local importancemeasures the contributionof a feature to a specific obser-
vation. To reflect theuniquenessof an incident,weapplied the LIME (Ribeiro, Singh, andGuestrin 2016)
local interpretation methodology.

LIME interprets individual model predictions based on a local approximation of the model around
a given prediction. We can evaluate how faithful a prediction is to the underlying model using LIME.
One expectation is that our explanations should be locally accurate – meaning that in the vicinity
of an input data point, our explanation should be faithful to the model (Lundberg and Lee 2017;
Lipton 2018).

3. Definition of terminology

Consider a road network G = (V , E) as a directed connected graph, where V is a set of nodes repre-
senting road segments and E is the set of edges connecting those nodes. Let vi ∈ V denote a node and
eij = (vi, vj) ∈ E represent an edge. In the graph, we define in and out operators such that the oper-
ator in : V → 2E returns all edges for which node v is the destination and the operator out : V → 2E

returns all edgeswhose source is node v. Additionally, | · | is defined as the number of set elements. For
example, |V| is the number of road segments in G. Similarly, | in(v)| is the number of road segments
incoming to a node v, and | out(v)| is the number of road segments outgoing from a node v.

Given a graph G, we assume that the speed information of all road segments v ∈ V is available
at a predetermined time t ∈ T , which is denoted as {s(v, t) : V × T → R

+}. Additionally, we let s(v, T)

denote a time series of speedson road segment v ∈ V during apredeterminedperiod T. Because s(v, T)

is a vector, we can easily define quantities such asmin(s(v, T)), max(s(v, T)), sum(s(v, T)), avg(s(v, T)),
and sd(s(v, T)), where sd denotes standard deviation.

For further analysis, we define some basic terminology as follows.

Definition 3.1 (k-hop incoming (outgoing) neighbors): We define the k-nearest hops of the set
of incoming nodes feeding traffic into a target node v0, which are referred to as the k-hop incoming
neighbors, as

Nk
in(v0) :=

⋃
v∈Nk−1

in (v0)

in (v).

Similarly, we define the k-nearest hops of nodes taking traffic away from a target node v0 through its
out node, which are referred to as the k-hop outgoing neighbors, as

Nk
out(v0) :=

⋃
v∈Nk−1

out (v0)

out (v).

Definition 3.2 (Incident-anchored subgraph): Given an incident road segment v0, an incident-
anchored subgraph Gv0 ⊆ G is defined as a directed subgraph that connects an incoming sub-
graph of v0, denoted as G( in)

v0 = (V( in)
v0 , E( in)

v0 ), and an outgoing subgraph of v0, denoted as G( out)
v0 =
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(V( out)
v0 , E( out)

v0 ), where

V( in)
v0 =

K⋃
k=1

Nk
in(v0), V( out)

v0 =
K⋃

k=1

Nk
out(v0).

Definition 3.3 (Exponential moving average): Let s(v, t) be the speed on traffic incident road
segment v at time t. Then, the exponential moving average s̄(v, t)n can be defined recursively as

s̄(v, t)n = αs̄(v, t − 1)n + (1 − α)s(v, t),

where n indicates the average period (Klinker 2011), and the weight factor α plays a role in controlling
the importance of recent information. Although there aremany possible choices for theweight factor,
the most common choice is α = 2

n+1 . The exponential moving average technique is typically applied
to time series data to smooth short-term variations and capture long-term trends or cycles in the form
of a moving average.

Definition 3.4 (Path, path set): Given a road network G = (V , E)with a set of nodes V = {v1, . . . , vn}
and set of edges E ⊆ V × V , a path in G is defined as a finite sequence

P = (v0ev0v1ev1 · · · vK−1evK−1vK),

where vk ∈ V and evk = (vk , vk+1) ∈ E for all k ∈ {0, . . . , K − 1}. In a road network, a path is uniquely
determined by its node sequence, and the notation can be simplified to

P = (v0v1v2 · · · vK).

A path set in G is defined as a set of paths whose origin and length are identical in a road network. To
specify the origin and length of a path, a path set is denoted as PK(v0), where v0 and K are the origin
and length of the path, respectively.

The order of node sequences is opposite to the order of traffic flows.

Definition 3.5 (Congested, congestion indicator function): Given a node v, time duration T, and
short period [t − δ : t] ∈ T , a node v is said to be congested in T with δ if ∃t ∈ T such that

avg s(v, [t − τ : t]) < 0.6 × ff (v), (1)

where ff (v) is the free-flow speed of road segment v. In this study, we used the maximum speed
restriction as the free-flow speed.

Then, the congestion indicator function is defined as

cτ (v, T) =
{
1, if a node v is congested in T with τ

0, otherwise.

There are several choices for the congestion thresholds in Equation (1). In this study, we adopted
the value of 0.6 suggested by Basak, Dubey, and Bruno (2019) after consulting with domain experts.
τ = 30 (min) was assumed, and sensitivity analysis for τ was performed as discussed in Section 6.3. For
notational simplicity, cτ (v, T) is abbreviated as c(v, T).
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Definition 3.6 (Sequence of propagation indicators, propagation indicator function): Given a
path P = (v0v1v2 · · · vK) inG and incident duration Tv0 , a sequenceof propagation indicators is defined
as a finite sequence

p -seq(P, Tv0) = (q(v1, Tv0), q(v2, Tv0), . . . , q(vK , Tv0)),

where q(vi, Tv0) is the propagation indicator function. For a node vi, let t
(1)
vi denote the first t ∈ Tv0 that

satisfies Equation (1). Assuming that c(v0, Tv0) = 1, the propagation indicator function is defined as

q(vi, Tv0) =
{
1, if c(vi, Tv0) = 1 and c(vi−1, Tv0) = 1 and t(1)vi−1 < t(1)vi

0, otherwise

for i ≥ 1. Thepropagation indicator is defined such that congestionpropagation is considered tooccur
onlywhen the connected incoming road of the currently congested road is congested during the next
period.

Definition 3.7 (Reported time): After a nonrecurrent incident occurs on road segment v0, the point
at which information regarding the incident is released to the public is defined as t(rpt)v0 . In the case of a
traffic incident, it is typically difficult to determine the time interval between when an incident occurs
and t(rpt)v0 . For example, it is known that it takes approximately 15 min for information to be released
after a traffic incident occurs in Seoul, South Korea.

4. Methodology

This section presents the problem statement and the three nonrecurrent congestion measures we
propose to quantify incident impacts: incident duration, congestion propagation level, and speed
drop ratio. In addition,wepresent thepredictionmodels developed to extractmeaningful information
regarding influential features related to the proposed measures.

4.1. Problem statement

The aim of this study was to analyze the proposed measures and their association with temporal,
spatial, topological, operational, and other environmental factors. These associated factors are called
features. Consider N incident-anchored subgraphs Gi, i = 1, . . . ,N. Let X ∈ R

N×C be a feature matrix
of the subgraphs, where C is the number of features, and y(m) = (y(m)

1 , . . . , y(m)
N )T ∈ R

N represent a
measure of traffic incident impacts. Then, we aim to train a function fm(·) that maps a feature matrix X
to y(m) as follows:

X
fm(·)−−→ y(m).

Let f̂m(·) denote the trained function. We can predict the impact of a new incident, y(m)
new , by applying

f̂m(Xnew), where Xnew represents the features of the new incident.

4.2. Measuring nonrecurrent traffic congestion

Figure 1 illustrates the concepts underlying the three proposed measures. Figure 1(a) illustrates the
concepts of incident duration and speed drop ratio, and Figure 1(b) illustrates the concept of con-
gestion propagation to incoming neighbors, where incoming neighbors are incoming roads feeding
traffic into the road at which the incident occurred. The black solid line represents the average speed
of the road segment where a traffic incident occurs, while the orange, green, and blue solid lines
represent the average speeds of the incoming neighbors.



TRANSPORTMETRICA B: TRANSPORT DYNAMICS 285

Figure 1. Concepts of the proposed nonrecurrent congestion measures. (a) Incident duration and speed drop ratio and (b)
Congestion propagation level.

4.2.1. Incident duration
Many studieshavebeenconductedon traffic incidentdurationanalysis. (For furtherdetails, readers are
referred to Ruimin Li, Pereira, and Ben-Akiva (2018) and references therein.) To calculate the duration
of an incident, previous studies predominantly assumed that traffic incident occurrence and clear-
ance information are available or that the probabilistic distribution of the duration is known. However,
such assumptions may not be valid. To detect the incident duration using traffic speed data, Haule
et al. (2019) used the lower bound of the historical speed profile and defined the incident duration
as the period during which that speed was out of bounds. Unfortunately, this kind of approach is not
applicable to our situation, because the high variability in trajectory-based average road speed can
lead to numerous false positives in incident detection.

To address these challenges, we developed a simple rule-based approach in which the incident
duration is calculated using trajectory-based average road speeds. Suppose that a traffic incident
occurs on road segment v0 and is reported at time t(rpt)v0 . To determine the incident duration, it is neces-
sary to estimate the time at which the incident begins and ends. We assumed that the traffic incident
will lead to dramatic changes in speed, pattern, and variation. Under this assumption, it is possible to
estimate the incident start time as the time when such a dramatic change is first detected. Formally,
the incident start time t(st)v0 is estimated as

t(st)v0 = min{t : t satisfies (C1), (C2), (C3)}, t = . . . , t(rpt)v0 − 1,

where

(C1) : s̄(v0, t)5 ≤ s REG(v0, t) (2)

(C2) : s̄(v0, t)5 ≤ s̄(v0, t)30 (3)

(C3) : s(v0, t) ≤ s(v0, t − 1) − sd(s(v0, [t − δ : t]). (4)

The first condition in Equation (2) indicates that the exponential moving average, s̄(v0, t)5, should be
less than the regular road speed. Exponentialmoving averages are used rather than direct road speeds
because they are less volatile and show trends in speed patterns. s REG(v0, t) represents the regular
road speed, which can be obtained either from historical road speed data or the average road speed
for the preceding hours. Note that the regular road speed considers the influence of recurrent traffic
congestion. In this study, we assume that s REG(v0, t) is given.

The second condition in Equation (3) is closely related to the concept of a death cross in stock
chart analysis, and is used to capture short-term speed patterns (Ausloos and Ivanova 2002; Harish
et al. 2019). It is known that a death cross appears on a chart when the moving average of the short-
term stock price crosses the long-termmoving average, indicating that the trend of recent price drops
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is stronger than that of long-term price drops. We set the second condition to determine whether the
short-term (5min interval) speed trend overtakes the long-term (30min interval) speed trend.

The final condition in Equation (4) sets a condition based onwhether there is a radical speed drop. If
a traffic incident occurs, the speed of the vehicles affected by the incident is expected to drop sharply
after the incident. To reflect variations in the speed distribution, we detect a sharp speed drop if the
speed decreases by more than its standard deviation sd(s(v0, [t − δ : t]).

In contrast to estimating the incident start time, the incident recovery time is estimated as the time
at which the dramatic change caused by the incident first returns to normal, where ‘return to normal’
is defined as the state in which the average speed for a certain period is higher than the regular road
speed. Formally, the incident recovery time, t(end)

v0 , is estimated as

t(end)
v0 = min{t : s REG(v0, t) < avg (s(v0, [t − δ : t]))}, t = t(st)v0 + δ + 1, . . . . (5)

In Equations (4) and (5), we set δ = 30 (min). (Sensitivity analysis for δ is performed in Section 6.3.) Then,
the incident duration (y(1)

v0 ) can be defined as

y(1)
v0 := t(end)

v0 − t(st)v0 . (6)

The period [t(st)v0 : t(end)
v0 ] is denoted as T(1)

v0 . The length of T(1)
v0 is y(1)

v0 .

4.2.2. Incident-driven congestion propagation level
Traffic congestion has beenmeasured by the change in traffic flow, which is the multiplication of traf-
fic density and average traffic speed (Wright and Roberg 1998; Ceulemans et al. 2009). However, as
users of navigation services are not representative of the whole, in our case, only the trajectory-based
speeds of users are available, rather than traffic density or flow data. Using trajectory-based average
road speeds, we propose an incident-driven congestion propagation level measure.

Consider an incident-anchored subgraph, Gv0 . Let Pw be the wth path of the subgraph to the inci-
dent road segment, where w = 1, . . . ,W . Because the incident-anchored subgraph considers up to
K-hop incoming neighbors by Definition 3.1, each path consists of K + 1 connected road segments,
including the incident road segment v0,

Pw = (v0v
w
1 v

w
2 · · · vwK ).

Given an incident duration T(1)
v0 from Equation (6), we can compute q(vk , T

(1)
v0 ) for vk ∈ Pw , k = 1, . . . , K ,

using thepropagation indicator functiondefined inDefinition3.6. Ifq(vk , T
(1)
v0 ) = 1, it indicates that the

congestion caused by the incident at v0 propagates along the path to road segment vk .
Toquantify the impactof a traffic incident to incomingneighbors,weproposeanewmeasure called

the incident-driven congestion propagation level. Based on the number of lanes (d(v)) and length of the
road segment (�(v)), the incident-driven congestion propagation level is defined as

y(2)
v0 :=

∑
v∈V( in)

v0

q
(
v, T(1)

v0

)
· d(v) · �(v). (7)

This level represents the weighted number of road segments where congestion propagated in the
incident-anchored subgraph; the weights reflect the number of lanes and the length of the road seg-
ment. The larger the number of lanes, the longer the length of a road, and the more propagation in a
subgraph, the larger y(2)

v0 becomes.

4.2.3. Incident-driven speed drop ratio
Measuring speed reduction is a natural way to quantify the impact of a traffic incident. In the litera-
ture, the speed reduction index (SRI) and speed performance index (SPI) are commonly used (Afrin
and Yodo 2020). The SRI is the ratio of the relative speed change between congested and free-flow
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conditions, whereas the SPI is the ratio of the relative speed change between the congested speed
and the maximum permissible speed.

To quantify the impact of a traffic incident on speed reduction, we extend the concept of the SRI
and SPI and propose a newmeasure called the incident-driven speed drop ratio. Given the time t(rpt)v0 at
which an incident is reported, the incident-driven speed drop ratio is defined as the ratio of the speeds
before and after t(rpt)v0 . Formally,

y(3)
v0 := max

⎛
⎝0, 1 −

min
(
s(v0, [t

(rpt)
v0 : (t(rpt)v0 + taft)])

)
max

(
s(v0, [(t

(rpt)
v0 − tbf ) : t

(rpt)
v0 ])

)
⎞
⎠ . (8)

In this study, we set taft = tbf = 60 under the assumption that the average speed drops sharply
between 1 h before and 1 h after the incident reported time.

4.3. Model-based feature importance

LIME is a novel technique that can explain the predictions of any prediction model by training a local
surrogate model (Ribeiro, Singh, and Guestrin 2016). Local surrogate models are interpretable mod-
els that can explain individual predictions from a prediction model. Suppose that f is a prediction
model for predicting y and y = f (X), whereX is a featurematrix. Here, it is assumed that we can probe
the prediction model f as often as we wish. Let g ∈ G be an explanation model, where G is a class of
potentially interpretablemodels. Our goal is to use a local surrogatemodel to understandwhy the pre-
diction model makes a certain prediction. LIME produces a local surrogate model using the following
equation:

ξ (x) = argming∈GL (f , g,πx) + �(g), (9)

whereL is a measure of how unfaithfully g approximates f in the locality defined by πx, and�(g) is a
measure of the complexity of the explanation g ∈ G. Here, we use the locally weighted square lossL,
exponential kernelπx, and complexitymeasure�(g), as defined in Ribeiro, Singh, andGuestrin (2016).
To learn the local behavior of f, L is approximated by drawing samples weighted by πx. The samples
are perturbed instances around xi generated by adding random noise to local instances near xi. For
an instance xi, we can obtain ξ(xi) using Equation (9). Let hi,j be the coefficient corresponding to the
jth feature in ξ(xi). Then, the importance of the jth feature can be obtained as

Ij =
∑N

i=1 |hi,j|
N

, (10)

where N is the number of incidents. To identify the relative contribution of each feature, the relative
importance is defined as

RIj = Ij∑C
j=1 Ij

, (11)

where C is the number of features.
Within the context of this study, we consider three separate prediction models, fm, m = 1, 2, 3,

for predicting the incident-driven measures, y(m). That is, y(m) = fm(X), where X ∈ R
N×C is a fea-

ture matrix of the incident-anchored subgraphs for traffic incidents. Our goal is to train a prediction
model fm(·) that maps a feature matrix X to y(m), and to understand why a prediction model makes
a certain prediction using LIME. LIME uses the local surrogate model to identify important features
using Equation (10). In this study, understanding which features are important for making a certain
prediction is termed ‘interpretability.’
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Figure 2. Road network in Seoul where the case study incident occurred.

Figure 3. Speed patterns affected by nonrecurrent traffic congestion in Seoul. (a) Speed patterns of (A, B, C,D) and (b) Speed
patterns of (A, E, F,G).

5. Case study: incident on Gangbyeonbuk-ro

The proposed nonrecurrent congestion measures were applied to a real incident case on
Gangbyeonbuk-ro in Seoul. A traffic incident at the location shown in Figure 2 was reported at 22:16
on September 4, 2020. This road network is known to have high traffic volumes and complexity. The
asterisk in the figure indicates the exact location at which the incident occurred, and the black line (A)
indicates the road segment to which the location belongs. The red lines signify the 1-hop incoming
neighbors (B, H, E) of the incident road (A), and the blue and green lines signify the 2-hop incoming
neighbors (C, I, K, F) and 3-hop incoming neighbors (D, J, L,M, G), respectively.

Traffic on roadAhas an impact on fivedifferent incomingpathswithin threehops. The fivepaths are
P1 = (A, B,C,D), P2 = (A, E, F,G), P3 = (A,H, I, J), P4 = (A,H, K , L), and P5 = (A,H, K ,M). Figure 3(a,b)
illustrate the speed patterns of P1 and P2, respectively. In the figures, the y axis represents the average
speed value in km/h.
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We applied the three proposed nonrecurrent congestion measures to the real incident case and
obtained y(1)

A , y(2)
A , and y(3)

A . First, the incident duration y(1)
A was computed to be 54 min, using

Equation (6) with t(st)A = 22:06 and t(end)
A = 23:00, as indicated by the red box in Figure 3. Results indi-

cate that the incidentwas reported 10min after it actually occurred, and conditions returned tonormal
54min later.

Next, given theperiodof the incident duration, T(1)
A = [22:06, 23:00],we calculated thepropagation

indicators for all road segments in the subgraph as follows:

q
(
B, T(1)

A

)
= 0, q

(
C, T(1)

A

)
= 0, q

(
D, T(1)

A

)
= 0

q
(
E, T(1)

A

)
= 1, q

(
F, T(1)

A

)
= 1, q

(
G, T(1)

A

)
= 1

q
(
H, T(1)

A

)
= 1, q

(
I, T(1)

A

)
= 1, q

(
J, T(1)

A

)
= 1

q
(
K , T(1)

A

)
= 1, q

(
L, T(1)

A

)
= 0, q

(
M, T(1)

A

)
= 0

The results are congruent with Figure 3, in that P1 = (A, B, C,D) was not affected by the incident
whereas the impact of the incident propagated along P2 = (A, E, F,G). The values of the propagation
indicators show that the impacts propagated to seven road segments out of the 12 incoming roads of
A. Consequently, we calculated the incident-driven congestion propagation level to be y(2)

A = 23.10
using Equation (7). This value denotes the sum of the traffic capacity affected by a traffic incident in
the incident-anchored subgraph.

Lastly, y(3)
A was computed to be 0.77 using Equation (8), based on

max
(
s(v0, [(t

(rpt)
v0 − 60) : t(rpt)v0 ])

)
= 63.99, min

(
s(v0, [t

(rpt)
v0 : (t(rpt)v0 + 60)])

)
= 14.45.

Thismeans that the trajectory-based average road speeddecreasedby 77%after the incident reported
time, relative to the speed before the incident reported time.

In summary, the computed values for the proposed nonrecurrent congestion measures of the
incident were (

y(1)
A , y(2)

A , y(3)
A

)
= (54, 23.10, 0.77).

These values not only quantify the impact of an incident, they also allow comparison with the impact
of other incidents. For example, Figure 4 shows histograms of the three measures for 1322 incidents
in Seoul, South Korea. (The data descriptions are presented in Section 6.1.) The red dotted lines in the
figure indicate the position of the case incident among 1322 incidents in terms of incident impacts.
The values of (54, 23.10, 0.77) are respectively in the 33rd, 84th, and 80th percentile of the 1322 inci-
dents by incident impact. The incident duration of the case incident was short, but the congestion
propagation level and the speed drop ratio were larger.

6. Real data example: traffic incidents in Seoul

The proposed method was validated on 1425 real traffic incidents that occurred from September 2
to December 1, 2020, in Seoul, South Korea. Figure 5 shows the locations of the 1425 traffic incidents
(black dots) considered in this study.

6.1. Datasets

Two types of datasets were considered from different sources: a traffic dataset provided by the NAVER
corporation navigation team and an incident dataset provided by the Korean National Police Agency.
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Figure 4. Histograms of incident duration, congestion propagation level, and speed drop ratio for 1322 incidents in Seoul, South
Korea. (a) Incident duration. (b) Congestion propagation level and (c) Speed drop ratio.

Figure 5. Locations of traffic incidents in Seoul from September 1, 2020 to December 1, 2020 (red dots indicate the selected
incidents).

The traffic dataset consists of a traffic road network with trajectory-based speed, weather, and
road attributes of the major metropolitan area of Seoul, where nearly half of the country’s popula-
tion resides. The speed data are described by GPS trajectories. A GPS trajectory consists of a series of
points with latitude, longitude, and timestamp information generated when navigation service users
travel. To align a sequence of observed user positionswith the road network, we used amap-matching
process (Newson and Krumm 2009).

The incident dataset provided by the Korean National Police Agency contains 1425 incidents that
occurred during the aforementioned period in Seoul. Each incident record includes the reported time,
description of the incident, and originating location described by both geographical coordinates and
road segment ID.

For validation purposes, we selected 1322 of the 1425 incidents, each with an incident duration
greater than zero. The selected incidents are represented by the red dots in Figure 5. Consequently,
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Table 1. Description of independent features.

Categories Features Value set & Description

Timestamp time of day 1: 0 ≤ incident time < 6
2: 6 ≤ incident time < 12
3: 12 ≤ incident time < 18
4: 18 ≤ incident time < 24

day of week 0: weekday
1: weekend (Saturday or Sunday)

Road Characteristics road type 1: highway
2: urban highway
3: general national road
4: state-sponsored regional road
5: local road
6: general road

incident road speed limit 30 ≤ smax(v0) < 120
incident road length length of the road segment where the incident occurred
number of lanes number of lanes of an incident road

Network topology number of incoming roads |V( in)
v0 |

number of outgoing roads |V( out)
v0 |

in-degree centrality Cd in
out-degree centrality Cd out
closeness centrality Cc
betweenness centrality Cb
eigenvector centrality Ce

Speed incoming correlation corr in(v0)
outgoing correlation corr out(v0)
prior speed drop ratio 0 ≤ psdr ≤ 1
speed variation standard deviation of speed data prior to incident occurrence

Source information source 1: traffic broadcasting
2: national transport information center
3: police station
4: infrastructure and transport

Weather weather code 0: clear weather (sunny)
1: cloudy
2. rain

rain amount rain amount
rain probability probability of rain
temperature temperature

this study considered 1322 incident-anchored subgraphs Gv0,i , i = 1, 2, . . . , 1322. This corresponds to
34,195 road segments where K = 3.

6.2. Independent features

Table 1 summarizes the key independent features extracted from both the traffic dataset and incident
dataset for the incident-anchored subgraphs. The extracted features can be categorized as follows:
Timestamp, Road Characteristics, Network Topology, Speed, Source, and Weather.

(1) Timestamp: Two features are considered: ‘time of day’ and ‘day of week.’ The former represents
daily patterns, and the latter represents weekly patterns.

(2) RoadCharacteristics: Road characteristics and its related features include ‘road type,’ ‘incident road
speed limit,’ ‘incident road length,’ and ‘number of lanes.’ ‘incident road length’ and ‘number of
lanes’ respectively represent the geographical length andwidth of the road segment onwhich an
incident occurs.

(3) Network Topology: The topological features of the road network include ‘number of incoming
roads,’ ‘number of outgoing roads,’ ‘in-degree centrality,’ ‘out-degree centrality,’ ‘closeness cen-
trality,’ ‘betweenness centrality,’ and ‘eigenvector centrality.’In this study, we modified ‘degree
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centrality,’ which is a well-known node complexity measure in an undirected network (Free-
man 1978; Zhang and Luo 2017; Saxena, Malik, and Iyengar 2016), tomeasure node complexity in
a directed network. Let us denote the node complexity on the side of the incoming nodes by ‘in-
degree centrality’ (Cd in) and on the side of the outgoing nodes by ‘out-degree centrality’ (Cd out)
in an incident-anchored subgraph:

Cd in = | in(v0)|
|Vv0 |

, Cd out = | out(v0)|
|Vv0 |

.

The ‘closeness centrality’ (Cc) of a road segment v0 is the reciprocal of the sum of the shortest
path distances from v0 to all other road segments in the subgraph (Freeman 1977; Newman 2008).
Because the sum of the distances depends on the number of road segments in the subgraph cen-
teredaround v0, the closeness is normalized relative to the sumof theminimumpossibledistances
|Vv0 | − 1 as follows:

Cc = |Vv0 | − 1∑
vi∈Vv0 d(vi, v0)

,

where d(vi, v0) is the shortest path distance between vi ∈ Vv0 and v0.
‘Betweenness centrality’ (Cb) quantifies the number of times a road functions as a bridge along

the shortest path between two other roads (Freeman 1977; Newman 2008). It reflects the amount
of influence a road has on the flow of information in a graph. The ‘betweenness centrality’ of a
road v0 in our problem setting is the sum of the fractions of all pairs of shortest paths that pass
through v0.

Cb =
∑

v,v′∈Vv0

σ(v, v′|v0)
σ (v, v′)

,

where σ(v, v′) is the total number of shortest paths from road v to v′ and σ(v, v′|v0) is the number
of paths that pass through v0. Therefore, the greater the value of Cb, the higher the probability
that v0 is located in the middle of the shortest paths connecting two other roads.

‘Eigenvector centrality’ (Ce), onwhichGoogle’s PageRank is based (Zaki,Meira, andMeira 2014),
measures the influence of a node in a network (Freeman 1977; Newman 2008). Let A = (ai,j) be
the adjacency matrix of a subgraph. The Ce of node v0 is given by

Cev0 = 1
λ

∑
v∈Vv0

av,v0Cev ,

where λ 	= 0 is a constant. In matrix form, we have λCe = CeA.
(4) Speed: When an incident occurs, the traffic flow between the incident road and neighboring roads

can be positively or negatively correlated. To measure such correlations, we define the incoming
correlation (corr in(v0)) and outgoing correlation (corr out(v0)) as

corr in(v0) = 1∣∣∣V(in)
v0

∣∣∣
∑

vj∈V(in)
v0

ρ
T(1)
v0

(v0, vj)

corr out(v0) = 1∣∣∣V(out)
v0

∣∣∣
∑

vj∈V(out)
v0

ρ
T(1)
v0

(v0, vj),

where ρT (vA, vB) is the correlation coefficient of the two time series s(vA, T) and s(vB, T). ‘Prior
speed drop ratio’ (psdr) is another speed-related independent feature. It measures the degree of
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Table 2. Description of the hyper-parameters used in sensitivity analysis.

Measures Hyper-parameters Default (min) Changes (min)

Incident duration Average period (short) in Equation (3) 5 5, 10, 15
Incident duration Average period (long) in Equation (3) 30 20, 30, 40
Incident duration δ in Equation (4) 30 [10, 50]
Congestion propagation level τ in Definition 3.5 30 [10, 50]
Speed drop ratio tbf in Equation (8) 60 [40, 80]

Table 3. Incident duration for the hyper-parameter changes in an average period.

Average period (long)

20 30 40

Average period (short) 5 91.17 91.30 91.27
10 87.25 87.42 87.01
15 86.07 85.37 85.02

a speed drop over tbf prior to an incident as

psdr := 1 −
min

(
s(v0, [(t

(rpt)
v0 − tbf ) : t

(rpt)
v0 ])

)
max

(
s(v0, [(t

(rpt)
v0 − tbf ) : t

(rpt)
v0 ])

) .
In addition, we consider the standard deviation of s(v0, [(t

(rpt)
v0 − tbf ) : t

(rpt)
v0 ]) to measure the

variability of speed data prior to incident occurrence.
(5) Source: We consider the source of an incident report as an operational feature. Depending on

the party detecting an incident, the time required to clean up the incident scene may vary (Park,
Haghani, and Zhang 2016). In our data, there were four report sources: traffic broadcasting, police
stations, national transport information centers, and infrastructure and transport authorities.

(6) Weather: Weather may have an impact on incident duration. We considered ‘weather code,’ ‘rain
amount,’ ‘rain probability,’ and ‘temperature’ in this study.

6.3. Sensitivity analysis

To validate the robustness of the three proposedmeasures with respect to hyper-parameter changes,
we performed a sensitivity analysis for different hyper-parameter values and analyzed the relative
changes of the proposed measures. The relative changes of the proposed measures were calculated
for differences in the hyper-parameter from the default values. The default values were determined
by domain experts.

Table 2 shows the experimental settings for the sensitivity analysis. For the incident duration,
we used two exponential moving averages to detect the incident start time. In Definition 3.3, expo-
nential moving average requires a hyper-parameter for an average period. Accordingly, two hyper-
parameters are used: one is for an exponential moving average with short-term speed patterns and
the other is for an exponentialmoving averagewith long-term speed patterns. In this sensitivity analy-
sis, we considered various hyper-parameter values for the average periods: 5, 10, 15min for short-term
speed patterns and 20, 30, 40min for long-term speed patterns. In addition, we considered changes
from the default values for other hyper-parameters, such as δ for the incident duration, τ for the
congestion propagation level, and tbf for the speed drop ratio, as shown in Table 2.

Table 3 shows the average duration of 1322 incidents for different combinations of two average
period lengths. The average incident duration does not change significantly for the changes in the
average period lengths.

Figure 6 shows the relative change of eachmeasure according to the various hyper-parameter val-
ues. The x-axis represents the difference of the hyper-parameter value from the default value and
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Figure 6. Relative changes of the three measures according to changes in hyper-parameters δ, τ , and tbf .

Table 4. Performance comparisons of prediction models in terms of MAPE.

Incident
duration

Congestion
propagation

level
Speed drop

ratio

LR 0.956 1.127 0.305
LASSO 0.933 1.028 0.364
Ridge 0.954 1.105 0.304
SVR 0.808 0.813 0.311
DT 1.055 0.548 0.383
RF 0.900 1.134 0.311
XGBoost 0.950 0.854 0.328
CatBoost 0.843 0.897 0.316
LGBM 0.894 0.831 0.306
MLP 0.937 1.324 0.332
Ensemble 0.873 0.820 0.325

the y-axis indicates the relative changes of the proposed measures. In general, the results confirm
the robustness of the proposed measures with respect to hyper-parameter changes, but it is recom-
mended that the value of δ in the incident duration (y(1)) be at least 30min. Otherwise, sd(s(v0, [t − δ :
t]) will fluctuate too much to detect the incident start time in a reliable manner.

6.4. Identifying influential features for traffic incident impacts

Suppose that fm is a prediction model for predicting y(m), m = 1, 2, 3, and y(m) = fm(X), where X
is a feature matrix containing the independent features in Table 1 for 1322 traffic incidents. These
independent features are normalized and used as prediction model features.

We used linear regression (LR), LASSO, ridge regression (Ridge), a support vector machine with a
radial basis function kernel (SVR), decision tree (DT), random forest (RF), XGBoost, CatBoost, LGBM,
andmultilayer perceptron (MLP) as prediction models. To achieve robust prediction performance, we
constructed individual ensemble models fm, m = 1, 2, 3 from the three best-performing prediction
models in terms of mean absolute percentage error (MAPE), as shown in Table 4. The incident data
instanceswere divided into 1200 used for training and 122 for testing. To achieve robustness and gen-
eralization, we performed 10-fold cross validation and selected the best-performing model for each
prediction model.

As a class of interpretable surrogate models G, we selected ridge regression models, which is the
default class suggestedbyRibeiro, Singh, andGuestrin (2016). Recall that ourgoal is tounderstandwhy
apredictionmodelmakes a certain prediction, using a local surrogatemodel according to Equation (9).
By using the local surrogate model generated by LIME, we can identify important features using
Equation (10). Figure 7 and Table 5 present the importance (Ij) and the relative importance (RIj) of
each feature in terms of the incident duration, congestion propagation level, and speed drop ratio. To
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Figure 7. Comparison of feature importance in terms of influence on incident duration, propagation level, and speed drop ratio. (a)
Feature importance for incident duration. (b) Feature importance for propagation level and (c) Feature importance for speed drop
ratio.
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Table 5. Results of LIME for feature importance.

Incident duration

Congestion
propagation

level Speed drop ratio

Categories Features Ij RIj(%) Ij RIj(%) Ij RIj(%)

Timestamp time of day 5.716 7.21 0.225 1.39 0.010 2.57
day of week 3.249 4.10 1.705 10.53 0.026 6.44

Road characteristics road type 1.649 2.08 0.246 1.52 0.007 1.82
incident road speed limit 2.983 3.76 0.274 1.69 0.024 5.92
incident road length 5.998 7.56 3.630 22.42 0.019 4.80
number of lanes 3.090 3.90 1.067 6.59 0.017 4.35

Network topology number of incoming roads 2.560 3.23 1.324 8.17 0.011 2.81
number of outgoing roads 2.577 3.25 0.825 5.10 0.017 4.38
in-degree centrality 2.788 3.52 0.670 4.14 0.012 3.13
out-degree centrality 2.429 3.06 0.218 1.35 0.009 2.22
closeness centrality 2.471 3.12 0.345 2.13 0.018 4.60
betweenness centrality 2.965 3.74 0.506 3.13 0.016 3.95
eigenvector centrality 2.184 2.75 0.286 1.77 0.009 2.22

Speed incoming correlation 9.880 12.46 0.540 3.34 0.018 4.48
outgoing correlation 2.601 3.28 0.506 3.13 0.030 7.58
prior speed drop ratio 2.217 2.80 0.456 2.82 0.075 18.89
volatility 3.366 4.24 0.873 5.39 0.012 2.96

Source information source 3.969 5.00 0.647 3.99 0.013 3.37
Weather weather code 5.517 6.96 0.382 2.36 0.016 3.93

rain amount 4.257 5.37 0.438 2.71 0.013 3.14
rain probability 2.820 3.56 0.351 2.17 0.013 3.39
temperature 4.015 5.06 0.677 4.18 0.012 3.06

calculate Ij and RIj, 30 perturbed instances were generated for each incident data instance to train the
local surrogate model.

For the incident duration, ‘incoming correlation’ contributes the most, with relative importance
of 12.46%. ‘Incident road length’ also contributes with 7.56% relative importance. These features are
highly related to the traffic capacity of incident roads and inflow traffic volume. Compared with the
outgoing road, inflow has more effect on the duration speed drop caused by the incident. In addi-
tion, weather code, which is an environmental incident factor, affects the duration with a relative
importance of 6.96%.

For the congestion propagation level, ‘incident road length’ contributes the most with a relative
importance of 22.42%, whereas ‘number of lanes’ contributes 6.59%. Interestingly, thismeans that the
lengthof the incident roadhas agreater influenceonour congestionpropagation level than thewidth.
Further, ‘number of incoming roads’ is amore important feature than ‘number of outgoing roads.’ This
is logical because congestion propagates onto the incoming roads.

For the speed drop ratio, ‘prior speed drop ratio’ is the most important feature, with 18.89% rela-
tive importance. This result appears obvious, but we would like to note that all independent features,
including ‘prior speeddrop ratio,’ are available at the timeof incident reporting. Therefore, ‘prior speed
drop ratio’ can be used as an important feature in predictive models.

Furthermore, individual local surrogate models in LIME were used to investigate the dynamics of
feature contributions according to the values of the incident impact measures. To determine how the
importance changes according to the values of each measurement, Figure 8 compares the average
importance values of two groups, respectively containing incidents having the five largest and five
smallest values for each measure. For the incident duration and congestion propagation level, the
difference in the average importance between the two groups is negligible, as shown in Figure 8(a,b).
However, for the speed-drop ratio, Figure 8(c) reveals that the average importance values between
the two groups exhibit significant differences. For example, ‘prior speed drop ratio’ has significantly
different levels of importance between the two groups. This is reasonable because ‘prior speed drop
ratio’ affects incidents with a large speed drop ratio more than those with a small speed drop ratio.
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Figure 8. Comparison of the average importance values between groups of incidents with the five largest and five smallest values.
(a) Feature importance for incident duration. (b) Feature importance for propagation level and (c) Feature importance for speed
drop ratio.
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Overall, the local interpretability of LIME enabled us to analyze feature importance at the individual
traffic incident level.

7. Conclusion and discussion

Identifying various aspects of incident impacts and obtaining prior knowledge regarding the critical
features contributing to each aspect are important tasks for both traffic operators and any corporation
that provides navigation services. Completing these tasks can reduce the influence of an incident and
provide drivers with alternative routes in real time. In this study, we proposed a newmethodology to
quantify incident impacts according to spatial, temporal, and speed aspects, and acquired reasonable
feature importance values contributing to each aspect by applying amethod called LIME to real traffic
incident cases in Seoul, South Korea.

However, some limitations exist involving the data used in this study. First, the data may contain
noise caused by different drivers, and it is difficult to define a purpose for each trajectory route (Choi
et al. 2020; Kan et al. 2019). Second, the data collected from thenavigation service are user-based; thus,
theymay not be representative of the traffic conditions on every road segment (Kan et al. 2019). In the
case of narrow alleys, there are many NaN values because the amount of trajectory data from users
traveling on such roads is insufficient and unreliable. Third, there is a lack of independent features that
explain the uniqueness of traffic incidents, such as the number of casualties or injuries, number of vehi-
cles involved, or number of lanes blocked. These are important independent features that distinguish
traffic incidents and have a close relationship with the resulting incident impacts (Park, Haghani, and
Zhang 2016). If more detailed incident data and precise speed data can be obtained, more accurate
prediction of incident impacts and more precise interpretation of the related feature importance val-
ues should be possible, whichwould aid in the development of traffic plans for mitigating the adverse
effects of traffic incidents.

Model transferability is an important issue. The proposed prediction models are transferable in
terms ofmodel forms (such as linear regression and ridge regression). However, attempting to transfer
the estimated model from another urban region is not recommended, because the model param-
eters were estimated directly using local traffic data. Incident impacts on traffic vary from place to
place, as they are a function of local conditions. Unlike other engineeringmodels, transportationmod-
els are known to be highly sensitive to local conditions (Rossi, Bhat, et al. 2014). For example, the
model parameters estimated using traffic data from Seoul cannot be used to predict the impacts of an
incident inNewYork. Therefore, the proposed approach is not recommended for spatial extrapolation.

Future research must consider complex situations that may occur in actual incident situations.
First, there may be secondary effects of congestion propagation. Drivers may select detour routes in
response to incidents, creating new areas of congestion. Second, if an incident occurs under recur-
rent severe congestion, the reliability of the proposedmeasures is reduced because the impact of the
incident can be offset. For example, the proposed measures may overestimate the incident duration
by not detecting the incident or estimating the incident recovery time to be later than it actually is.
Consequently, applicability of the proposed method can be limited to incidents that induced serious
congestion, such as cascading incidents. Future work could include the development of nonrecurrent
congestion measures for such complex situations.
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