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Abstract

Yes. In this paper, we investigate strong lottery tickets in gen-
erative models, the subnetworks that achieve good genera-
tive performance without any weight update. Neural network
pruning is considered the main cornerstone of model com-
pression for reducing the costs of computation and memory.
Unfortunately, pruning a generative model has not been ex-
tensively explored, and all existing pruning algorithms suf-
fer from excessive weight-training costs, performance degra-
dation, limited generalizability, or complicated training. To
address these problems, we propose to find a strong lottery
ticket via moment-matching scores. Our experimental results
show that the discovered subnetwork can perform similarly
or better than the trained dense model even when only 10%
of the weights remain. To the best of our knowledge, we are
the first to show the existence of strong lottery tickets in gen-
erative models and provide an algorithm to find it stably. Our
code and supplementary materials are publicly available at
https://lait-cvlab.github.io/SLT-in-Generative-Models/.

Introduction
State-of-the-art generative models tend to use extremely
large and complex structures for better performance (Brock,
Donahue, and Simonyan 2018; Karras, Laine, and Aila
2019; Karras et al. 2020; Ramesh et al. 2021; Radford et al.
2021). One downside of large models is the high compu-
tational costs for training, which limits their application to
edge devices such as mobile environments. This naturally
calls for the design of a new lightweight architecture or a
new compression method in generative modeling.

In this work, we focus on the model pruning techniques
that fall into the latter category. Unlike discriminative mod-
els where various pruning techniques (LeCun, Denker, and
Solla 1989; Hassibi and Stork 1992; Han et al. 2015; Fran-
kle and Carbin 2018; Ramanujan et al. 2020; Sreenivasan
et al. 2022) have been actively studied, pruning generative
models have not been extensively explored. Moreover, it
has been found that naı̈ve application of existing pruning
methods (developed for discriminative models) to genera-
tive models leads to performance degradation and/or unsta-
ble training (Wang et al. 2020; Li et al. 2021).
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Figure 1: Visualization of dense models and our strong lot-
tery tickets. For various datasets including CelebA, FFHQ,
LSUN Bedroom, and CIFAR-10, we compare the images
generated by (a) a trained dense generative feature match-
ing network (GFMN); (b) a subnetwork discovered by
our method, which uses only 10% of parameters within a
randomly-initialized GFMN. Intriguingly, our method finds
the strong lottery tickets which achieve comparable or
even better generative performances over the baseline dense
model qualitatively and quantitatively (Table 1).

Recently, several methods for pruning generative models
have been proposed and showed that it is possible to ob-
tain a lightweight model by following the “train, prune, re-
train” paradigm when tuned to generative models with spe-
cial care (Li et al. 2020; Wang et al. 2020; Liu et al. 2021;
Li et al. 2021; Tuli et al. 2021; Hou et al. 2021). For exam-
ple, to overcome training instability, Hou et al. (Hou et al.
2021) introduced multiple shared discriminators to train a
slimmable generator that can flexibly change its capacity at
runtime. Li et al. (Li et al. 2021) proposed a cooperative
scheme between the generator and the discriminator to sta-
bilize the compression during the adversarial training.

However, because their basic strategy inevitably involves
subtle balancing between training and pruning procedures,
all existing methods suffer from excessive computational
costs (Liu et al. 2021; Tuli et al. 2021; Hou et al. 2021),
performance degradation (Wang et al. 2020; Li et al. 2021;
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Figure 2: A schematic overview of our method. Our method finds a strong lottery ticket (SLT) via moment-matching scores.
By exploiting the power of the pretrained classifier, our method assigns scores to the randomly initialized weights and finds a
sparse mask so that the discovered subnetwork performs similarly or better than the trained dense generator.

Chen et al. 2021), limited generalizability (Li et al. 2020;
Hou et al. 2021), or complicated training (Liu et al. 2021).
This, combined with the notorious instability of generative
adversarial networks (GANs), which most methods target,
makes it more challenging to develop a pruning method for
generative models.

To address these problems, we propose to find strong lot-
tery tickets in generative models. A strong lottery ticket is
a subnetwork at initialization (i.e., no weight update) that
performs similarly or even better than its dense counterpart
whose weights are trained. Here, we employ the edge-popup
(EP) algorithm (Ramanujan et al. 2020), which is the earliest
method to find a strong lottery ticket in discriminative mod-
els. The EP algorithm selects a subnetwork mask based on
the idea that one can “score” the importance of each weight.
Once such a score is assigned, one simply keeps the weights
of high scores according to the desired target sparsity.

Because the performance of the EP algorithm largely de-
pends on the updated scores that serve as pruning criteria, it
is essential to use a proper score function that gives a rep-
resentative feature for pruning generative models. One may
easily think of the adversarial loss, a commonly used crite-
rion for training high-quality generators, but it is extremely
unstable and hinders the search for appropriate scores. In-
stead, we propose to utilize a technique from statistical
hypothesis testing known as maximum mean discrepancy
(MMD) (Gretton et al. 2006, 2012), which leads to a sim-
ple moment-matching score using features extracted from a
fixed, pretrained ConvNets (Li, Swersky, and Zemel 2015;
Li et al. 2017; Bińkowski et al. 2018; Wang, Sun, and Hal-
gamuge 2018; Santos et al. 2019; Ren, Luo, and Zhu 2021).

By combining the EP algorithm with the moment-
matching score, we propose a stable algorithm that finds
a subnetwork with good generative performance in a very
sparse regime. Note that our method can avoid the challeng-
ing problem of balancing between training and pruning pro-
cedures because it does not involve any weight update. In
addition, thanks to the stable characteristic of the moment-
matching score, our method can find a Strong Lottery Ticket
(SLT) in generative models without bells and whistles. To
the best of our knowledge, we are the first to show the exis-
tence of strong lottery tickets in generative models and pro-

vide an algorithm to find it stably. Our extensive experiments
show that one can find a subnetwork of 10% sparsity while
maintaining the generative performance of its dense version
(see Figure 1). More surprisingly, we find that our method
can also be used to find a well-performing subnetwork in the
pretrained generative models. This implies that one can scale
down off-the-shelf generative models to have less memory
consumption with comparable or even better performance.

Main Contributions. Our contributions can be summa-
rized as follows:

• We show that there exist strong lottery tickets in gener-
ative models. By searching for strong lottery tickets via
moment-matching scores, we avoid the joint optimiza-
tion of pruning and training, which is complicated.

• We provide an algorithm that can stably find a good sub-
network in generative models; i.e., one can prune a ran-
domly initialized generative model (without any weight
updates) and find a sparse subnetwork that achieves
comparable or better performance than the dense, fully
trained counterpart.

• We further find that our method can even improve pre-
trained generative models. Starting from a densely pre-
trained model, our method can produce its lighter and
stronger counterpart in various experimental settings.

Method
This section proposes a simple method to find a strong
lottery ticket (SLT) in generative models. The schematic
overview of our method is shown in Figure 2. Here, we con-
sider a neural network G(z;θ) with randomly initialized
weights θ ∈ Rd. We then aim at finding a strong lottery
ticket: a mask m ∈ {0, 1}d which satisfies that the pruned
network G(z;θ ⊙m) performs well on the generative task.

A Simple Algorithm for Finding Strong Lottery
Tickets in Generative Models
Edge-popup (EP) algorithm (Ramanujan et al. 2020) is the
earliest method to find strong lottery tickets in randomly ini-
tialized discriminative networks. With a proper score func-
tion, we show that the EP algorithm can be successfully
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applied to generative models as well. In the EP algorithm,
we first assign a random score si for each weight θi where
θ = [θ1, · · · , θd]. Suppose we want to remain k% of the
weights. Then, at each forward path, we sort the score si at
each layer and assign mi = 1 if |si| is in the top k% within
the corresponding layer, and assign mi = 0 otherwise. In
each backward path, we compute the loss of the network and
update the score si by using back-propagation. Here we use
straight-through estimator (Bengio, Léonard, and Courville
2013) to handle the indicator function that maps si to mi.

Modeling a Stable Score via Moment-Matching
Now we are pruning generative models, we need to devise a
proper score-updating function instead of the cross-entropy
loss used for discriminative models. To this end, we uti-
lize a kernel maximum mean discrepancy (MMD) (Gretton
et al. 2006, 2012), which is known to give a stable optimiza-
tion for learning generative models (Li, Swersky, and Zemel
2015; Li et al. 2017; Bińkowski et al. 2018; Wang, Sun, and
Halgamuge 2018; Santos et al. 2019; Ren, Luo, and Zhu
2021).

Given two sets of real and fake samples {ri}Ni=1 and
{fi}Mi=1, minimizing the MMD loss LMMD can be inter-
preted as matching all moments of the model distribution to
the empirical data distribution:

LMMD = || 1
N

N∑
i=1

ϕ(ri)−
1

M

M∑
j=1

ϕ(fj)||2, (1)

where ϕ(·) denotes a function that leads to matching high
order moments. Ideally, ϕ(·) must be calculated with infi-
nite orders. To compute MMD efficiently, we rephrase the
expression (1) via kernel trick:

LMMD =
1

N2

N∑
i=1

N∑
i′=1

ψ(ri, ri′)−
2

NM

N∑
i=1

M∑
j=1

ψ(ri, fj)

+
1

M2

M∑
j=1

M∑
j′=1

ψ(fj , fj′), (2)

where we use the pretrained VGG network as a fixed ker-
nel ψ and match the mean µ and covariance σ of real and
fake sample features in the VGG embedding space:

LMMD =
L∑

j=1

||µj
r − µj

f ||
2 + ||σj

r − σj
f ||

2. (3)

We define Iv , wuv , σ, and α as the input of node v, net-
work parameter for node u and node v, activation function,
and learning rate, respectively. At time step t, the amount of
changes in the score can be expressed as

st+1,uv = st,uv − α
∂LMMD

∂Iv
wuvσ(Iu). (4)

It is worth noting that our method uses the MMD loss for
finding nodes of low importance, not for learning weights.
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Figure 3: Comparison of FID scores of the subnetworks and
the trained dense network (GFMN; LSUN-Bedroom ). Re-
call that our method prunes a randomly initialized neural
network without any weight update. Here, we visualize the
FIDs for various k, which is the portion (%) of the remain-
ing weights in the pruned subnetwork.

Experimental Evaluation
In this section, we provide empirical results on the pro-
posed pruning method. First, we show that our method finds
strong lottery tickets in randomly initialized generative mod-
els. Second, we show that our pruning method can be used
to lighten pretrained generative models. Finally, we demon-
strate that the strong lottery tickets in generative models
found by our method are not fine-tunable to reach better per-
formance, similar to the observation made for discriminative
models (Ramanujan et al. 2020).

Datasets. We use LSUN Bedroom (Yu et al. 2015),
FFHQ (Karras, Laine, and Aila 2019), CIFAR-
10 (Krizhevsky, Hinton et al. 2009), CelebA (Liu et al.
2015), and BabyImageNet (Kang, Shin, and Park 2022)
datasets. Image resolution is set to 64×64 for every dataset.

Baselines. Following the setup of the generative feature
matching network (GFMN) (Santos et al. 2019), we adopt
the ResNet-based architecture as our default generator that
serves as a dense model. We also use other off-the-shelf pre-
trained generative models (BigGAN, SNGAN) trained on
BabyImageNet, whose weights are provided in the official
StudioGAN (Kang, Shin, and Park 2022) code1. The model
setup is configured by the codebase implemented for repro-
ducible GANs.

Evaluation metrics. We evaluate the visual quality and
the diversity of generated images with Fréchet Inception
Distance (FID) (Heusel et al. 2017), Precision & Re-
call (Kynkäänniemi et al. 2019), and Density & Cover-
age (Naeem et al. 2020), where we use InceptionV3 as the
evaluation backbone model (Szegedy et al. 2016). Here, we
use 10,000 samples of real and generated images, respec-
tively. The details on evaluation metrics and protocols are
further described in Supplementary Materials.

1https://github.com/postech-cvlab/pytorch-studiogan
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Figure 4: Comparison of Precision & Recall values of the
subnetworks and the trained dense network (GFMN; LSUN-
Bedroom). The discovered SLT performs well in both Pre-
cision & Recall. That is, SLT can generate “various” images
of “good quality” without weight training.

FFHQ LSUN CIFAR10 CelebA

Dense Model 11.52 17.32 18.86 9.52
Ours (10%) 13.32 20.21 15.06 10.93

Table 1: Comparison of FID values of trained dense mod-
els and strong lottery tickets (SLT). SLT is found by our
pruning method on a ResNet-based generator for various
datasets. Smaller FID numbers indicate better performance.
Here percentage denotes the portion of remaining weights.
This shows that we can obtain a decent generative model by
pruning 90% of weights in a randomly initialized neural net-
work without any weight update.

Experiment 1: Can We Find Strong Lottery
Tickets in Generative Models?
To investigate this question, we need a dense model that
serves as the reference. On the one hand, following the setup
of GFMN (Santos et al. 2019), we train a ResNet-based gen-
erator using the MMD loss. Here, the loss is used for train-
ing model weights. On the other hand, we apply our method
to find a subnetwork from the generator of the same archi-
tecture but with randomly initialized weights. Note that the
same MMD loss is used here, but it just serves as a score
function to find a subnetwork mask—the loss does not affect
the weights. Figure 3 and Figure 4 show how the generative
performance of our pruned network changes as a function of
k, the portion (%) of remaining weights in the subnetwork.
When most of the random weights remain, e.g., k = 90%,
the pruned network is almost identical to the untrained dense
network and thus shows poor generative performance. As
k decreases, one can see that the pruned network starts to
generate realistic images and achieve its best FID values at
around k = 10%. The similar trend is observed in Precision
& Recall (see Figure 4).

In Table 1, we compare the FID values of the trained
dense models and the strong lottery tickets (SLT) that are
obtained by our method (using k = 10% of the weights).
This indicates that in a randomly initialized dense network,
there is a subnetwork with similar or better performance than
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Figure 5: The impact of applying our method on pretrained
models (GFMN; LSUN-Bedroom). Here, we test two pre-
trained models: (1) one using the default hyperparameter
(solid red line) (Santos et al. 2019); (2) the other using
a more optimized hyperparameter found from our experi-
ments (solid blue line). Each dashed line shows the perfor-
mance of the subnetwork obtained by our pruning method
for each pretrained model with different target k. Our prun-
ing method finds a subnetwork that performs better than the
corresponding pretrained dense model in various sparsity.

the trained dense model while having only 10% of the to-
tal number of parameters in the dense network. Note that in
the previous literature (Ramanujan et al. 2020), Ramanujan
et al. (2020) found the best performing SLT for discrimina-
tive networks in the k = 50% region but failed to obtain
SLT in a sparser region like k = 10%. In contrast, SLTs
found by our method for generative models achieve their
best performance when k = 10%. This difference of dis-
criminate/generative models in the optimal sparsity regime
for finding SLTs is an interesting observation, which can be
further analyzed in future work.

Experiment 2: Can We Use Our Method to Lighten
the Pretrained Models?
Recall that one of the biggest questions in the literature on
model compression is whether we can find a good subnet-
work within a fully trained model without losing perfor-
mance (LeCun, Denker, and Solla 1989; Han, Mao, and
Dally 2016; Wiedemann et al. 2020; Isik, No, and Weissman
2021). Focusing on this fundamental question that has been
discussed over decades, we investigate whether our pruning
method can provide a positive answer for this question in
generative models.

Figure 5 shows the performance of our pruning method
when applied to dense GFMN models trained on the LSUN
dataset. Two pretrained models are considered in this ex-
periment: (1) the model trained with the default hyper-
parameter suggested by (Santos et al. 2019), and (2) the
model trained with the optimized hyperparameter found in
our experiments. In both dense pretrained models, apply-
ing our pruning method maintains or even improves the per-
formance when the portion of remaining weights is chosen
within 10% – 90% regime. This shows the practical impor-
tance of our method in that an off-the-shelf generative model
(that already has reasonable performance) can be lightened
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Figure 6: The impact of fine-tuning on subnetworks
(GFMN; LSUN-Bedroom). We show the FID performances
for two scenarios: (1) when the dense model is randomly ini-
tialized; (2) when the dense model is fully trained.

to achieve 10x efficiency while having similar or better per-
formance compared with the dense pretrained model.

A natural follow-up question is whether having a better
performance at the dense model implies having a better per-
formance after applying our pruning method. The examples
in Figure 5 show this is true in our experimental setting.
However, exploring the answer to this question in various
settings is out of the scope of this paper. We leave this as
future work.

Experiment 3: What Happens When We Further
Train a Strong Lottery Ticket?
The pioneering work (Ramanujan et al. 2020) on finding
strong lottery tickets (SLTs) on discriminative networks had
an interesting observation: SLTs found in their work are not
fine-tunable, i.e., the performance of SLT does not improve
even after weight training. We test whether this observation
is true in SLTs found in generative models by fine-tuning the
subnetwork found by our algorithm.

Figure 6 compares performances of the subnetwork (ob-
tained by our pruning method) before and after the fine-
tuning. We test on two subnetworks: one obtained from a
randomly initialized network, and the other one obtained
from the network having fully trained weights. For the sub-
network obtained from a randomly initialized network, fine-
tuning the network improves the performance in all spar-
sity regimes except when the portion of remaining weights
is 10%. The performance of the subnetworks obtained from
a fully trained network does not improve even after fine-
tuning in all sparsity regimes. From these experiments, one
can confirm that subnetworks that already achieve the per-
formance of the fully trained dense model cannot be im-
proved by fine-tuning the survived weights. This coincides
with the observation made in (Ramanujan et al. 2020).

Discussions
Here, we provide some interesting discussion topics on find-
ing strong lottery tickets in generative models.

Factor analysis The generative performance of the sub-
network found by our method depends on multiple factors.
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Figure 7: The impact of various initializations (GFMN;
LSUN-Bedroom). We visualize the performance of our
method according to different weight initializations: Kaim-
ing normal Nk and signed Kaiming constant Uk. The latter
option shows better performance overall.

Ch. Multiplier (n) 0.4 1.0 1.4 1.6 1.8 2.0

FID (↓) 26.96 10.93 10.12 8.83 8.97 8.31

Table 2: The impact of channel width on the performance of
subnetworks (GFMN; CelebA). The performance improves
as the channel width increases.

The first factor is how we initialize weights of a neural
network. Figure 7 compares two random weight initializa-
tion methods: “Kaiming normal (Nk)” and “signed Kaim-
ing constant (Uk)”. One can confirm that in most spar-
sity regimes, the signed Kaiming constant has better per-
formance (lower FID value). This observation is consistent
with the results in (Ramanujan et al. 2020) for discriminative
models. Intuitively, weight initialization can be considered
important because subnetwork search space varies depend-
ing on weight initialization. However, understanding which
weight initialization can perform well still requires deeper
research on the structure of neural networks.

The second factor is the channel width n of the network.
The default network is denoted by n = 1, and we test on
various networks having n times larger channel width at
each layer. Table 2 shows the performance of a strong lot-
tery ticket found by our method for various n. One can con-
firm that as channel width increases, the subnetwork’s per-
formance improves. This observation makes sense: as the
width increases, the number of subnetworks in a randomly
initialized network increases exponentially; the probability
of finding a better subnetwork therefore increases.

Does it have to be the EP algorithm and the moment-
matching score? Because our method is the first algo-
rithm to address prune-at-initialization in generative mod-
els, there is no base method for comparing. A possible naı̈ve
alternative to our method would be random pruning; some
might wonder if it has to be the EP algorithm and if it is
also possible with random pruning. To address this point,
we compare random pruning and our method and show that
our results are not something that can be achieved by mere
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Figure 8: Performance comparison of random pruning ver-
sus our pruning method (GFMN; LSUN-Bedroom). The
performance gap in FID between ours and random pruning is
huge. Unlike our method, random pruning fails to find SLT
and loses performance as the portion of remaining weights
gets decreased.

chance (see Figure 8). While our method finds a sufficiently
meaningful subnetwork that produces realistic images, ran-
dom pruning does not find such a subnetwork.

Another natural follow-up question would be whether we
can substitute the MMD score function with the adversarial
loss, which is commonly used for training modern genera-
tive models. In our experiments, we find that when using the
adversarial loss, network pruning simply fails due to its no-
torious instability as the score keeps changing (see Figure 9).
Here, the subnetwork that we obtained via adversarial loss
suffers from unrealistic image generation and mode-collapse
phenomena.

Efficient multi-domain generation One nice property of
our method is that it enables efficient multi-domain gener-
ation. Although several studies have proposed a model for
multi-domain generation, all require a specific architecture
to do so (Liu et al. 2019; Choi et al. 2020; Baek et al. 2021).
On the other hand, since our method only finds a subnet-
work from the randomly initialized generator, one can use
the same architecture and perform multi-domain generation
simply by changing the mask found a priori. Unlike the other
methods, our framework does not require any modification
in the architecture to add a new domain to generate; one can
simply find another mask, which is more efficient than de-
veloping a new model or fine-tuning the model architecture
to a new domain. All results in Figure 10 on various do-
mains (FFHQ, LSUN, CIFAR-10, and CelebA) are gener-
ated by simply changing the mask to the generator with the
same weights. In Figure 10 (c), we show that the GFMN
generators pruned via our method show decent performance
in various datasets with a very small number of parameters.

Can we improve the performance of our method? In
this paper, we shed light on the potential of finding strong
lottery tickets in generative models by using the edge-popup
(EP) algorithm and the MMD loss. Here, we discuss possi-
ble ways of improving the performance of our method. Note
that a recent work (Sreenivasan et al. 2022) on pruning dis-
criminative networks found that there are two methods to

Figure 9: Visualization of generated images with the adver-
sarial loss (BigGAN, BabyImageNet). Here, we leverage the
adversarial loss to obtain scores for selecting a subnetwork
mask. The resultant generator fails to generate diverse im-
ages and gets mode-collapsed.

improve the performance of EP: (1) using global EP (prun-
ing weights by sorting the scores globally) instead of vanilla
EP (pruning weights by sorting the scores at each layer),
and (2) using gradual pruning (moving from dense regime
to sparse regime gradually during pruning) instead of vanilla
EP which moves to the sparse regime from the beginning.
Inspired by this observation, we expect applying EP with
these two variants (global pruning and gradual pruning) in
our method has the potential to improve the performance of
the SLT in generative models.

Are there strong lottery tickets in high resolution? To
explore SLT at high resolution, we apply our method for 128
resolution and observe that the trend remains the same. That
is, we can also find SLT in high-resolution generative mod-
els. We include this result in Appendix E. Although we can
find SLT at high resolution, we observe that our method con-
verges slowly due to high-dimensional feature maps, and the
performance of the dense network is not satisfactory. We can
improve performance by investigating stronger kernels (i.e.,
feature extractors), but this is beyond the scope of this paper
and is an interesting future research direction.

Why is pruning generator challenging? While pruning
discriminative models has shown remarkable results, prun-
ing generators still has various challenges: 1) There are no
obvious criteria. Unlike supervised learning which has la-
bels, it is difficult to provide clear criteria for what to prune
in generative models. 2) Training is unstable. Many studies
have shown that pruning generators severely reduces perfor-
mance due to training instability. 3) Generative models are
mostly decoder structures. Pruning the weights in the de-
coder can have a more significant impact on the final output
than the encoder due to the expanded output space. In this
paper, our framework provides obvious criteria and obtains
pruned generators stably. Appendix D contains the results
showing the stability of our method.

Related Work
Neural Network Pruning. Conventional iterative train-
prune-retrain framework incurs massive training costs, even
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left bottom is the optimal point, where both the FID value and the number of parameter are small.

though it significantly reduces computational costs at test
time. To address this issue, two categories of network prun-
ing methods have been suggested in recent years: (1) prun-
ing a random network in a way that the subnetwork is train-
able to have a good performance, and (2) pruning a ran-
dom network in a way that the subnetwork itself is having
good performance without any weight updates. A subnet-
work obtained from the former category is called weak lot-
tery ticket (Frankle and Carbin 2018) and a subnetwork in
the latter category is called strong lottery ticket (Ramanujan
et al. 2020). There have been extensive works on develop-
ing theories and algorithms on weak/strong lottery tickets in
discriminative networks (Frankle and Carbin 2018; Frankle
et al. 2020; Lee, Ajanthan, and Torr 2018; Chen et al. 2020),
but results on generative models were limited so far.

Compressing generative models. Some recent works fo-
cus on finding weak lottery tickets for obtaining lightweight
generative models. For GANs and VAEs, the authors
of (Kalibhat, Balaji, and Feizi 2021; Chen et al. 2021)
used iterative magnitude pruning (Frankle and Carbin 2018).
However, unlike strong lottery tickets, weak lottery tickets
require additional weight updates for achieving reasonable
performance. Weak lottery tickets show slow convergence
speed compared to strong lottery tickets due to additional

weight updates (see Appendix D). Our work differs from
these works in two perspectives: (1) we focus on finding
strong lottery tickets that perform well without any weight
update, and (2) we do not rely on GAN loss, thus finding a
good subnetwork stably. To the best of our knowledge, the
present paper is the first work that shows the existence of a
strong lottery ticket in generative models.

Conclusion
In this paper, we investigated strong lottery tickets (SLT)
in generative models. While all existing works on building
lightweight generative models suffer from huge weight up-
date costs, performance degradation, or complicated train-
ing, we circumvented these problems by searching for SLT.
To the best of our knowledge, we are the first to show the
existence of SLT in generative models; SLT was previously
observed only in discriminative models. By exploiting the
moment-matching approach for scoring important weights
in a randomly initialized generator, our framework finds SLT
stably without bells and whistles. Our experimental results
showed that our method could successfully find a sparse sub-
network in various datasets, and the discovered subnetwork
achieved similar or even better performance than the trained
dense model even when only 10% of the weights remained.
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2017. Mmd gan: Towards deeper understanding of moment
matching network. Advances in neural information process-
ing systems, 30.
Li, M.; Lin, J.; Ding, Y.; Liu, Z.; Zhu, J.-Y.; and Han, S.
2020. GAN compression: Efficient architectures for interac-
tive conditional gans. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, 5284–
5294.
Li, S.; Wu, J.; Xiao, X.; Chao, F.; Mao, X.; and Ji, R. 2021.
Revisiting discriminator in GAN compression: A generator-
discriminator cooperative compression scheme. Advances in
Neural Information Processing Systems, 34: 28560–28572.

3274



Li, Y.; Swersky, K.; and Zemel, R. 2015. Generative moment
matching networks. In International conference on machine
learning, 1718–1727. PMLR.
Liu, M.-Y.; Huang, X.; Mallya, A.; Karras, T.; Aila, T.;
Lehtinen, J.; and Kautz, J. 2019. Few-shot unsupervised
image-to-image translation. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, 10551–10560.
Liu, Y.; Shu, Z.; Li, Y.; Lin, Z.; Perazzi, F.; and Kung, S.-Y.
2021. Content-aware gan compression. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 12156–12166.
Liu, Z.; Luo, P.; Wang, X.; and Tang, X. 2015. Deep learn-
ing face attributes in the wild. In Proceedings of the IEEE
international conference on computer vision, 3730–3738.
Naeem, M. F.; Oh, S. J.; Uh, Y.; Choi, Y.; and Yoo, J. 2020.
Reliable fidelity and diversity metrics for generative models.
In International Conference on Machine Learning, 7176–
7185. PMLR.
Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.; Goh, G.;
Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.;
et al. 2021. Learning transferable visual models from nat-
ural language supervision. In International Conference on
Machine Learning, 8748–8763. PMLR.
Ramanujan, V.; Wortsman, M.; Kembhavi, A.; Farhadi, A.;
and Rastegari, M. 2020. What’s hidden in a randomly
weighted neural network? In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
11893–11902.
Ramesh, A.; Pavlov, M.; Goh, G.; Gray, S.; Voss, C.; Rad-
ford, A.; Chen, M.; and Sutskever, I. 2021. Zero-shot text-to-
image generation. In International Conference on Machine
Learning, 8821–8831. PMLR.
Ren, Y.; Luo, Y.; and Zhu, J. 2021. Improving Generative
Moment Matching Networks with Distribution Partition. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 9403–9410.
Santos, C. N. d.; Mroueh, Y.; Padhi, I.; and Dognin, P. 2019.
Learning implicit generative models by matching percep-
tual features. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, 4461–4470.
Sreenivasan, K.; Sohn, J.-y.; Yang, L.; Grinde, M.; Na-
gle, A.; Wang, H.; Lee, K.; and Papailiopoulos, D. 2022.
Rare Gems: Finding Lottery Tickets at Initialization. arXiv
preprint arXiv:2202.12002.
Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; and Wojna,
Z. 2016. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 2818–2826.
Tuli, S.; Tuli, S.; Casale, G.; and Jennings, N. R. 2021. Gen-
erative optimization networks for memory efficient data gen-
eration. arXiv preprint arXiv:2110.02912.
Wang, H.; Gui, S.; Yang, H.; Liu, J.; and Wang, Z. 2020.
GAN slimming: All-in-one gan compression by a unified
optimization framework. In European Conference on Com-
puter Vision, 54–73. Springer.

Wang, W.; Sun, Y.; and Halgamuge, S. 2018. Improving
MMD-GAN training with repulsive loss function. arXiv
preprint arXiv:1812.09916.
Wiedemann, S.; Kirchhoffer, H.; Matlage, S.; Haase, P.;
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