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Abstract 
 

An energy-efficient generative adversarial network 
(GAN) accelerator is proposed for mobile image-to-
image translation. In image translation, low precision 
bits below 8 were not employed due to significant 
output image quality degradation. In addition, due to 
the zero injection of transposed convolution, effective 
PE utilization decreased up to 89%. To address these 
problems, this paper proposes two key features: 1) we 
apply layer-wise dynamic fixed-point quantization 
and implement bit-combined PE to increase 
throughput by 2×; 2) By analyzing the matching 
pattern of transposed convolution, data remapping 
for transposed convolution that simultaneously 
computes 4 outputs is proposed. The proposed 
processor is implemented on ZCU 104 FPGA, 
achieving energy efficiency of 76.38 GOPS/W while 
consuming 6.08 W of power for mobile image-to-
image translation. 
Keywords: generative adversarial network (GAN),  
Image-to-image translation, FPGA 
 
1. Introduction 
 

Recently, generative adversarial networks (GANs) 
have been widely adopted for various applications of 
image-to-image translation such as style transfer [1-
2], semantic segmentation [3-4], and data 
augmentation [5]. As shown in the fig. 1, GAN 
comprises 2 sub-networks: a generator and a 
discriminator. The discriminator is trained to classify 
the fake (generated) from the real (input images), 
while the generator is trained to disguise the 
discriminator by generating fake images similar to 
real input. By training two subnetworks to contest 
against each other, GAN can generate high-quality 
and realistic images. The acceleration of GAN on 
mobile devices can expand the applicability of AI into 
various fields. 

However, inferencing GAN involves massive 
multiply-and-accumulation (MAC) operations and 
external memory access (EMA) to generate the high-
resolution output image. Moreover, it requires high bit 
precision for weight and activation, due to the 

performance degradation. As shown in fig. 2, the 
image generated with lower bit precision than 8-bit 
exhibits low quality.  Thus, the previous researches 
adopt at least 16-bit fixed-point (FXP) [6-7] or 8-bit 
floating-point (FP) [8], increasing the power 
consumption of inferencing GAN.  Additionally, the 
generator includes the standard convolution (Conv) 
layers with stride 2 and Transposed Convolution 
(TConv) layers to generate a high-resolution output 
image from internal low-resolution features. Without 
a dedicated computation unit, redundant EMA and 
degradation of PE utilization is inevitable. Since 
mobile devices should meet strict power restrictions 
and have limited computation resources, energy-
efficient implementation of the GAN accelerator is 
crucial. 

To solve the abovementioned challenges of 
inferencing GAN, this paper proposes the Hardware-
algorithm co-optimization to achieve high energy 
efficiency for mobile implementation. Layer-wise 
dynamic FXP quantization with Bit-Combined PE 
architecture increases the resource efficiency 
(GOPs/DSP). Moreover, the proposed activation 
shared register and dual-mode aggregation engine 

 
Fig. 1. Image-to-image translation with 

generative adversarial network 

 
Fig. 2. Difference in generated image quality 
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support the dedicated data mapping for TConv and 
stride 2 Conv, increasing the throughput and reducing 
the redundant EMA caused by meaningless zero 
computation. We implemented the proposed GAN 
accelerator on Xilinx’s ZCU 104 FPGA designed for 
surveillance and drones.  

The rest of this paper is organized as follows. 
Section II introduces the proposed algorithm 
optimization process, including data remapping for 
TConv and dynamic FXP quantization. Section III 
describes the proposed hardware and its operation. 
Implementation results and conclusion will be 
followed in Section IV and V, respectively. 

 
2. Data remapping for TConv and layer-
wise dynamic FXP quantization 
 

Fig. 3 shows the proposed data remapping for 
TConv (DRT) which alleviates redundant 
computation caused by injected zero input during 
TConv operation. The 4 patterns that occur in the 3×3 
TConv operation are shown in Fig. 3(a). As 
highlighted in the 4 colors of matching patterns in Fig. 
3(b), which are repeated every 2 rows and columns, 
they cause unnecessary zero multiplications and 
decrease effective PE utilization by 89%. 

Since the 4 patterns are associated with different 
weight values, it is possible to reorganize patterns that 
correspond to the same activation. Therefore, as 
depicted in Fig. 3(c), upsampling the activation by a 
factor of 2 and sliding the reorganized weights with a 
stride of 2, make it possible to obtain four sets of 
TConv results, simultaneously. Thanks to DRT, not 
only ineffective MAC operation caused by injected 
zero, but also loading meaningless zero data can be 
skipped. By managing the dataflow, EMA caused by 

TConv is reduced by 50.6% and 4× higher throughput 
is achieved by getting 4 output activation in a single 
convolution process. 

To efficiently utilize the limited resources of 
FPGA, the layer-wise dynamic FXP quantization 
(LDX-Quant) with 8-bit precision is applied to weight 
and activation data of StarGAN [1], target network of 
this work. Dynamic FXP representation is commonly 
used in DNN to support variable bit-precision. Fig. 
4(a) describes the representation of dynamic FXP. 
The fractional length (FL) in the dynamic FXP can 
determine the location of decimal points and 
quantization steps. Since each layer in StarGAN has 
its own ranges of weight and activation, applying 
LDX-Quant enables the network to maximize peak 
signal-to-noise ratio (PSNR) when compared to an 
unquantized network. Fig. 4(b) shows the decided FL 
of each layer to achieve maximum PSNR, 33.95 dB, 
which means the result shows almost similar quality 
compared to the results of original network. The 
optimization is conducted using the randomly 
sampled images from the CelebA dataset.  

 
3. Hardware architecture 

 
Fig. 5 illustrates the overall architecture of the 

proposed accelerator. It consists of 8 dual-mode bit-
combined convolution cores (DB-Conv Cores), an 
activation shared register (ASR), a top controller, and 
on-chip memories. All on-chip memories and the top 
controller are connected to external memory with a 
32-bit AXI bus. An IMEM is composed of double 
buffers, thus, the data from external memory is loaded 
to a single buffer while the other produces the data to 
DB-Conv Cores, effectively hiding EMA latency and 
increasing the system throughput. 

 
Fig. 4. (a) Explanation of dynamic FXP 

quantization and (b) Layer-wise fractional 
lengths of StarGAN  

Fig. 3. Proposed data remapping for TConv  

Authorized licensed use limited to: UNIST. Downloaded on January 09,2024 at 05:26:50 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6 shows the architecture and operation modes 
of ASR suggested to support the various stride types 
of convolutions. Shift-register-based ASR consists of 
three registers for perfecting the data from IMEM, 
threes for holding the data for stride 2 Conv operation, 
and nines for producing input data to DB-Conv Core. 
From the IMEM, 1×1 size of inputs along 256 input 
channels are fetched and ASR broadcasts the 3×3 
input feature map to 8 DB-Conv Cores.  

For Conv operation with stride 1, three input 
activations are loaded from IMEM for prefetching 
during 3 cycles.  After the prefetch of input data, the 
data waits for CB-Conv Core to be done and then 
propagated to the right registers. The propagation of 
data to the right column involves a stride 1 sliding, 
and the DB-Conv Core initiates computations using 
the propagated data in ASR.  

In the case of stride 2 convolution, data is loaded 
into the prefetch register in the same way as in the 
stride 1 convolution operation. However, after the 
prefetch, the data is not shifted to registers for 
processing, but for holding. Then, the prefetched and 
held data is directly propagated next to the nearby 
register. Since, operation of DB-Conv Core takes 16 
cycles, preparation of data for operation can be done 
without stall of DB-Conv Core operation.  

DB-Conv Core has a 16×9 Bit-combined PE Array 
(BCPEA), a weight buffer which holds two weight 
kernels and a dual-mode aggregation engine (DAE), 
and a Conv controller. 

Fig. 7 shows the schematic of the proposed bit-
combined PE (BCPE). Each BCPE consists of a DSP, 
a shift register for bit-combination, and an overflow 
estimator for error detection and correction. In an 

embedded DSP module in FPGA, circuits for 25-bit 
addition, 26-bit and 18-bit multiplication, and 48-bit 
accumulation are built in. A 25-bit input port of BCPE 
is utilized for multiplication of two FXP8 weights and 
activation, shown in equation (1). 

 
(W0 × 217 + W1) × A = AW0 × 217 + AW1      (1) 

 
A multiplication result of two 8-bit data is 

represented in 16-bit, which means that two 
multiplications can be operated simultaneously by 
shifting an 8-bit data over 16 bits. However, when the 
sign of the LSB multiplier and multiplicand (A and 
W1) are different, an overflow occurs due to the 
negative sign bit of the result, and it affects the result 
in MSB multiplication result (AW0). Overflow 
estimator circuit detects the sign bit for multiplier and 
multiplicand in LSB, and inserts the correction bit for 
obtaining two multiplication results without any error.  

Computation results of BCPEA are accumulated 
along input channel direction, and left operations are 
progressed in DAE. The different operations of DAE 
for Conv, and TConv are explained in detail in Fig. 8. 
DAE determines different accumulation paths for 
different types of convolution operation, and progress 
bias addition, batch normalization, ReLU activation, 
and descaling according to the FL of the next layer.  

 In case of Conv operation, single output activation 
is accumulated and post processing is progressed. On 
the other hand, in operating TConv, the accumulation 
path is separated and 4 output activations are 
accumulated simultaneously. Thus, a parallel-in 
serial-out register temporarily stores data, and outputs 
it sequentially.  

Thanks to stride 2 mode operation in ASR and 
TConv mode operation in DAE, redundant zero 
skipping of DRT can be implemented on our system. 
Input data for TConv can be upscaled in the prefetch 
process in ASR, which increases throughput of the 
system by 4× without latency for complex data 

 
Fig. 5. Overall architecture of the proposed 

GAN accelerator 

Fig. 6. Data path for (a) stride 1 and (b) stride 2 
Convolution in ASR 

 
Fig. 7. The hardware structure of the BCPE 

 
Fig. 8. Schematic and different operation of 

DAE 
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alignment or EMA for loading overlapped data. In 
addition, partial sums are only accumulated in DB-
Conv Core, so descaled FXP8 final output results are 
stored in OMEM, which can downsize 71.4% of 
memory size when storing partial sums.  
 
4. Implementation results 
 

Fig. 9 shows the results of inferencing StarGAN 
with FXP8 quantization and LDX-Quant. The 
performance degradation of FXP quantization with 8-
bit precision results is noticeable, making style 
transfer tasks are meaningless. However, LDX-Quant 
results have almost negligible performance 
degradation compared to the unquantized results. 

Table 1 summaries specifications of the accelerator. 
Proposed accelerator is implemented on Xilinx 
ZCU104. Under the 100MHz frequency, it consumes 
6.08W power and achieves 398.8 GOPS and 1595 
GOPS of Conv and TConv peak performance, 
respectively. Table 2 shows comparisons with 
previous FPGA GAN accelerators. By employing 
BCPE and DRT, the proposed accelerator is the most 
energy and resource efficient FPGA-based GAN 
accelerator with 76.38 GOPS/W, which is 1.93 x 
improvement over [6]. 

 
5. Conclusion 
 

An energy-efficient GAN processor for mobile 
image translation is proposed. The accelerator 
employs FXP8 operations through layer-wise 
dynamic fixed-point quantization and adopt bit-
combined PE, resulting in a 2× increase in throughput. 
Moreover, thanks to the proposal of data remapping 

for transposed convolution, throughput of transposed 
convolution increase 4×. As a result, the proposed 
GAN processor achieves the peak performance of 
1595 GOPS on transposed convolution while 6.08W 
power consumption. As a result, it achieves energy 
efficiency of 76.38 GOPS/W for mobile image-to-
image translation. 
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Table 2: Performance comparison 

 
 

Fig. 9. Result of LDX-Quant and comparison 
with conventional Quant result 

Table 1: Performance summary  
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