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ABSTRACT
Music creation is difficult because one must express one’s creativity
while following strict rules. The advancement of deep learning
technologies has diversified the methods to automate complex pro-
cesses and express creativity in music composition. However, prior
research has not paid much attention to exploring the audiences’
subjective satisfaction to improve music generation models. In this
paper, we evaluate human satisfaction with the state-of-the-art
automatic symbolic music generation models using deep learning.
In doing so, we define a taxonomy for music generation models and
suggest nine subjective evaluation metrics. Through an evaluation
study, we obtained more than 700 evaluations from 100 participants,
using the suggested metrics. Our evaluation study reveals that the
token representation method and models’ characteristics affect sub-
jective satisfaction. Through our qualitative analysis, we deepen
our understanding of AI-generated music and suggested evalua-
tion metrics. Lastly, we present lessons learned and discuss future
research directions of deep learning models for music creation.

CCS CONCEPTS
• Applied computing → Sound and music computing; • Com-
puting methodologies → Neural networks; • Human-centered
computing → Empirical studies in HCI; User studies.
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1 INTRODUCTION
With the tremendous advancement of social media, the ability to
produce attractive content has become significant for both profes-
sional and novice content creators. Content creators should consider
not only their interests but also the preferences and likes of others
to allure more viewers. In addition to music-focused platforms [26],
video-focused services, such as TikTok [3], have fascinated a huge
number of users through new content types that combine video
and music. However, it is difficult to compose music that can satisfy
both content creators and the audience [34]. Since professional mu-
sic composition requires a great deal of skill and strong background
knowledge, novice users can barely make enjoyable musical con-
tent [62]. Social media platforms provide some features, including
a large variety of commercial music, to assist the users in selecting
a song best suited to their needs. However, it is time-consuming
and expensive to earn the right to use the music [55].

AI-basedmusic generation can be an alternative because it makes
the music composition process much easier and more convenient
for both professional and novice content creators [40]. With the
advancement of neural network architectures and the increased
interests in the role of AI in enhancing creative human activities,
more studies have focused on novel approaches to generating music
with AI, including autonomous music generation models [9, 14, 22],
and human-AI co-creation systems for music [19, 40, 41, 58].

Current AI music generation research has achieved great suc-
cess in the algorithmic aspect [27, 67, 77] and has diversified in
other aspects, including tasks and type of generated music [4–6, 25].
For instance, several studies have proposed novel frameworks or
improved model performance in terms of objective metrics, such
as efficiency or accuracy [29, 46]. However, few studies have dis-
cussed the significance of understanding the audience’ subjective
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satisfaction with AI-generated music [24]. Human satisfaction and
individual subjectivity are key components in determining the value
of music, as in the case of other types of artwork [21].

In this paper, we aim to explore how novice users perceive the
music created by the state-of-the-art symbolic music generation
models. We set our target users as novice users without profes-
sional musical knowledge who have a great interests in music,
since the aforementioned services aim to inspire novice users to ex-
press their creativity [60, 71]. To this end, we conduct the following
tasks. As AI music generation models have diversified in various
aspects, including generation tasks, type of generated music, and
backbone architecture [4, 25], we first survey previous symbolic
music generation models and subjective evaluation criteria. We
then derive nine metrics for evaluating AI music based on the col-
lected subjective criteria, including overall, creativity, naturalness,
melodiousness, richness, rhythmicity, correctness, structureness, and
coherence. Second, we conduct a comprehensive experiment, where
100 participants recruited online listen to the songs generated by
state-of-the-art music generation models (e.g., Music Transformer,
Transformer-GANs) with the MAESTRO dataset [23] and evalu-
ate the songs based on the derived metrics. We reproduce both
conditional and unconditional types of models for the experiment.
The conditional type means that a model needs an input song,
while unconditional type models do not need such input songs
for music generation. The experiment results indicate that human
satisfaction with each model has significant difference in several
metrics, including overall. Also, participants considermelodiousness
the most important, among the metrics. We also find that token
representations andmodels’ characteristics affect the subjective per-
ception of novice users. The qualitative analysis results show that
AI-generated music enriches user experience by inspiring creative
activities, complementing the experiences using other media (e.g.,
video), and stimulating human emotions, as real music does. Finally,
we present the lessons learned and implications for future studies
on music generation models and human satisfaction towards them.
To our knowledge, this is the first attempt to investigate how hu-
man perceive AI-generated music with comprehensive experiments
and subjective metrics.

The main contributions of this work include the following:
• Deriving the taxonomy on music generation models based
on voice, texture, task, and architectures,

• Developing of subjective metrics for AI music evaluation,
• Performing a comprehensive user study with four state-of-
the-art music generation models and 100 online participants,

• Lessons learned and discussion on future research directions.
In the next section, we introduce prior works related to our

research. In section 3, we characterize music generation models
based on the taxonomy of music. In section 4, we describe our
subjective evaluation metrics and baseline models. In section 5 and
6, we illustrate our user study and the result. Lastly, we represent the
lessons we learned regarding AI music generation models and their
subjective evaluation metrics and discuss future research direction.

2 RELATEDWORK
In this section, we introduce some prior works that discuss music
generation models and evaluation metrics.

2.1 Music Generation Models
Recent deep learning music generation models have diversified in
many respects. One standard that differentiates them is the level of
autonomy [4]. Some models are fully autonomous and require no
human intervention in the music composition process. For instance,
Dong et al. [14] proposed a fully autonomous music generation
framework that creates multi-track music from scratch. There are
also various human-AI co-creation methods that help people create
music. Some studies have addressed how music generation systems
interact with the users. For example, Suh et al. [58] found that AI
played a role in the social dynamics among human composers. Frid
et al. [19] proposed a user interface that enhances the interactivity
between AI and human composers. Louie et al. [40] pointed out
that users have different level of ability to create music, and present
AI-steering tools for novices.

Another important standard by which to characterize music
generation models is token representation [4, 5]. Models use ei-
ther audio or symbolic representations for their input and output.
While audio-representation models deal with continuous variables,
symbolic music generation models handle discrete variables [4]. In
addition, symbolic music generation models can be divided into
two types: image-based and language-based. Image-based methods
include representations such as MIDI and pianoroll [15]. In con-
trast, language-based approaches contain representations such as
MIDI-like event [29], REMI [31], and CP [27].

Music generation models have also developed with the advance-
ment of diverse neural network architectures. In particular, various
music generation models are based on recurrent neural network
(RNN) [8, 22, 75], long short-term memory (LSTM) [18, 43, 56],
autoencoder [38, 59, 74], transformer [7, 29, 37], and generative
adversarial network (GAN) [35, 51, 77]. Although several studies
have proposed novel music generation models, there is potential to
further discuss human satisfaction with AI-generated music and
improve models regarding the satisfaction.

2.2 Evaluation Metrics
Several studies have discussed evaluation methods for AI-generated
music. Although various studies have highlighted the significance
of subjective evaluation in music generation, they have also men-
tioned the difficulty of evaluating subjective satisfaction through
listening tests because such tests are time-consuming and the ex-
perimental setting can be affected by several variables (e.g., partici-
pants’ characteristics, questions phrasing, etc.) [4, 5, 70]. For these
reasons, prior research on the evaluation of AI-generated music
has paid more attention to objective evaluation than subjective
evaluation [50, 70]. In particular, the objective metrics include pitch-
related and rhythm-related ones [13, 45, 50, 67].

However, the objective evaluation focuses on model-centric ac-
curacy, without considering human satisfaction with the generated
output. Therefore, a growing number of studies emphasize the
significance of the subjective evaluation of AI-generated mu-
sic [24]. The Turing test, one of the earliest methods for evaluating
human satisfaction with machine-generated music, asks people to
identify whether the music was generated by a human or a ma-
chine [2, 22, 28, 30, 37, 54]. Various other types of listening tests
including preference questions have been developed.
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Moreover, some studies have suggested detailed subjective eval-
uation metrics. For example, Wu et al. [67] proposed four metrics
(overall quality, impression, structureness, and richness). However,
they compared AI-generated songs with human-composed ones
without comparing the songs generated using different AI models.
Carnovalini et al. [6] suggested creativity as another criterion, but
the study did not contain experimental designs or evaluation results.
Dong et al. [14] suggested subjective evaluation metrics (harmony,
rhythm, musical structure, coherence, and overall rating), but that
study evaluated only a proposed model, without comparing it to
the generated music pieces generated using other models. Further-
more, no prior research has asked participants’ opinions on the
AI-generated music or explored human perception with the music.
Therefore, our research suggests subjective evaluation metrics, com-
pare AI-generated songs created using various models, and discuss
the participants’ opinions of the generated music and evaluation
criteria. Through these efforts, we deepen our understanding of
AI-generated music and subjective evaluation criteria.

3 PRELIMINARY STUDY
To understand the characteristics of music generation models and
select the ones for our experiment, we take the following steps.

3.1 Characterizing Music Generation Models
To begin with, we review several surveys on music generation and
list up existing music generation models. Studying prior surveys,
we find that they used various standard to classify the models
and they do not contain experiment result to compare the model
performance or human perception with the generated music of each
model. In order to address this issue, we delineate the taxonomy of
AI music generation models based on the number of voices, musical
texture, generation task, and architecture, to select the baseline
models for our experiment.

As a result, we categorize 40 music generation models based
on these criteria, as shown in Table 2. Firstly, we classify the mod-
els into two groups depending on the number of voices in gener-
ated music [44]:single-voice and multi-voice. Single-voice music
refers to music played with a single instrument, while multi-track
music refers to music pieces that have a multi-track [4]. Among the
40 models studied, 23 of them generate single-voice music, 16 mod-
els propose multi-voice music, and one provides both. Second, there
are four musical textures: monophony , polyphony , homophony ,
and heterophony. All the studies focus on generating monophonic
or polyphonic music. These music generation models can then be di-
vided into two groups based on the generation task of each model
(i.e., conditional and unconditional music generation). Conditional
music generation models uses a musical fragment (e.g., a musical
theme) as an input to condition the generative [53]. On the other
hand, unconditional music generation models create music from
scratch [27]. Each model conducts conditional or unconditional
music generation tasks, and some research has proposed models
for both tasks. Various neural network architectures are used as
the backbones of music generation models. The 40 models that we
introduce are based on either one of the recurrent neural network
(RNN), long short-term memory (LSTM), variational auto-encoder
(VAE), transformer, and generative adversarial network (GAN).

3.2 Selecting Models for the Experiment
Table 1 represents the baseline models for our experiment. Among
the 40 models, we first exclude the ones that generate only mono-
phonic music because most of the 40 models generate polyphonic
music. Also, we focus on single-voice music because we aim to un-
derstand the human perception with AI-generated music rather
than explore various features of AI music composition models,
such as accompaniment generation. In the same context, we ex-
clude some of conditional music generation models that utilize
anything other than a short music piece as an input, such as emo-
tion class [32]. Then, we select the state-of-the-art models among
them. To evaluate the human satisfaction with both unconditional
and conditional music generation models, we select three models
for each task. Consequently, we finalize the AI music generation
models for our experiment, as shown in Table 1.

4 METHOD
In this section, we introduce the dataset, baseline models, and sub-
jective evaluation metrics for our experiment. In particular, we
highlight the major differences between music generation models.
Also, we address how we categorize and suggest our subjective
evaluation metrics by reviewing 40 music generation models.

4.1 Dataset and Models
In this experiment, we use the MIDI and Audio Edited for Synchro-
nous TRacks and Organization(MAESTRO) dataset [23]. It contains
about 200 hours of piano performances recorded from the Interna-
tional Piano-e-Competition. Additionally, MAESTRO consists of
paired audio and MIDI files and the metadata files for each pair. The
metadata includes information about the composer, title, year of per-
formance, and duration of each music piece. The MAESTRO dataset
has been utilized in several music generation studies [10, 46, 63].

As shown in Table 1, we select threemodels for unconditional and
conditional music generation task, respectively. For unconditional
music generation task, we use Music Transformer [29], Compound
Word Transformer [27], and Transformer-GANs [46] as baseline
model. For conditional music generation task, we use Music Trans-
former [29], Theme Transformer [53], and Transformer-GANs [46].
In the evaluation study, we provide songs generated from the fol-
lowing baseline models to compare human perception with music
generated by each model. As shown in Table 1, the baseline models
have major differences in terms of their tasks, token representation
methods, and characteristics in model.

4.2 Evaluation Metrics
Table 3 represents how we categorize subjective evaluation metrics
of the 40 music generation models. First, we collect all subjective
evaluation metrics that have been used in the 40 music generation
models. We investigate each metric and its definitions to categorize
the metrics. Among the 40 models, 10 did not conduct any listening
tests to evaluate users’ subjective satisfaction [17, 33, 42, 48, 49, 56,
57, 61, 65, 72]. Hadjeres et al. [22] only conducts the Turing test
without evaluating the songs based on specific metrics. Muhamed et
al. [46] includes a ranking type question that asks the participants to
order the music pieces based on their preference. The other studies
evaluate human satisfaction based on specific subjective evaluation
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Table 1: Baseline Models
Model Music Transformer Compound Word Transformer Transformer-GANs Theme Transformer
Task Unconditional, Conditional Unconditional Unconditional, Conditional Conditional

Token Representation MIDI-like, event-based [47] Compound Words (CP) MIDI-like, event-based [47] Note, Metric, Theme-related tokens
Model Characteristics Relative-attention Transformer decoder for different types of tokens Adversarial losses for long-term coherence Theme-conditioned Transformer

Table 2: Music Generation Models
Voice Texture Task Architecture Model

Single

Monophony Unconditional
RNN [65]
VAE [52]
GAN [35]

Conditional GAN [69]

Polyphony

Both Transformer [27, 29]
GAN [46]

Unconditional

RNN [22]
LSTM [56]
VAE [66]

Transformer [7, 72, 73]

Conditional

RNN [8]
LSTM [9, 18, 43]
VAE [59, 74]

Transformer [31, 68]
[32, 49, 53]

Multi Polyphony

Both GAN [14, 39]

Unconditional

VAE [38]
Autoencoder [1, 61]
Transformer [12, 67, 73]

GAN [16]

Conditional

RNN [75]
VAE [42, 57]

Transformer [17, 33, 48]
GAN [51, 77]

metrics. In total, there are 39 unique metrics. We categorize the
metrics into 14 groups based on their definitions, as shown in
Table 3. We exclude theme-specific (e.g., theme repetition, theme
timing [53]) or emotion-related metrics (e.g., valence, arousal [18,
32]). Additionally, we rule out the metrics that appeared only once
(e.g., singability [77]). Then, we add one criterion(creativity), since
several prior research emphasize the role of AI to boost human
creativity in music composition [6, 41]. Consequently, we have
nine subjective evaluation metrics and their definitions as follows:
For unconditional music generation models, we utilize eight criteria:
overall, creativity, naturalness, melodiousness, richness, rhythmicity,
and structureness. For conditional music generation models, we use
the eight criteria above in addition to a ninth criterion: coherence.
For both tasks, we utilize 7-point Likert scale.

• Overall: What is your overall satisfaction with the music?
• Creativity: Is the music piece novel, valuable, and original?
• Naturalness: Does the piece sound like an expressive human
performances?

• Melodiousness: How musical and harmonious is the piece?
• Richness: How diverse and interesting is the piece?
• Rhythmicity: Does the music have a unified rhythm?
• Correctness: Does the music play with any technical glitch
(e.g., a sudden pause)?

• Structureness: Are there any structured patterns, such as
repeating themes or the development of musical ideas?

• Coherence: Is the conditionally generated piece similar to
the reference?

We have two goals regarding these subjective evaluation metrics.
First, we aim to usemetrics that help us to evaluate various elements

of music. To this end, we include not only the metrics for music
itself(i.e., overall, creativity,melodiousness, richness, rhythmicity, and
structureness) but also the metrics only for AI-generated music(e.g.,
naturalness, correctness, and coherence). Second, our user study aims
to evaluate the satisfaction of novice users without professional
experience or education in music. Therefore, we intend to provide
clear definitions that are easy for novice users to understand.

5 USER STUDY
To evaluate human perception with the generated music pieces, we
conducted a user study of 100 participants. The user study aims
to understand how people perceive the generated songs based on
the suggested criteria. As shown in Fig. 1, there were two sepa-
rate tests in the experiment, one to evaluate human satisfaction
with unconditional music generation, and the other for conditional
music generation. We used eight criteria for unconditional music
generation tests and nine for conditional music generation tests.

5.1 Study Design and Procedure
For the user study, we created a questionnaire via Google Forms.
As shown in Fig. 1, we used three models for unconditional and
conditional music generation test, respectively. To select the music
clips for the user study, we first generated 10 songs using each
model. Then, we selected the three most satisfying songs from each
model. Before conducting the user study, we conducted an internal
test with three of the authors to check whether the questionnaire is
clear to novice users without professional knowledge or experience
in music. Also, to ensure that the overall test is completed within
an hour, thereby preventing auditory fatigue in the participants,
we provided three songs from each model. We provided full com-
pensation, $9.96 per hour, which is above current hourly minimum
wage($7.25 [64]), to every participant who finished the user study.

Unconditional music generation test provide nine music pieces
because they do not need theme (short music pieces) to generate
the music. On the other side, conditional music generation test
include nine music pieces and nine theme, because they need theme
to generate the music. As we trained the models by MAESTRO
dataset [23], the generated songs are piano music. Each music piece
is between 40 seconds and 1 minute in length, long enough that
participants can feel themusic and short enough to prevent auditory
fatigue. Fig. 1 summarizes the data collected from the user study.

Fig. 2 represents the procedure of our user study. As shown in
Fig. 2, the user study includes three steps: demographic survey to
gather participants’ characteristics, a listening test to evaluate the
generated songs based on our proposed criteria, and a post survey
to understand participants’ opinions on the criteria. First, partici-
pants read the goal of the user study: to gain an understanding of
human satisfaction with AI-generated songs. Then, they read the
restrictions, compensation details, tutorial, and our institution’s
ethics guidelines. We informed that the songs are generated by
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Table 3: Categorizing Subjective Evaluation Metrics
Category Metrics Definition Models

Overall Overall N/A [14, 16, 27, 32, 39, 46, 53, 67, 73]
Which music piece has the best overall musicality? [66, 74]

Melodiousness

Melody N/A [1, 38, 59, 68]

Musical Which they thought was more musical? [29, 52]
Are the music notes’ relationships natural and harmonious? [77]

Harmonious N/A [1, 16, 29, 39, 51, 59, 68]
Does the music clip have pleasant harmony? [14]

Naturalness

Naturalness N/A [59]
Real How realistic is the sequence? [35, 69]

Humanness Does the piece sound like expressive human performances? [27]
How well it sounds like a piece played by human? [32]

Coherence Coherence Is the music clip coherent? [14]
Fidelity Is the conditionally generated piece similar to the reference, from which the condition lead sheet was taken from? [27]

Correctness Correctness Perceived absence of composing or playing mistakes? [27]
Integrity N/A [38]

Structuredness Structureness

N/A [38, 53, 67, 73]
Whether there are structural patterns such as repeating themes or development of musical idea [27]
Does the accompaniment flow dynamically with the structure of the melody? [74]
Does the music clip have clear musical structure? [14]
To what extent the music sample exhibits an organizational structure? [75]

Rhythmicity Rhythmicity
N/A [1, 16, 38, 39, 59, 68, 73]
Does the music clip have unified rhythm? [14]
Does the music sound fluent and pause suitably? [77]

Richness Interesting How interesting is the song? [32, 35, 69]
Diversity and interestingness [27, 67]

Figure 1: User Study and Data Collection

Figure 2: The Procedure of User Study

AI and participants need to listen to the full music piece from the
beginning to the end of each song. We noted that the questionnaire
has a blank audio clip for each question that contained no sound
to prevent insincere answers. We exclude any evaluation that con-
tains insincere answer (e.g., giving a score to muted clip), and it
was announced to the participants before they start the user study.

Consenting to the aforementioned restrictions, compensation
details, tutorial, and the ethics guideline, the participants move
on to demographics survey. As shown in Fig. 2, the demographics
survey contain seven multiple-choice questions, including their age

(D1), gender (D2), education (D3), interest in music (D4–D5), and
level of background knowledge of music (D6–D7).

Next, the participants move on to the listening test. As shown
in Fig. 1, we designed two separate questionnaires, one each for
unconditional and conditional music generation. A participant an-
swer to either questionnaire. As shown in Fig. 2, the listening test
consists of three sets. In each set, participants first listen to four
songs and mark their overall satisfaction with each song (M1). Next,
the participants state the reason for their score in minimum of 100
words (S1). They were instructed to share their reasons for each
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Table 4: Song comparison of Unconditional and Conditional Music Generation Models

(a) Unconditional

Model Music Transformer Compound Word Transformer Transformer-GANs
Metric Song 1 Song 2 Song 3 p-value Song 1 Song 2 Song 3 p-value Song 1 Song 2 Song 3 p-value
Overall 4.883 ± 1.617 3.674 ± 1.307 5 ± 1.447 0.735 4.791 ± 1.250 5.303 ± 1.249 4.977 ± 1.229 0.497 3.209 ± 1.824 2.558 ± 1.403 3.302 ± 1.862 0.806

Creativity 4.163 ± 1.711 3.791 ± 1.608 4.674 ± 1.639 0.163 4.023 ± 1.607 4.791 ± 1.536 4.244 ± 1.428 0.539 3.883 ± 1.943 3.302 ± 1.622 3.884 ± 1.820 1
Naturalness 5.163 ± 1.613 3.744 ± 1.630 5 ± 1.479 0.659 4.791 ± 1.322 5.512 ± 1.301 4.953 ± 1.219 0.592 3.070 ± 1.922 2.628 ± 1.599 3.372 ± 1.779 0.439

Melodiousness 5.023 ± 1.811 4 ± 1.510 5.116 ± 1.401 0.797 4.791 ± 1.322 5.814 ± 1.167 5.256 ± 1.241 0.102 3.419 ± 1.890 2.767 ± 1.612 3.512 ± 1.703 0.809
Richness 4.488 ± 1.690 3.535 ± 1.515 4.628 ± 1.599 0.702 4.323 ± 1.667 5.349 ± 1.310 4.395 ± 1.349 0.833 3.791 ± 1.824 3.047 ± 1.540 3.837 ± 1.697 0.901

Rhythmicity 5.023 ± 1.811 3.977 ± 1.548 5.047 ± 1.293 0.945 4.698 ± 1.593 5.628 ± 1.239 5 ± 1.078 0.312 3.465 ± 1.676 3.047 ± 1.698 3.256 ± 1.831 0.581
Correctness 5.163 ± 1.816 4.209 ± 1.719 4.884 ± 1.687 0.472 5.023 ± 1.635 5.302 ± 1.607 5.256 ± 1.511 0.501 3.512 ± 1.945 3.395 ± 1.857 3.651 ± 1.915 0.737
Structureness 4.581 ± 1.701 4.093 ± 1.428 5.140 ± 1.340 0.098 4.628 ± 1.525 5.302 ± 1.267 4.860 ± 1.357 0.450 3.047 ± 1.670 3.162 ± 1.791 3.489 ± 1.717 0.243

(b) Conditional

Model Music Transformer Transformer-GANs Theme Transformer
Metric Song 1 Song 2 Song 3 p-value Song 1 Song 2 Song 3 p-value Song 1 Song 2 Song 3 p-value
Overall 3.675 ± 1.439 4.525 ± 1.533 3.7 ± 1.503 0.942 4.075 ± 1.679 2.725 ± 1.533 3.55 ± 1.413 0.213 5.325 ± 1.292 4.975 ± 1.541 5.7 ± 1.030 0.155

Creativity 3.85 ± 1.441 5.15 ± 1.526 4.25 ± 1.392 0.252 4.05 ± 1.774 3.975 ± 1.725 3.775 ± 1.620 0.651 5.05 ± 1.303 4.7 ± 1.536 5.2 ± 1.520 0.476
Naturalness 3.775 ± 1.589 5.075 ± 1.233 4.05 ± 1.612 0.443 4.425 ± 1.745 3.025 ± 1.537 3.65 ± 1.652 0.645 5.125 ± 1.503 4.9 ± 1.530 5.275 ± 1.265 0.048

Melodiousness 3.925 ± 1.618 5.025 ± 1.508 4.125 ± 1.806 0.605 4.475 ± 1.732 3.375 ± 1.713 3.75 ± 1.639 0.226 5.25 ± 1.356 5.45 ± 1.413 5.625 ± 1.336 0.065
Richness 3.9 ± 1.7 4.8 ± 1.676 4.175 ± 1.412 0.458 3.85 ± 1.476 3.975 ± 1.851 3.9 ± 1.530 0.198 4.775 ± 1.475 5 ± 1.581 5.225 ± 1.573 0.891

Rhythmicity 3.55 ± 1.923 4.9 ± 1.513 3.525 ± 1.565 0.950 4.075 ± 1.794 3.475 ± 1.673 3.825 ± 1.626 0.261 5.3 ± 1.327 5.475 ± 1.284 5.625 ± 1.218 0.518
Correctness 3.487 ± 1.816 4.975 ± 1.423 4.2 ± 1.676 0.065 4.475 ± 1.612 3.75 ± 1.813 4 ± 1.658 0.657 5.05 ± 1.564 5.275 ± 1.499 5.2 ± 1.418 0.221
Structureness 3.975 ± 1.768 4.95 ± 1.532 3.875 ± 1.452 0.790 4.5 ± 1.466 3.4 ± 1.562 3.775 ± 1.508 0.305 5.25 ± 1.337 5.325 ± 1.421 5.55 ± 1.094 0.04
Coherence 4.225 ± 1.796 5.3 ± 1.363 4.025 ± 1.651 0.604 4.65 ± 1.681 3.775 ± 1.943 4.15 ± 1.783 0.479 5.325 ± 1.367 5.35 ± 1.130 5.525 ± 1.248 0.227

evaluation, including the highest and lowest scores. Then, partici-
pants listen to the four songs again and evaluate their satisfaction
based on our suggested criteria (M2 – M5). The definition of each
evaluation criteria were provided to the participants.We use 7-point
Likert scale for every question in the listening test. As shown in
Fig. 2, participants answer questions in all three sets, each of which
contain music generated by one model. Overall, each participant
listen to and evaluate their satisfaction with nine songs generated
using three models, by answering to 15 multiple choice questions
and three short answer question. After finishing the listening test,
the participants move on to the post survey.

The post survey aims to increase our understanding of partici-
pants’ opinions on the evaluation criteria. As Fig. 2 indicates, partic-
ipants answer to a short answer question and two multiple choice
questions in the post survey. The short answer question (S2) asks
participants to state their opinions of the criteria or suggest their
own criteria for AI-generated music in minimum 100 words. It is de-
signed to identify whether participants think the suggested criteria
are sufficient to evaluate their satisfaction with the generated songs.
The two multiple choice questions ask participants mark the most
effective criterion (M6) or the least effective one (M7) to overall. In
summary, participants answer to 21 multiple choice questions and
six short answer questions during listening test and post survey.

5.2 Participants
We recruited 100 participants online (Prolific) for the experiment
(Fig. 1). Since the experiment has two separate tests, unconditional
and conditional music generation, 50 participants took each test.
The participants were between the ages of 18 and 64 (M=26.14,
SD=5.38, 42 female, 41 male). Among the 83 participants who pro-
vided sincere answers, none of them are professional musician. 26
of them have never learned how to play musical instruments, 47
participants have learned how to play at least one musical instru-
ments, and 10 participants have learned how it from a professional
musician. In addition, 82 out of 83 participants have experienced
some type of music-related activities including listening to music
(𝑁=71), attending music concert or festival (𝑁=47), playing musical
instruments (𝑁=29), and creating music (𝑁=5), while multiple selec-
tions were available. In consequence, we found that the participants
are novice users with little knowledge in music, but at the same
time, they have great interests in music.

6 RESULT
In this section, we present the result of quantitative and qualitative
analysis of the user study. The results show that the characteristics
of each model affect to human satisfaction with each metrics. For
qualitative analysis, three authors reviewed all open-ended text
responses and identified the evaluationmetrics through the iterative
discussion process.

There were no significant differences among the three songs from
each model. To ensure a fair comparison among the three models,
we checked whether the three songs generated using each model
differed significantly regarding participants’ satisfaction. To this
end, we asked the participants to indicate their satisfaction with ev-
ery metric for every song in the evaluation study. Table 4 (a) shows
the song comparison result of unconditional music generation
models. As Table 4 (a) shows, the three songs generated from Music
Transformer do not differ significantly from each other in any of
the eight metrics, including overall (𝑝=0.735). Likewise, the three
songs generated using Compound Word Transformer (𝑝=0.498)
and Transformer-GANs (𝑝=0.806) also do not differ significantly
in any of the metrics including overall. Therefore, for each model,
the three songs generated do not differ significantly regarding any
metric. Table 4 (b) shows the differences among the three songs
generated by each conditional music generation models. Table
4 (b) shows that neither the three songs generated by Music Trans-
former (𝑝=0.943), nor the three generated by Transformer-GANs
(𝑝=0.213) differ significantly from each other in any of the nine met-
rics. In contrast, the three songs generated by Theme Transformer
have significant difference in naturalness (𝑝=0.049) and structure-
ness (𝑝=0.040), but not in overall (𝑝=0.155). Based on these results,
to compare human perception towards three models, we used the
evaluations of all three songs generated by each model rather than
choosing one song from each model.

Highlighting the co-occurrence relationship between different types
of tokens enriches the melody. Compound Word Transformer is
distinct from the other models because it considers different types
of tokens, thereby better reflecting the role of each token type
in music generation. As Figure 3 (a) shows, our results support
the strength of this model in this regard. While one-way ANOVA
test showed that the three models differ significantly from each
other in terms ofmelodiousness, Tukey post-hoc analysis found that
CompoundWord Transformer (`=5.287, SD=1.313) has significantly
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Figure 3: Satisfaction with Unconditional and Conditional Music Generation Models (1–7 Likert scale).

higher satisfaction in melodiousness than both Music Transformer
(`=4.713, SD=1.662, 𝑝=0.0117) and Transformer-GANs (`=3.233,
SD=1.772, 𝑝< 0.01). Furthermore, the qualitative analysis identified
the metric receiving the most positive feedback as melodiousness
(𝑁=25), with abundant comments praising the melodiousness of
Compound Word Transformer. For example, 𝑃𝑢 22 mentioned that
“The melody was super nice. I would listen to the song the whole day if
I could.”, while 𝑃𝑢 2 stated that “It felt very ‘rich’, with a good low-end
presence and very nice, mellow melody”. The results indicate that
Compound Word Transformer achieves its goal of capturing and
reflecting the co-occurrence relationships among different types of
tokens to generate music in which listeners can feel a rich melody.

Considering the relative differences between musical dimensions
creates rich songs, like human-composed music. Music Transformer
recognizes that there are multiple dimensions in music and aims to
reflect the relative differences among those dimensions in the music
it generates. Therefore, the model captures the various relationships

among different musical elements and uses them to generate rich
songs. Our quantitative and qualitative results support the strength
of this model in this regard. As Fig. 3 (a) shows, Music Transformer
(`=4.217, SD=1.675) received high score for richness in the uncon-
ditional music generation test. Tukey post-hoc analysis found that
the model’s richness score does not differ significantly from Com-
poundWord Transformer (`=4.690, SD=1.524, 𝑝=0.057), but is signif-
icantly higher than those of Transformer-GANs (`=3.558, SD=1.729,
𝑝=0.004). In addition, several participants (𝑁=14) expressed satis-
faction with Music Transformer’s its richness, saying, “The songs
have a wide range of sounds” (𝑃𝑢 33), and “Different note heights
added some richness to the sound” (𝑃𝑢 21). Furthermore, we found
that this degree of richness enabled people to feel that the songs
were natural. As Fig. 3 (b) shows, Music Transformer received high
naturalness in both unconditional (`=4.636, SD=1.698) and condi-
tional (`=4.3, SD=1.590) music generation test, although in uncondi-
tional test, the model’s score did not differ significantly from those
of Compound Word Transformer (`=5.085, SD=1.398, 𝑝=0.0736).
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Meanwhile, Music Transformer earned significantly higher natu-
ralness than Transformer-GANs in both unconditional (`=3.024,
SD=1.798, 𝑝<0.001) and conditional (`=3.7, SD=1.754, 𝑝=0.0114)
test. Participants supported the results with comments such as, “I
wouldn’t be able to find a difference between music played by an AI
and music played by a real human.” (𝑃𝑢 41) and even “the songs can
break into the commercial music industry” (𝑃𝑢 15).

Compact and diverse music development from one phrase to an-
other enhances coherence. Transformer-GANs points out that the
quality of music generated using an autoregressive model decreases
when the model generates longer sequences. To address this issue,
Transformer-GANs uses adversarial losses to maintain coherence
in longer sequences. As a result, it can prevent songs from contain-
ing overly repetitive phrases or inconsistent development of their
music. Our results support the strength of this model in this regard.
As Fig 3 (b) shows, the model received the highest score for co-
herence (`=4.192, SD=1.841) in conditional music generation test.
Tukey post-hoc analysis found that the model received comparable
satisfaction in coherence to Music Transformer (`=4.517, SD=1.708,
𝑝=0.2703), as the two did not differ significantly. The participants’
opinions were also in agreement with our qualitative analysis. For
example, 𝑃𝑐 28 explained that he gave the highest overall score to
Transformer-GANs because of “the coherence of the music”. Inter-
estingly, several participants in the unconditional music generation
test commented on the song’s coherence even though we did not
provide coherence as a metric in that test. These results indicate
that Transformer-GANs achieves its aim of generating coherent
music in longer sequences. As two participants noted, “They had
such a coherence” (𝑃𝑢 24) and, “It was played quite orderly” (𝑃𝑢 27).

Theme-based conditioning magnifies structureness and melodious-
ness. Theme Transformer uses theme-based conditioning, which
uses the music fragments that appear multiple times in the training
set as input. To generate the next music sequence, it uses separate
decoders for previously generated music sequences and the the pro-
vided conditions. As a result, Theme Transformer well reflects the
theme to generate continuing sequences bymaking variations while
preserving the theme. Our quantitative results support the model’s
the strength in this regard. As Fig. 3 (b) shows, Theme Transformer
(`=5.157, SD=1.498) received significantly higher scores in struc-
tureness thanMusic Transformer (`=4.267, SD=1.662, 𝑝<0.001) and
Transformer-GANs (`=3.892, SD=1.580, 𝑝<0.001). Our qualitative
analysis also found that theme-based music representation is more
effective than prompt-based one in providing structureness. Sev-
eral participants (𝑁=9) cited the songs’ structureness in comments,
including “a beautiful structure” (𝑃𝑐 19) and, “It was nicely composed;
structurally it felt absolutely professional” (𝑃𝑐 27).

Furthermore, we found that Theme Transformer’s model char-
acteristics also have a positive effect on melodiousness. As Fig. 3
(4) shows, the model received outstanding score for melodious-
ness (`=5.442, SD=1.337), the highest score of all items regard-
ing all models in both the unconditional and conditional test. Its
score for melodiousness is significantly higher than those for Mu-
sic Transformer (`=4.358, SD=1.717, 𝑝<0.001) and Transformer-
GANs (`=3.867, SD=1.765, 𝑝<0.001). Several participants (𝑁=16)
commented on its melodiousness, including one who said, “The

songs had a nice melody. They actually had some repeating patterns,
and it sounded pretty cohesive” (𝑃𝑐 28).

7 LESSONS LEARNED AND DISCUSSION
In this section, we elaborate on the lessons learned and discussion
on AI-generated music and subjective evaluation criteria.

AI-generated music inspires creative activities. Creative activities
include both musical and non-musical activities, such as writing,
studying, and working. We found that the AI-generated songs in-
spire participants’ musical creativity, including writing lyrics or
dancing. For example, participants said that the songs created “a de-
sire to add a piece of lyrics to it” (𝑃𝑢 17) and “to move my feet or mime
along with it” (𝑃𝑢 14). Furthermore, we found that AI-generated
music help people concentrate and focus when needed, such as
when studying or reading (𝑃𝑢 5). Another participant noted “This
kind of music is perfect when you are working on something that
requires creativity and focus.” (𝑃𝑢 41). Therefore, our results indicate
that AI-generated music can boost several types of creative activi-
ties, including both musical and non-musical ones. In this context,
exploring ways to enhance the creativity using various methods,
including an interactive interface [19, 40, 41] could be a solution.

People want more controllability in AI music generation. We found
that the context in which users listen to AI-generated music and
their personal preferences affect their level of satisfaction with the
songs. For example, 𝑃𝑢 18 thought, “I would be more likely to listen
to the song in another circumstance”, while 𝑃𝑢 3 preferred “songs
with more instruments” to those with a single instrument (e.g., pi-
ano). Therefore, providing options that enable users to select the
listening circumstances or features of the music could improve
human satisfaction with AI-generated music. Consequently, we
can expect the models to include more controllability. In particu-
lar, we could enable users to freely select the tempo, pitch, genre,
instruments, or length of music based on their circumstances and
personal preferences. For example, users could select fast-tempo
music before working out. Co-creation systems and interfaces for
human-AI music composition (e.g., [40, 41]) can be beneficial be-
cause they enable users to customize the generated music based
on their needs. Diverse options for enhancing users’ control of the
music composition process can better reflect users’ contexts and
preferences, thereby enriching their experiences.

AI-generated music enrich the experiences using other media. We
found that people AI-generated music stimulate other sensory ex-
periences (e.g., visual), as 𝑃𝑢 26 stated: "I can well imagine them
being used in the soundtrack of a game or movie though, with the
right setting". Moreover, people express higher satisfaction with
the songs that remind them of visual scenes, including "The best
score was for the one that made me feel like I was on a movie, like it
could belong to the soundtrack of a period movie" (𝑃𝑐 31). The results
show the potential of AI-generated music as background music for
visual contents, including videos. Recently, several studies propose
methods link visual and auditory experience: generating natural
sound for in-the-wild videos [76], generating music from musical
instrument playing video [20], or generating 3D dance movement
from music [36]. Meanwhile, fewer studies propose methods to
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Table 5: What is the most effective criteria?
(a) Total (b) Unconditional (c) Conditional

User’s Expectation Actual Responses User’s Expectation Actual Responses User’s Expectation Actual Responses
1 Melodiousness (𝑁=28) Melodiousness (𝑁=153) Melodiousness (𝑁=18) Melodiousness (𝑁=87) Naturalness (𝑁=13) Melodiousness (𝑁=66)
2 Naturalness (𝑁=16) Naturalness (𝑁=98) Rhythmicity (𝑁=6) Rhythmicity (𝑁=47) Melodiousness (𝑁=10) Naturalness (𝑁=52)
3 Rhythmicity (𝑁=13) Rhythmicity (𝑁=96) Richness (𝑁=6) Naturalness (𝑁=46) Rhythmicity (𝑁=7) Rhythmicity (𝑁=49)
4 Richness (𝑁=10) Creativity (𝑁=70) Creativity (𝑁=6) Creativity (𝑁=43) Richness (𝑁=4) Creativity (𝑁=27)
5 Creativity (𝑁=7) Structureness (𝑁=61) Naturalness (𝑁=3) Richness (𝑁=36) Structureness (𝑁=3) Structureness (𝑁=25)
6 Structureness (𝑁=6) Richness (𝑁=51) Structureness (𝑁=3) Structureness (𝑁=36) Coherence (𝑁=2) Correctness (𝑁=20)
7 Correctness (𝑁=1) Correctness (𝑁=46) Correctness (𝑁=1) Correctness (𝑁=26) Creativity (𝑁=1) Coherence (𝑁=19)
8 N/A N/A N/A N/A Correctness (𝑁=0) Richness (𝑁=15)

generate background music for videos [11]. Through the our eval-
uation study, we can expect that AI-generated music can be used
as soundtracks for a visual experience, such as a movie or a game,
thereby enrich users’ experience of other media.

Melodiousness is the most effective criterion, while Naturalness
is still one of the most important ones. Table. 5 shows the most ef-
fective criteria based on the users’ expectations and their actual
responses. To figure out their expectations, we ask participants to
select a criterion that they think is the most effective one to the
overall satisfaction in our post survey questionnaire (Fig.2 (M6)).
To discover the criterion that affects the most in reality, we count
the number of mentions about the criterion. When counting the
number, we include both positive and negative mentions because
they all indicate that participants recognize that criterion in music.
As shown in Table. 5, melodiousness wins all chart in user’s expec-
tation and actual response, including unconditional, conditional,
and total. Moreover, naturalness and rhythmicity follows, as we can
see in Table. 5(a). In section 4, we mentioned that we include the
metrics to evaluate AI-generated music (i.e., naturalness, correctness,
and coherence). Our results show that correctness and coherence do
not have big impact on the users’ satisfaction, as we expected. How-
ever, naturalness is one of the most effective criteria in both user’s
expectation and actual responses. Our qualitative results also sup-
port that users consider naturalness when evaluating AI-generated
music. For example, 𝑃𝑢 41 gave a high score to a song because he
“wouldn’t be able to find a difference between music played by an AI
and music played by a real human”. The results show that people
tend to compare the AI-generated songs to the human-composed
ones to estimate their level of satisfaction with AI-generated songs.

People value emotion, familiarity, and replayability when listening
to AI-generated music. Participants suggested various elements of
music other than the ones we proposed. The most frequently sug-
gested were emotion (𝑁=33), familiarity (𝑁=5), and replayability
(𝑁=3). Our results showed that emotion is a significant aspect of mu-
sic listening to music because, as one participant pointed out, "There
was no criterion to express how I felt while listening to the song"(𝑃𝑐
37). This indicates that a criterion regarding the emotional effect of
the music is significant because it can estimate how one feels while
listening to a song. Regarding familiarity, the comments indicated
it can be defined as "how familiar you are with this song"(𝑃𝑢 3) or
"whether you have heard something similar to the song"(𝑃𝑢 9). The
results showed that participants enjoy songs more if they sounded
familiar. The third suggested criterion was replayability, which can
be defined as "likelihood of listening to the songs again"(𝑃𝑢 29). While
some studies have focused on objectifying the musical components
(e.g., rhythm), our results indicate that people, especially novice

users, pay more attention to their feelings. Therefore, developing
subjective evaluation metrics related to emotion [18, 32, 35, 67–69]
can better reflect the users’ opinions.

Comprehensive evaluation metrics and detailed description help
people understand AI-generated music. We found that our subjective
metrics helped participants evaluate their satisfaction with various
aspects of AI-generated music, because the metrics are “vast” (𝑃𝑢
22) and “complete” (𝑃𝑢 14). Also, the metrics also helped users un-
derstand the music, by making “conscious and unconscious opinions
clear” (𝑃𝑐 26). While prior studies [24] focus on the role of subjec-
tive metrics to estimate human satisfaction with the music, the
results indicated that comprehensive evaluation metrics help peo-
ple crystallize their feelings about and deepen their understanding
of AI-generated music.

Moreover, many current subjective evaluation metrics for AI-
generated music include professional terms (e.g., melody, pitch) [38,
39], but only a few of them have provided detailed explanations of
each metric [1, 27]. We found that novice users depend on these
descriptions to understand the meaning of each metric. For ex-
ample, 𝑃𝑢 15 shared her personal experience as a beginner with
little knowledge of music, saying that she “had to move up and
down to the definitions because I am not very musically informed”.
Users expressed satisfaction with the detailed description of each
metric, saying “The criteria seemed very well thought out and well
explained” (𝑃𝑐 32) and “The metrics are helpful even for somebody not
educated in music” (𝑃𝑐 40). The results emphasized that to achieve a
better evaluation, it is crucial to define each metric accurately and
provide users with a detailed explanation of it.

8 CONCLUSION
Through analyzing 700 evaluations from 100 participants, we found
that people have different perception towards various symbolic mu-
sic generation models. The result shows that token representation
and model characteristics make different satisfaction from people,
in each of nine subjective evaluation metrics: (overall, creativity,
naturalness, melodiousness, richness, rhythmicity, correctness, struc-
tureness, and coherence). We deepen our understanding of what
people expect from AI-generated music, and how future AI-music
generation system can meet the expectation.
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