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Abstract

Handling out-of-distribution samples is a long-lasting chal-
lenge for deep visual models. In particular, domain general-
ization (DG) is one of the most relevant tasks that aims to
train a model with a generalization capability on novel do-
mains. Most existing DG approaches share the same philoso-
phy to minimize the discrepancy between domains by find-
ing the domain-invariant representations. On the contrary,
our proposed method called POEM acquires a strong DG
capability by learning domain-invariant and domain-specific
representations and polarizing them. Specifically, POEM co-
trains category-classifying and domain-classifying embed-
dings while regularizing them to be orthogonal via minimiz-
ing the cosine-similarity between their features, i.e., the po-
larization of embeddings. The clear separation of embeddings
suppresses domain-specific features in the domain-invariant
embeddings. The concept of POEM shows a unique direc-
tion to enhance the domain robustness of representations that
brings considerable and consistent performance gains when
combined with existing DG methods. Extensive simulation
results in popular DG benchmarks with the PACS, VLCS, Of-
ficeHome, TerraIncognita, and DomainNet datasets show that
POEM indeed facilitates the category-classifying embedding
to be more domain-invariant.

Introduction
Despite the immense effort dedicated during the past decade,
enhancing deep models to acquire a strong generalization
capability on novel data distribution remains a daunting
challenge. For computer vision, particularly, the distribu-
tional shift of the image domain between the train and test
sets, known as domain shift, provokes significant perfor-
mance degradation of deep visual models. Domain gener-
alization (DG), the task of interest here, pursues developing
algorithmic methods to overcome the domain shift. Specif-
ically, the DG task assumes that an image classification
model is trained on the data from source domains, such as
photos, sketches, cartoons, etc., then the model is tested on
the target domains which are not shown in the training phase.

To overcome the domain shift problem, most of the exist-
ing DG approaches are built upon the philosophy of mini-
mizing the discrepancy across source domains, which aims
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to obtain domain-invariant knowledge. First of all, various
algorithmic approaches have been proposed to minimize
the divergence measurements across domains, such as the
contrastive loss for alignment of in-class features from do-
mains (Motiian et al. 2017; Dou et al. 2019), the Kullback-
Leibler divergence (Kullback and Leibler 1951; Dou et al.
2019), and the maximum mean discrepancy between do-
mains (Gretton et al. 2012; Li et al. 2018b). Another branch
of approaches tries to utilize domain-specific information
to learn domain-invariant representation via the employ-
ment of per-domain embedding network (Bousmalis et al.
2016) and domain classifiers (Ganin and Lempitsky 2015).
Also, multi-task self-supervised learning (Albuquerque et al.
2020; Wang et al. 2020; Carlucci et al. 2019), optimization-
based meta-learning (Li et al. 2018a; Dou et al. 2019), and
ensemble learning (Arpit et al. 2022; Mancini et al. 2018;
Zhou et al. 2021a) are shown to enhance the model robust-
ness across domain shifts. On the other hand, another group
of algorithms pursues to erase domain-related spurious fac-
tors in input space, such as the texture of images (Wang et al.
2019) or sensitive features in representation space (Huang
et al. 2020) to obtain domain-invariant features.

In the surge of various DG approaches to suppress dis-
crepancy between domains, a work of (Gulrajani and Lopez-
Paz 2021) reveals that, when a model is carefully trained,
Empirical Risk Minimization (ERM) of (Vapnik 1998),
which is probably the simplest approach for training across
multiple domains, outperforms the existing complicated DG
methods. After the surprising findings, many researchers
have turned attention to developing particular optimizers
that make models robust, rather than employing explicit
ways to find domain-invariant representation. For instance,
recent approaches beat many prior works by combining
ERM with model averaging methods for seeking flatter min-
ima in loss landscape (Izmailov et al. 2018; Cha et al. 2021).
In addition, a very recent work of (Cha et al. 2022) maxi-
mizes the mutual information between a DG model and a
pretrained oracle representation, rather than adopting a par-
ticular way to make the DG model more domain-invariant.

To the best of our knowledge, most of the existing DG
methods aim to discard domain-specific information to re-
duce the divergence of representations between different do-
mains or indirectly utilize domain-specific information to fa-
cilitate the acquisition of domain-invariant representations.
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Moreover, recently suggested methods of (Cha et al. 2021,
2022) overlook the effort for finding domain-invariant rep-
resentation and focus on the robust-guaranteeing optimiza-
tion methods of models. We want to emphasize a signifi-
cant difference between the strategy of prior work and how
humans identify image categories across different domains.
For a given image, human recognizes the image category
and domain together, and construct domain-invariant fea-
tures based on the understanding of domain-specific fea-
tures, i.e., human clearly acknowledges how a cartoon-based
cat looks different from a photograph-based cat. In contrast,
none of the existing DG methods can explicitly identify both
the domain-specific and domain-invariant features, and dis-
tinctively learn them to build domain-robust knowledge.

With this motivation, we propose a DG method called
POEM that aims to learn both domain-invariant and domain-
specific features which are clearly separated from each other.
Specifically, POEM employs two distinctive embeddings for
the category and domain classification tasks, respectively,
and zero-forces their cosine similarity to strengthen the clear
discrimination between two embeddings. POEM eventually
forces two representations of category and domain classifi-
cation tasks to be orthogonal, where one contains domain-
invariant features for category classification and another
one bears domain-specific features for domain classification;
here, we call the process as polarization.

We empirically show that POEM promotes the category-
classifying embedding to be more domain-invariant. Also,
we informally describe how POEM improves the general-
ization capability. The concept of POEM with the disentan-
gled domain-specific and domain-invariant representations
enlightens a unique direction to further improve the per-
formance of the existing DG methods. Extensive simula-
tions on the popular DG benchmarks including PACS (Li
et al. 2017), VLCS (Fang, Xu, and Rockmore 2013), Office-
Home (Venkateswara et al. 2017), TerraIncognita (Beery,
Van Horn, and Perona 2018), and DomainNet (Peng et al.
2019) demonstrate that POEM yields a considerable gain
when combined with the cutting-edge DG algorithms.

The main contributions of this paper are as follows:

• We propose a method called POEM that enhances the
DG capability via polarization of domain-invariant and
domain-specific features.

• We provide a brief explanation that informally describes
the improvement of DG ability based on the separation
of domain-invariant and domain-specific features.

• We demonstrate a consistent and considerable perfor-
mance gain of POEM when combined with the cutting-
edge DG methods.

Related Work

Beyond the brief summary of prior domain generalization
(DG) methods in the Introduction, we herein focus on de-
scribing the highly-related works to POEM and the recent
trend of DG algorithms.

Aligning Domains via Domain-Specific Knowledge
Most of the existing DG methods rely on the principle that
minimization of the discrepancy across training domains
improves the DG capability of models. A group of meth-
ods in (Bousmalis et al. 2016; Mancini et al. 2018) adopts
per-domain embeddings that classify categories of images
in each domain, and reduce the discrepancy between them.
As another strategy that utilizes domain-specific knowledge
to acquire domain-invariant representation, the method in
(Ganin and Lempitsky 2015) employs a classifier of image
domains and gradient-reversely co-trains it with the image
category classifier. The process makes the model inept to
recognize domains. In contrast to the prior methods, our
method POEM explicitly co-trains category- and domain-
classifying embeddings and disentangles them to achieve
better generalization, which is never been proposed. The
methods of (Bousmalis et al. 2016; Mancini et al. 2018) does
not employ domain-classifying representations, and the al-
gorithm of (Ganin and Lempitsky 2015) adopts just a do-
main classifier, not a domain-classifying embedding.

Erasing Domain-dependancy
On the other hand, DG approaches with the domain-erasing
strategy pursue to discard domain-dependent features. A
method called NGLCM of (Wang et al. 2019) regularizes
domain-dependent texture features of images extracted by
Gray-Level Co-occurrence Matrix (GLCM) of (Haralick,
Shanmugam, and Dinstein 1973; Lam 1996). Representa-
tion Self-Challenging (RSC) of (Huang et al. 2020) learns
to mask sensitive features in the representation space, which
are believed to be domain-dependent. Common Specific De-
composition (CSD) of (Piratla, Netrapalli, and Sarawagi
2020) decomposes the model parameters into the com-
mon and domain-specific parts to identify the domain-
invariant model parameters. When compared to the domain-
erasing methods, POEM erases domain-dependent parts
from domain-invariant representations by reducing the simi-
larity between the category- and domain-classifying embed-
dings. However, POEM is fundamentally different from the
method of (Wang et al. 2019) that relies on visual character-
istics such as texture, and the methods of (Huang et al. 2020;
Piratla, Netrapalli, and Sarawagi 2020) that are not able to
recognize explicit domain-dependent representations.

Optimizing Models for Generalization
After the authors of (Gulrajani and Lopez-Paz 2021) claim
that Empirical Risk Minimization (ERM) of (Vapnik 1998)
shows outperforming performance beyond the existing com-
plicated DG methods, ensemble learning of moving average
models (EoA) of (Arpit et al. 2022) shows the improved
DG performance by just averaging model parameters dur-
ing the ERM training steps. A group of approaches sur-
passes combines ERM and the model averaging methods
that find flatter minima in loss space (Izmailov et al. 2018;
Cha et al. 2021). POEM is also built upon ERM, which
is the simplest way to handle the DG task and is easily
plugged in with the flat-minima searching methods called
Stochastic Weight Averaging Densely (SWAD) of (Cha et al.



2021) for cutting-edge DG performance. As the MIRO case,
POEM can enhance the domain invariance of a model in
conjunction with SWAD, which pays less attention to find-
ing domain-invariant features.

Utilizing Pretrained Knowledge
Well-pretrained models from other datasets can be used for
better DG performance. As a very recent work, Mutual In-
formation Regularization with Oracle (MIRO) of (Cha et al.
2022) aims to maximize the mutual information between the
pretrained oracle representation and the target model’s rep-
resentations for better generalization. MIRO does not adopt
an explicit way to find domain-invariant features but just
makes a model be similar to the oracle. Our method is es-
sentially different from MIRO, so POEM can be in conjunc-
tion with MIRO to yield an additional performance gain via
enhancing the domain invariance.

Proposed Method
In this section, the problem settings of domain generaliza-
tion (DG) are presented and the details of the proposed al-
gorithm POEM are described.

Problem Settings of Domain Generalization
Let us denote the set of training domains as D = {Dk}Kk=1
where Dk is the k-th training domain. For a classification
model f(x; θ) and the loss function L, the objective of the
DG task is to find the model parameter θ which is general-
ized well on the target domain T , i.e.,

θ∗ = argmin
θ
L
(
f(x; θ), y ;D

)
, (1)

where (x, y) is a pair of input and class label from T .

Model Description of POEM
POEM consists of a set of elementary embeddings. For the
DG task, POEM contains two elementary embeddings, one
is for image category classification, and the other one is
for image domain classification. Here, we extend the con-
cept to contain N number of elementary embeddings for a
more general description. Based on the architecture, POEM
adopts disentangling loss for spatially separating the ele-
mentary embeddings and discrimination loss for discrimi-
nating the features from different embeddings.

Set of elementary embeddings: Let us denote the set of
elementary embedding as F : RD → RN×L which is the set
of elementary embeddings F = {fi}Ni=1 with model param-
eter Θ = {θi}Ni=1:

F(x ; Θ) ≜
{
fi(x ; θi)

}N

i=1
, (2)

where N is the number of elementary embeddings. Each el-
ementary embedding fi that is parameterized by θi maps
an input x to the feature vector with the length of L. For
the set of elementary embeddings, there exist N elementary
tasks with different classifiers, i.e., category classifiers and
domain classifiers for the DG task. The classifier Φ is the
set of N classifiers for elementary tasks. For a given input
x and i-th elementary embedding, the classification loss Lc

Compute 
discrimination 

loss (W) Input data

Compute
similarity loss

+

Set of 
elementary 
embeddings





Figure 1. Proposed model architecture of POEM

is calculated with cross-entropyH with the probability from
the Softmax computation and target label y(i):

L(i)
c (x, y) = H

(
Softmax

{
fi(x ; θi)Φi

}
, y(i)

)
(3)

For the DG task, there exist N = 2 pairs of elementary em-
bedding and classifier for category and domain classifica-
tion, respectively. For instance, the PACS dataset contains
seven categories, three train domains, and a single target do-
main. POEM then contains two elementary embeddings that
classify seven categories and three domains for each.

Disentangling loss: POEM computes disentangling loss
for separating elementary embeddings from each other. To
be specific, the cosine-similarity loss between features from
different embeddings is zero-forced. For a given input x, the
disentangling loss L(i,j)

s (x) for a pair of i and j-th elemen-
tary embeddings is calculated as follows:

L(i,j)
s (x) = |K

(
fi(x ; θi), fj(x ; θj)

)
|, (4)

where K(·, ·) is the cosine similarity function of two vec-
tors. The absolute operation |·| is for making the similarity
be positive. We select cosine similarity for the disentangler
to orthogonalize two embedded features.

Discrimination loss: POEM adopts discrimination loss
which is to recognize the index of embeddings for a given
feature. The discriminator W is a simple classifier with N
classification weights: W = {wi}Ni=1. For a given x and i-th
elementary embedding, discrimination loss L(i)

d (x) is com-
puted with cross-entropy with the probability from Softmax
calculation and target label i:

L(i)
d (x) = H

(
Softmax

{
fi(x; θi)W

}
, i
)

(5)

For the DG case, the discrimination is a binary classifica-
tion to figure out the index of the embedding from the input
feature vector.

In Fig. 1, the model architecture of POEM for the DG
task is illustrated. The set of elementary embeddings con-
tains two elementary embeddings fi and fj for the category-
classification and the domain-classification tasks, respec-
tively. Based on the two classfiers Φi and Φj for classify-
ing image categories and domains as respectively, POEM



calculates two classification loss terms denoted as Lc. For
orthogonalizing features from two elementary embeddings,
POEM computes the disentangling lossLs. For the final loss
term, a discriminator with parameter W calculates the dis-
crimination loss Ld.

Learning Procedures of POEM
Training phase: The learning procedures of POEM are
based on the most straightforward framework called Empir-
ical Risk Minimization (ERM) (Vapnik 1998; Gulrajani and
Lopez-Paz 2021) that minimizes the empirical risk, which
is the average of category-classification losses L over the
source domains. The empirical risk is formulated as follows:

ÊB(θ) ≜
1

|B|
∑

(x,y)∈B

L(f(x; θ), y), (6)

where B = {Bk}Kk=1 is a mini-batch, and Bk is a sampled
mini-batch from Dk of domain k. f(· ; θ) is an embedding
parameterized by θ, and y is the image category label. Simi-
larly, POEM trains learnable parameters including Θ, Φ and
W to minimize the empirical risk as follows:

ÊB(Θ,Φ,W) ≜
1

|B|
∑

(x,y)∈B

L(F(x; Θ),Φ,W, y). (7)

The particular loss term L is computed by considering the
classification loss of elementary tasks Lc, the disentangling
loss Ls between different embeddings, and the discrimina-
tion loss Ld for each embedding which are aforementioned:

L(f
(
x; Θ),Φ,W, y

)
=

1

N

N∑
i=1

{
L(i)
c (x, y) + L(i)

d (x) +

N∑
j ̸=i

L(i,j)
s (x)

}
.

(8)

Then the set of parameters Θ, Φ and W are updated by com-
puting the gradients of the empirical risk, i.e., ÊB(Θ,Φ,W):

∇ÊB(Θ,Φ,W) =
1

N |B|
∑

(x,y)∈B

N∑
i=1

∇L(F
(
x; Θ),Φ,W, y

)
(9)

Testing phase: In testing, POEM keeps the embedding
and classifier for the category-classifying task but drops
other embeddings and classifiers. With the retained embed-
ding and classifier, i.e., fz(· ; θz) and Φz , POEM is evaluated
on the samples in the target domains T , where z is the in-
dex of the elementary embedding for classifying categories
of images. Algorithm 1 presents the pseudocode of POEM.

Understanding of POEM
Herein, we informally explain how POEM improves the do-
main generalization capability. Although the explanation is
not a formal mathematical analysis, we conceptually under-
stand how the elementary embeddings of POEM are con-
structed and how the well-trained POEM achieves an im-
proved generalization capability beyond ERM.

Algorithm 1: Training procedures for POEM
Input: Training domain D, Number of elementary embed-
dings N , learning rate η
Initialization: Initial weights Θ0, Φ0, and W0, set of ele-
mentary embeddings F(· ; Θ0)
Output: Parameterized model fz(· ; θz) and classifier Φz

1: for τ = 1, · · · , T do
2: Sample a mini-batchB = {Bk}Nk=1, whereBk ∈ Dk

3: for (x, y) ∈ B do
4: Set Lc = 0, Ls = 0, and Ld = 0
5: for i = 1, · · · , N do
6: Lc ← Lc + L(i)

c (x, y) ▷ Eq. (3)
7: Ld ← Ld + L(i)

d (x) ▷ Eq. (5)
8: for j = 1, · · · , N do
9: if j ̸= i then

10: Ls ← Ls + L(i,j)
s (x) ▷ Eq. (4)

11: end if
12: end for
13: end for
14: end for
15: ÊB ← 1

N |B| (Lc + Ls + Ld)

16: (Θ,Φ,W)← (Θ,Φ,W)− η∇ÊB
17: end for
18: Return fz(· ; θz) and Φz , where z is the index of the

category-classifying embedding

Before the explanation, let us introduce some useful no-
tations. We denote the trained set of elementary embeddings
of POEM as F(·; Θ∗) = {fi(·; θ∗i )}Ni=1 where fi(·; θ∗i ) is
i-th elementary embedding with the learned parameters θ∗i ,
and N is the number of elementary embeddings. Ni is the
number of labels for the classification task of i-th embed-
dings, e.g., when we have seven image categories and four
domains, N1 = 7 and N2 = 4. X is the input distribution
that contains input samples x. Let us denote the distribu-
tion of feature vectors of i-th elementary embedding as Z∗

i .
Based on the notations, let us describe the following desir-
able properties of the trained POEM embeddings.

Property 1. (from the discrimination loss L(i)
d ) When the

feature z∗i is extracted by ith embedding, i.e., z∗i ∼ Z∗
i , then

z∗i ·wi ≥ max
j ̸=i

(z∗i ·wj). (10)

Based on the discrimination loss, POEM is trained to
identify the index of embedding where a given feature is ex-
tracted. Thus the property is desirable. POEM tries to sep-
arate the feature distribution of each embedding so that the
distributions are not overlapped.

Property 2. (from the disentangling loss L(i,j)
s ) When

two feature vectors are extracted from different ith and jth

embeddings for a single input x, then∣∣K(
fi(x; θ

∗
i ), fj(x; θ

∗
j )
)∣∣ ≃ 0. (11)

Based on the disentangling loss for a given input, POEM
is trained to minimize the cosine similarity between two fea-



Method PACS VLCS OfficeHome TerraInc DomainNet Average

MMD (Li et al. 2018b) 84.7 77.5 66.4 42.2 23.4 58.8
Mixstyle (Zhou et al. 2021b) 85.2 77.9 60.4 44.0 34.0 60.3

GroupDRO (Sagawa et al. 2020) 84.4 76.7 66.0 43.2 33.3 60.7
IRM (Arjovsky et al. 2019) 83.5 78.6 64.3 47.6 33.9 61.6
ARM (Zhang et al. 2021) 85.1 77.6 64.8 45.5 35.5 61.7

VREx (Krueger et al. 2021) 84.9 78.3 66.4 46.4 33.6 61.9
CDANN (Li et al. 2018c) 82.6 77.5 65.7 45.8 38.3 62.0
DANN (Ganin et al. 2016) 83.7 78.6 65.9 46.7 38.3 62.6
RSC (Huang et al. 2020) 85.2 77.1 65.5 46.6 38.9 62.7

MTL (Blanchard et al. 2021) 84.6 77.2 66.4 45.6 40.6 62.9
I-Mixup (Xu et al. 2020) 84.6 77.4 68.1 47.9 39.2 63.4
MLDG (Li et al. 2018a) 84.9 77.2 66.8 47.8 41.2 63.6

SagNet (Nam et al. 2021) 86.3 77.8 68.1 48.6 40.3 64.2
CORAL (Sun and Saenko 2016) 86.2 78.8 68.7 47.7 41.5 64.5

SWAD (Cha et al. 2021) 88.1 79.1 70.6 50.0 46.5 66.9
MIRO (Cha et al. 2022) 85.4 79.0 70.5 50.4 44.3 65.9
ERM† (Vapnik 1998) 84.1 ± 0.7 77.9 ± 0.8 67.0 ± 0.3 46.8 ± 1.1 44.1 ± 0.0 64.0

POEM (Ours) 86.7 ± 0.2 79.2 ± 0.6 68.0 ± 0.2 49.5 ± 0.6 44.0 ± 0.0 65.5 (↑ 1.5%)
SWAD† (Cha et al. 2021) 88.3 ± 0.3 77.7 ± 0.3 70.7 ± 0.1 49.7 ± 0.6 46.2 ± 0.0 66.5
SWAD† + POEM (Ours) 88.5 ± 0.2 79.4 ± 0.3 70.5 ± 0.1 51.5 ± 0.1 47.1 ± 0.0 67.4 (↑ 0.9%)
MIRO† (Cha et al. 2022) 85.4 ± 0.3 79.1 ± 0.7 70.7 ± 0.0 49.7 ± 0.2 44.3 ± 0.2 65.8
MIRO† + POEM (Ours) 86.7 ± 0.4 79.1 ± 0.2 71.4 ± 0.0 49.3 ± 0.8 44.3 ± 0.2 66.1 (↑ 0.3%)

MIRO + SWAD† 87.7 ± 0.3 78.5 ± 0.3 71.3 ± 0.1 51.0 ± 0.2 46.9 ± 0.0 67.1
MIRO + SWAD† + POEM (Ours) 88.5 ± 0.1 79.5 ± 0.3 71.7 ± 0.1 51.6 ± 0.0 47.1 ± 0.0 67.7 (↑ 0.6%)

† indicates our reproduced experiments based on the DomainBed settings. ↑ indicates the performance gains obtained by POEM.

Table 1. Domain generalization accuracies on the five benchmarks

tures that are extracted from different embeddings. Thus the
property is also desirable.

With Property 1, the distributions of embeddings are sep-
arated but not orthogonalized. On the other hand, with Prop-
erty 2, the sample-wise orthogonalization is guaranteed but
the distributions can be overlapped. When POEM tries to
achieve these both properties, the feature distributions of dif-
ferent embeddings should be separated and orthogonalized,
i.e., the polarization of embeddings. In the following sec-
tion, we visually show the separation of feature distributions
of different embeddings, and empirically confirm the zero-
forced cosine similarity values between randomly-sampled
pair of features from different embeddings.

Based on the understanding of POEM, we informally pro-
vide the following claim to explain how POEM achieves
the improved generalization capability. First, let us process
the singular value decomposition (SVD) of the matrix Mj

formed by the collected feature vectors from jth embedding,
i.e., Mj = UjΣjV

T
j . Then let us project a feature vector

z∗i from different ith embedding to the vector space UjΣj .
Then the power of the projected feature vector will be zero-
forced because the dominant components of Uj would be
orthogonal to z∗i due to the polarization of embeddings.

Claim 1. (Information separation of embeddings) When
feature vector z∗i ∼ Z∗

i is projected to the space formed by
the features from different jth embedding, then the power of

the projected feature is minimized to zero:

||z∗iUjΣj ||2 ≃ 0. (12)

It implies the information separation between embed-
dings, i.e., for the DG task, the features for the domain-
classifying embedding are zero-forced in the category-
classifying embedding space. In other words, features from
the category-classifying embedding are domain-invariant, or
do not contain the information for domain-classification.
Otherwise, the domain-specific features contained in the
category-classifying features will remain non-zero when
projected to the domain-classifying embedding. The formal
analysis of POEM remains as a future work.

Experimental Results
Experiment Settings
Benchmarks: We have conducted extensive experiments to
evaluate POEM on the five popular domain generalization
(DG) benchmarks based on PACS (Li et al. 2017) (con-
taining 9,991 images, 7 classes and 4 domains), VLCS
(Fang, Xu, and Rockmore 2013) (containing 10,729 im-
ages, 5 classes, and 4 domains), OfficeHome (Venkateswara
et al. 2017) (containing 15,588 images, 65 classes, and 4 do-
mains), TerraIncognita (Beery, Van Horn, and Perona 2018)
(containing 24,788 images, 10 classes, and 4 domains), and
DomainNet (Peng et al. 2019) (containing 586,575 images,



345 classes, and 6 domains). For each benchmark, if a do-
main is selected as the target domain, then the remaining
domains are designated to be the training source domains.
We test all cases for each target domain and take the av-
erage of accuracies. Our experiments are run on the Do-
mainBed framework of (Gulrajani and Lopez-Paz 2021),
which is publicly released under the MIT license to evaluate
the existing DG methods1. We follow the training and evalu-
ation protocols of DomainBed of (Gulrajani and Lopez-Paz
2021). Also, we follow the data splitting introduced by the
work of SWAD (Cha et al. 2021).

Experiments Details: We set the number of training iter-
ations of POEM to be the same as the experiments done in
(Cha et al. 2021), i.e., PACS: 5,000, VLCS: 5,000, Office-
Home: 5,000, TerraIncognita: 5,000, DomainNet: 15,000 it-
erations. When POEM is combined with MIRO of (Cha
et al. 2022), twice number of iterations are used, i.e., PACS:
10,000, VLCS: 10,000, OfficeHome: 10,000, TerraIncog-
nita: 10,000, DomainNet: 30,000. For every elementary em-
bedding, we adopt the ResNet50 architecture of (He et al.
2016) which is pretrained on the ImageNet dataset (Rus-
sakovsky et al. 2015) with freezing batch normalization pa-
rameters. A mini-batch contains 32 images from each source
domain in benchmark datasets. Due to the lack of memory
in our simulation, a mini-batch for the DomainNet case con-
tains 20 images for each source domain. For all benchmarks,
we have searched proper hyperparameters that include learn-
ing rates, dropout ratios, and weight decay rates for both el-
ementary embeddings. Details of the hyperparameter values
and the optimizers are described in Supplementary.

Methods to be considered: Similar to other cutting-
edge algorithms, POEM is built upon the ERM frame-
work of (Vapnik 1998). We denote the vanilla version of
our method based on ERM as POEM. Also, the concept
of POEM can be plugged in with other approaches. We
evaluate SWAD + POEM, MIRO + POEM, and MIRO
+ SWAD + POEM, by combining POEM with the most
promising DG approaches. POEM contains two elementary
embeddings where one is for category-classifying, and the
other is for domain-classifying. SWAD + POEM adopts
the optimization process for finding flat minima only for
category-classifying embedding of POEM. MIRO + POEM
employs the pretrained oracle network to maximize the mu-
tual information between the features from the oracle and
both elementary embeddings of POEM. MIRO + SWAD +
POEM combines all three methods. We described details of
hyperparameters for SWAD and MIRO in Supplementary.

Performance on Target Domain
In Table 1, the DG performance of POEM, SWAD + POEM,
MIRO + POEM, MIRO + SWAD + POEM are compared
with the existing methods. The accuracies are obtained by
taking the averages over three trials. We emphasize that
POEM yields consistent performance gains when combined
with ERM, SWAD, and MIRO. Specifically, POEM obtains
the averaged gains by +1.5% beyond ERM and by +0.9%
beyond SWAD. Also, POEM yields an extra gain by +0.6%

1Code is available at github.com/JoSangYoung/Official-POEM
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Figure 2. Visualization of features with embedding labels

beyond MIRO + SWAD. The results confirm that POEM
enlightens a unique way to enhance the domain-invariance
of representations beyond cutting-edge algorithms. Perfor-
mance on source domains are presented in Supplementary.

t-SNE Visualization of Embeddings
To visualize the orthogonality between elementary embed-
dings, the t-SNE analysis of (Van der Maaten and Hin-
ton 2008) is conducted. We consider the experiment case
of the VLCS benchmark where the target domain is the
‘SUN09’ domain. Fig. 2 is the t-SNE plot of features
from the category-classifying embeddings and the domain-
classifying embedding, which are colored by red and blue,
respectively. This visualization clearly shows that POEM
separates elementary embeddings without any overlaps.

Entropy Analysis of Embeddings
For quantifying the domain-invariance of category-
classifying features, we calculate the cross-entropy values
when category-classifying features are used to classify
domains. For the category embedding of POEM, the
classifiers for domains are not prepared so we compute the
domain-wise centroids {ck}Nk=1 of features and utilize them
as the classifiers for domains. After obtaining the domain
centroids, the cross-entropy loss is calculated by measuring
the probability based on the Euclidean distance between
feature vectors and centroids, i.e.,

P (y = k | x) =
exp

(
− d(fz(x ; θz), ck)

)∑N
l=1 exp

(
− d(fz(x ; θz), cl)

) , (13)

where N is the number of source domains, d(·, ·) means the
Euclidean distance, and z is the index of the category em-
bedding. In addition, we train the ERM-based model on the
same source domains and compute the cross-entropy loss
with the same way. As shown in Table 4, the category fea-
tures from POEM show higher cross-entropy values when
compared to the values of ERM. It indicates that POEM
discards the domain-related information from the category
embedding. OfficeHome, TerraIncognita, DomainNet is de-
noted as OH, Terra, DN, due to the space limit.



Method PACS VLCS OfficeHome TerraInc DomainNet Average

ERM† 84.09 ± 0.7 77.88 ± 0.8 67.00 ± 0.3 46.78 ± 1.1 44.13 ± 0.0 64.0
POEM only with Ls 84.86 ± 0.3 78.29 ± 0.5 67.12 ± 0.3 47.21 ± 2.0 43.78 ± 0.2 64.3
POEM only with Ld 84.96 ± 0.3 78.28 ± 0.4 67.45 ± 0.4 47.82 ± 0.8 44.04 ± 0.1 64.5

POEM 86.73 ± 0.3 79.24 ± 0.6 67.96 ± 0.2 49.48 ± 0.6 44.03 ± 0.0 65.5
† indicates our implementation

Table 2. Effect of loss functions in our method based on ERM over three trials

Method PACS VLCS OH Terra DN Avg

ERM 0.22 0.27 0.09 0.14 0.06 0.16
POEM 3.8e-05 1.0e-04 1.5e-04 2.9e-04 1.4e-03 3.94e-04

Table 3. Averaged cosine similarity between category-classifying features and domain-classifying features

Method PACS VLCS OH Terra DN Avg

ERM 2.65 2.80 1.13 1.85 0.81 1.85

POEM 2.98 4.01 1.41 2.12 0.68 2.24

Table 4. Averaged cross-entropy for classifying domains
with category-classifying features in 5 benchmark datasets

Orthogonality Analysis of Embeddings
To confirm the orthogonality of different elementary embed-
dings of POEM, we compute the averaged cosine similarity
values by randomly sampling two features from category-
and domain-classifying embeddings. Table 3 shows aver-
aged cosine similarities in 5 benchmark datasets, by consid-
ering more than 1,000 samples for each domain. As a coun-
terpart, we prepare the ERM model for classifying image
categories, and also prepare a separate ERM model that clas-
sifies image domains across different categories. Then the
averaged cosine similarity values are computed in the same
way as POEM cases. OfficeHome, TerraIncognita, Domain-
Net are denoted as OH, Terra, DN, respectively. The result
shows that POEM makes elementary embeddings more or-
thogonal when compared to ERM for all benchmarks. Note
that ERM shows larger cosine similarities on the PACS and
VLCS cases. By zero-forcing the cosine similarities, POEM
indeed shows more considerable gains in that benchmarks
when compared to others, as reported in Table 1.

Ablation Analysis
We conduct ablation studies of the loss terms of POEM. Ta-
ble 2 shows the performance gain in the addition of the pro-
posed loss functions. POEM only with Ls makes the cosine
similarity between two paired features from a single image
be zero. The performance gain for POEM only with Ls is
+0.3% when compared to ERM. The gain is quite small be-
cause the loss term Ls cannot separate the clusters of fea-
tures from two embeddings. Only with the discrimination
loss Ld, a moderated performance gain by +0.5% is ob-
tained beyond ERM. However, the gain is not yet consid-
erable because the loss cannot make two elementary embed-

dings orthogonal. Finally, POEM with both loss terms even-
tually separates two embeddings in two orthogonal direc-
tions so that the considerable performance gain is achieved,
i.e., +1.5% beyond ERM.

Complexity Analysis
POEM prepares two elementary embeddings, but once train-
ing is over, POEM drops the domain-classifying embedding
and utilizes only the category-classifying embedding for in-
ference. It means that POEM shows the same level of mem-
ory and computational costs during testing when compared
to ERM. When we compare POEM with SWAD of (Cha
et al. 2021), which is a promising DG method, SWAD is re-
quired to store an additional moving average model during
iterations. It means that SWAD requires twice the number
of parameters during the training phase, i.e., the same as the
costs of POEM. MIRO of (Cha et al. 2022) shows the same
level of costs as ERM during training, but MIRO requires
additional costs for the pretraining of the oracles.

Conclusion
For achieving the robustness of the deep visual models on
the out-of-distribution problem, we propose a method called
POEM with a set of elementary embeddings where the el-
ementary embeddings are trained to be disentangled with
each other. We show that considerable performance gains
can be achieved by combining POEM with other cutting-
edge DG methods, including ERM, SWAD, and MIRO.

Discussion
POEM is possibly extended to the more complicated gen-
eralization scenarios. For example, the medical image clas-
sification task may include a variety of dimensions such
as diseases, organs, patients, and types of imaging equip-
ment. Then POEM with an embedding for each dimension
possibly handles the generalization tasks across multiple di-
mensions. We leave it as a future work. Specifically, we ex-
pect that POEM enables training the disease-related embed-
ding invariant to the other factors, i.e., patients or medical
imaging equipment. When considering the detection task
for road objects, images would be diverse during daytime



and night-time. By employing the day/night-classifying em-
bedding, the concept of POEM can be used to train the en-
coder to extract the day/night-invariant features by utilizing
the day/night-classifying features.
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Supplementary Material for POEM: Polarization of Embeddings for Domain-Invariant
Representations

In this supplementary material, we provide the details of the experiment setting and other empirical results, such as source
domain accuracies and the learning trend of the introduced loss terms.

Details of Experiment Setting
Experimental Environment
All experiments are conducted by utilizing NVIDIA Quadro RTX 8000, 400GB RAM, and Xeon(R) Gold 5218R CPU @
2.10GHz with ubuntu 20.04 with python 3.8.12, PyTorch 1.7.1, Torchvision 0.8.2, and CUDA 11.0. Our source code is partially
based on the codes of DomainBed (Gulrajani and Lopez-Paz 2021), SWAD (Cha et al. 2021) and MIRO (Cha et al. 2022).

Method Hyperparameter PACS VLCS OfficeHome TerraIncognita DomainNet

POEM Learning rate 5e-5 1e-5 1e-5 3e-5 3e-5
Dropout ratio 0.1 0.1 0.5 0.5 0.5
Weight decay 1e-6 1e-4 1e-4 1e-4 1e-6

SWAD† + POEM Learning rate 5e-5 5e-5 3e-5 5e-5 3e-5
Dropout ratio 0.1 0.0 0.5 0.0 0.5
Weight decay 1e-6 0 1e-4 0 1e-6

Ns 3 3 3 3 3
Ne 6 6 6 6 6
r 1.3 1.2 1.3 1.3 1.3

MIRO† + POEM Learning rate 3e-5 1e-5 1e-5 3e-5 3e-5
Dropout ratio 0.1 0.1 0.5 0 0.1
Weight decay 1e-4 1e-4 1e-4 1e-4 1e-6

λ for category embedding 0.01 0.01 0.1 0.1 0.1
λ for domain embedding 0.01 0 0.01 0 0

MIRO + SWAD† + POEM Learning rate 3e-5 1e-5 1e-5 3e-5 3e-5
Dropout ratio 0.1 0.1 0.5 0 0.1
Weight decay 1e-4 1e-4 1e-4 1e-4 1e-6

Ns 3 3 3 3 3
Ne 6 6 6 6 6
r 1.3 1.2 1.3 1.3 1.3

λ for category embedding 0.01 0.01 0.1 0.1 0.1
λ for domain embedding 0.01 0 0.01 0 0

† indicates our implementation

Table 5. Hyperparameter setting for each algorithm and dataset

Details of Hyperparameter Settings
For all benchmarks, we search hyperparameters of the learning rate, the dropout ratio, and the weight decay for both domain-
classifying and category-classifying embeddings. They are grid searched in [1e-5, 3e-5, 5e-5], [0.0, 0.1, 0.5], [1e-4, 1e-6],
respectively. Also, when combined with SWAD, the patient parameter Ns, the overfitting patient parameter Ne, and the tol-
erance rate r are set to be 3, 6, and 1.3, respectively. In the case of VLCS, the tolerance rate r is particularly set to be 1.2,
following the original setting of SWAD. When combining MIRO, the regularization coefficient λ is set to be 0.1 for the PACS
and VLCS experiments and 0.01 for other cases by following the original setting of MIRO. The regularization coefficient for
domain-classifying embedding in conjunction with MIRO has been grid searched in [0, 0.1, 0.01] for each dataset. When λ is
zero, it indicates that domain-classifying embedding is set to be ERM. Table 5 shows the chosen hyperparameter setting for all
benchmarks and methods.

Details of Experimental Results
Target Domain Accuracies
The performance on the target domains provided in the main paper shows the averaged accuracies across target domains for
each benchmark over three trials. The target accuracies on all test domains are shown in the tables from Table 6 to Table 10.



Method Art painting Cartoon Photo Sketch Average

POEM 85.34 ± 2.28 82.16 ± 0.77 97.01 ± 0.16 82.41 ± 1.14 86.73
SWAD† + POEM 90.12 ± 0.51 83.62 ± 0.33 97.78 ± 0.05 82.60 ± 0.81 88.53
MIRO† + POEM 87.29 ± 1.22 81.50 ± 0.74 97.65 ± 0.24 80.30 ± 0.03 86.68

MIRO + SWAD† + POEM 89.35 ± 0.70 83.02 ± 0.40 98.20 ± 0.07 83.21 ± 0.48 88.45
† indicates our implementation

Table 6. Domain generalization accuracies on target domains in the PACS benchmark

Method Caltech101 LabelMe SUN09 VOC2007 Average

POEM 97.91 ± 0.26 66.71 ± 0.77 76.12 ± 0.48 76.23 ± 2.02 79.24
SWAD† + POEM 98.35 ± 0.24 64.22 ± 0.26 76.12 ± 0.48 79.01 ± 0.44 79.43
MIRO† + POEM 98.44 ± 0.33 66.44 ± 0.87 73.86 ± 0.83 77.55 ± 0.56 79.12

MIRO + SWAD† + POEM 98.91 ± 0.08 64.63 ± 0.17 75.63 ± 0.36 78.96 ± 0.46 79.53
† indicates our implementation

Table 7. Domain generalization accuracies on target domains in the VLCS benchmark

Method Art Clipart Product Realworld Average

POEM 64.06 ± 0.21 53.92 ± 0.73 76.21 ± 0.41 77.66 ± 0.40 67.96
SWAD† + POEM 67.08 ± 0.31 57.01 ± 0.36 78.21 ± 0.45 79.59 ± 0.46 70.47
MIRO† + POEM 69.60 ± 0.38 54.67 ± 0.67 79.39 ± 0.49 81.78 ± 0.25 71.36

MIRO + SWAD† + POEM 69.46 ± 0.23 55.41 ± 0.13 79.98 ± 0.14 82.03 ± 0.16 71.73
† indicates our implementation

Table 8. Domain generalization accuracies on target domains in the OfficeHome benchmark

Method location100 location38 location43 location46 Average

POEM 59.28 ± 1.14 38.83 ± 1.43 58.93 ± 0.97 40.86 ± 1.36 49.48
SWAD† + POEM 57.80 ± 0.20 47.23 ± 0.89 58.99 ± 0.33 41.97 ± 0.62 51.50
MIRO† + POEM 57.10 ± 4.22 44.13 ± 0.71 57.16 ± 1.56 38.68 ± 2.05 49.27

MIRO + SWAD† + POEM 59.89 ± 0.72 45.47 ± 0.22 60.37 ± 0.23 41.10 ± 0.47 51.71
† indicates our implementation

Table 9. Domain generalization accuracies on target domains in the TerraIncognita benchmark

Method Clipart Infograph Painting Quickdraw Real Sketch Average

POEM 64.41 ± 0.15 21.43 ± 0.30 49.92 ± 0.28 13.22 ± 0.22 62.22 ± 0.09 52.97 ± 0.09 44.03
SWAD† + POEM 66.67 ± 0.08 23.49 ± 0.02 54.26 ± 0.06 15.84 ± 0.13 65.69 ± 0.09 56.47 ± 0.08 47.07
MIRO† + POEM 66.73 ± 0.20 23.44 ± 0.06 53.96 ± 0.07 15.29 ± 0.06 67.19 ± 0.72 55.44 ± 0.20 47.01

MIRO + SWAD† + POEM 66.72 ± 0.19 23.46 ± 0.05 54.01 ± 0.12 15.27 ± 0.08 67.88 ± 0.04 55.10 ± 0.14 47.07
† indicates our implementation

Table 10. Domain generalization accuracies on target domains in the DomainNet benchmark

Source Domain Accuracies
We also measure the performance of POEM on the source domains. For each source domain, we split the dataset into 80%
of the samples for the training set and 20% for the validation set. We evaluate two performance metrics, i.e., image-category
classification accuracy and image-domain classification accuracy. When evaluating the category classification task, the elemen-
tary embedding to classify image categories is used. Otherwise, when evaluating the domain classification task, the secondary



embedding to classify image domains is used. The averaged accuracies of POEM for classifying image categories and domains
over three trials are shown in Table 11. We confirm the slight performance gain for all experiment cases. It implies that the joint
training of the multiple elementary embeddings via POEM does not harm the training of the individual embedding. To provide
the details of the results, the validation accuracies for category-classification and domain-classification for each source domain
are shown in the tables from Table 12 to 16 and Tables 17 to 21, respectively.

Accuracies for classifying image categories
Method PACS VLCS OfficeHome TerraInc DomainNet Average

ERM† 96.99 ± 0.1 86.21 ± 0.1 80.38 ± 0.1 91.63 ± 0.1 60.00 ± 0.1 83.31

POEM 97.14 ± 0.1 86.91 ± 0.1 80.85 ± 0.04 92.16 ± 0.1 60.82 ± 0.1 83.58

Accuracies for classifying image domains
Method PACS VLCS OfficeHome TerraInc DomainNet Average

ERM† 99.02 ± 0.1 94.10 ± 0.1 85.13 ± 0.1 99.95 ± 0.02 89.26 ± 0.1 93.49

POEM 98.98 ± 0.1 93.99 ± 0.1 85.53 ± 0.1 99.96 ± 0.02 89.32 ± 0.1 93.56
† indicates our implementation

Table 11. Averaged validation accuracies on source domains for each benchmark

Method Art painting Cartoon Photo Sketch Average

ERM† 97.61 ± 0.1 96.82 ± 0.1 96.29 ± 0.1 97.24 ± 0.2 96.99 ± 0.1
POEM 97.67 ± 0.1 96.73 ± 0.1 96.29 ± 0.1 97.86 ± 0.2 97.14 ± 0.1

† indicates our implementation

Table 12. Validation accuracies for image-category classification on source domains of PACS benchmark

Method Caltech101 LabelMe SUN09 VOC2007 Average

ERM† 81.31 ± 0.1 90.79 ± 0.1 87.33 ± 0.1 85.43 ± 0.1 86.21 ± 0.1
POEM 81.66 ± 0.2 91.30 ± 0.2 88.03 ± 0.1 86.69 ± 0.1 86.92 ± 0.1

† indicates our implementation

Table 13. Validation accuracies for image-category classification on source domains of VLCS benchmark

Method Art Clipart Product Realworld Average

ERM† 83.68 ± 0.2 81.18 ± 0.3 77.48 ± 0.1 79.17 ± 0.2 80.38 ± 0.1
POEM 84.23 ± 0.1 80.83 ± 0.2 77.56 ± 0.1 80.77 ± 0.3 80.85 ± 0.1

† indicates our implementation

Table 14. Validation accuracies for image-category classification on source domains of OfficeHome benchmark

Method location100 location38 location43 location46 Average

ERM† 90.40 ± 0.1 91.98 ± 0.1 91.06 ± 0.1 93.08 ± 0.1 91.63 ± 0.1
POEM 90.79 ± 0.1 92.20 ± 0.1 92.00 ± 0.1 93.66 ± 0.1 92.16 ± 0.1

† indicates our implementation

Table 15. Validation accuracies for image-category classification on source domains of TerraIncognita benchmark



Method Clipart Infograph Painting Quickdraw Real Sketch Average

ERM† 57.89 ± 0.1 65.35 ± 0.1 59.90 ± 0.1 61.27 ± 0.1 56.84 ± 0.1 58.77 ± 0.1 60.00 ± 0.1
POEM 58.04 ± 0.1 66.22 ± 0.1 60.79 ± 0.1 61.40 ± 0.1 58.52 ± 0.1 59.94 ± 0.1 60.82 ± 0.1

† indicates our implementation

Table 16. Validation accuracies for image-category classification on source domains of DomainNet benchmark

Method Art painting Cartoon Photo Sketch Average

ERM† 99.58 ± 0.1 99.07 ± 0.1 99.63 ± 0.2 97.81 ± 0.1 99.02 ± 0.1
POEM 99.52 ± 0.1 98.91 ± 0.1 99.27 ± 0.1 98.21 ± 0.1 98.98 ± 0.1

† indicates our implementation

Table 17. Validation accuracies for image-domain classification on source domains of PACS benchmark

Method Caltech101 LabelMe SUN09 VOC2007 Average

ERM† 89.56 ± 0.2 93.69 ± 0.1 97.16 ± 0.1 96.00 ± 0.1 94.10 ± 0.1
POEM 89.19 ± 0.1 93.52 ± 0.1 97.04 ± 0.1 96.19 ± 0.1 93.99 ± 0.1

† indicates our implementation

Table 18. Validation accuracies for image-domain classification on source domains of VLCS benchmark

Method Art Clipart Product Realworld Average

ERM† 87.80 ± 0.2 76.49 ± 0.1 82.27 ± 0.1 93.97 ± 0.1 85.13 ± 0.1
POEM 88.34 ± 0.1 76.29 ± 0.1 83.17 ± 0.1 94.31 ± 0.1 85.53 ± 0.1

† indicates our implementation

Table 19. Validation accuracies for image-domain classification on source domains of OfficeHome benchmark

Method location100 location38 location43 location46 Average

ERM† 99.93 ± 0.0 100.00 ± 0.0 99.95 ± 0.0 99.93 ± 0.0 99.95 ± 0.0
POEM 100.00 ± 0.0 99.93 ± 0.0 99.93 ± 0.0 99.98 ± 0.0 99.96 ± 0.0

† indicates our implementation

Table 20. Validation accuracies for image-domain classification on source domains of TerraIncognita benchmark

Method Clipart Infograph Painting Quickdraw Real Sketch Average

ERM† 90.85 ± 0.1 87.95 ± 0.1 90.79 ± 0.1 84.21 ± 0.3 91.83 ± 0.2 89.93 ± 0.3 89.26 ± 0.1
POEM 90.77 ± 0.3 87.92 ± 0.1 90.76 ± 0.2 84.53 ± 0.2 91.51 ± 0.3 90.43 ± 0.3 89.32 ± 0.1

† indicates our implementation

Table 21. Validation accuracies for image-domain classification on source domains of DomainNet benchmark

Learning Trend of Disentangling and Discrimination Loss Terms
The learning trend of the key loss terms, which are the disentangling loss (or similarity loss) Ls and the discrimination loss Ld

are illustrated in Fig. 3. As presented in Fig. 3a, the averaged cosine similarity between the category embedding and the domain
embedding over VLCS domains decreases rapidly (See the solid line colored by red). It means that the feature vectors from the
two elementary embeddings become orthogonal. In contrast, when we drop the similarity loss term in the training of POEM, the
averaged cosine similarity between elementary embeddings over VLCS domains is not zero-forced (See the dotted line colored



(a) Trainig similarity loss Ls (b) Training discriminator loss Ld

Figure 3. Learning trend of the component losses of POEM

by blue). It shows that the orthogonality between the features from image- and domain-classifying elementary embeddings are
not trivially achieved without POEM’s similarity loss. Fig. 3b shows the learning trend of the discrimination loss for the five
benchmarks. The suppressed loss values mean that the features from different embeddings become distinctive so that POEM
can discriminate the features from different embeddings.

Cross-Entropy between Category Features and Domain Labels
In the main paper, we show the cross-entropy values when the category-classifying features are used to estimate the source
domain. The result emphasizes the POEM’s category-classification feature is not effective in classifying domains, i.e., it implies
the domain-invariance of features. Here, we attach all calculated cross-entropy values. Every experiment with ERM and POEM
uses the same random seed so that the validation set is equal. From Tables 22 to 26, we show the cross-entropy values. In
most cases, it appears that POEM shows larger cross-entropy values than ERM which indicates that POEM learns a more
domain-invariant category-classifying elementary embedding than ERM.

Method Art painting Cartoon Photo Sketch Average

ERM† 2.58 2.31 1.77 3.19 2.65
POEM 3.26 2.88 1.81 3.98 2.98

† indicates our implementation

Table 22. Cross-Entropy for source domain data samples on PACS benchmark

Method Caltech101 LabelMe SUN09 VOC2007 Average

ERM† 2.53 1.77 2.94 3.97 2.80
POEM 4.46 2.51 4.06 5.01 4.01

† indicates our implementation

Table 23. Cross-Entropy for source domain data samples on VLCS benchmark

Method Art Clipart Product Realworld Average

ERM† 1.02 1.21 1.15 1.13 1.13
POEM 1.18 1.36 1.35 1.76 1.41

† indicates our implementation

Table 24. Cross-Entropy for source domain data samples on OfficeHome benchmark



Method location100 location38 location43 location46 Average

ERM† 1.27 1.98 2.29 1.86 1.85
POEM 1.42 3.31 2.32 1.44 2.12

† indicates our implementation

Table 25. Cross-Entropy for source domain data samples on TerraIncognita benchmark

Method Clipart Infograph Painting Quickdraw Real Sketch Average

ERM† 0.71 0.91 0.72 1.16 0.59 0.78 0.81
POEM 0.59 0.71 0.58 1.08 0.48 0.63 0.68

† indicates our implementation

Table 26. Cross-Entropy for source domain data samples on DomainNet benchmark
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