
An Energy-Efficient GAN Processor for Mobile Image Translation

Jinhoon Jo1, Sangho Lee2, Ghangmin Yun2 and Kyuho Lee1,2
Graduate School of Artificial Intelligence1 / Department of Electrical Engineering2

Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
jinhoonjo@unist.ac.kr / kyuho.jsn.lee@unist.ac.kr

Abstract

An energy-efficient generative adversarial network
(GAN) accelerator is proposed for mobile image-to-
image translation. In image translation, low precision
bits below 8 were not employed due to significant
output image quality degradation. In addition, due to
the zero injection of transposed convolution, effective
PE utilization decreased up to 89%. To address these
problems, this paper proposes two key features: 1) we
apply layer-wise dynamic fixed-point quantization
and implement bit-combined PE to increase
throughput by 2×; 2) By analyzing the matching
pattern of transposed convolution, data remapping
for transposed convolution that simultaneously
computes 4 outputs is proposed. The proposed
processor is implemented on ZCU 104 FPGA,
achieving energy efficiency of 76.38 GOPS/W while
consuming 6.08 W of power for mobile image-to-
image translation.
Keywords: generative adversarial network (GAN),
Image-to-image translation, FPGA

1. Introduction

Recently, generative adversarial networks (GANs)
have been widely adopted for various applications of
image-to-image translation such as style transfer [1-
2], semantic segmentation [3-4], and data
augmentation [5]. As shown in the fig. 1, GAN
comprises 2 sub-networks: a generator and a
discriminator. The discriminator is trained to classify
the fake (generated) from the real (input images),
while the generator is trained to disguise the
discriminator by generating fake images similar to
real input. By training two subnetworks to contest
against each other, GAN can generate high-quality
and realistic images. The acceleration of GAN on
mobile devices can expand the applicability of AI into
various fields.

However, inferencing GAN involves massive
multiply-and-accumulation (MAC) operations and
external memory access (EMA) to generate the high-
resolution output image. Moreover, it requires high bit
precision for weight and activation, due to the

performance degradation. As shown in fig. 2, the
image generated with lower bit precision than 8-bit
exhibits low quality. Thus, the previous researches
adopt at least 16-bit fixed-point (FXP) [6-7] or 8-bit
floating-point (FP) [8], increasing the power
consumption of inferencing GAN. Additionally, the
generator includes the standard convolution (Conv)
layers with stride 2 and Transposed Convolution
(TConv) layers to generate a high-resolution output
image from internal low-resolution features. Without
a dedicated computation unit, redundant EMA and
degradation of PE utilization is inevitable. Since
mobile devices should meet strict power restrictions
and have limited computation resources, energy-
efficient implementation of the GAN accelerator is
crucial.

To solve the abovementioned challenges of
inferencing GAN, this paper proposes the Hardware-
algorithm co-optimization to achieve high energy
efficiency for mobile implementation. Layer-wise
dynamic FXP quantization with Bit-Combined PE
architecture increases the resource efficiency
(GOPs/DSP). Moreover, the proposed activation
shared register and dual-mode aggregation engine

Fig. 1. Image-to-image translation with

generative adversarial network

Fig. 2. Difference in generated image quality

based on the datatype

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

on
su

m
er

 E
le

ct
ro

ni
cs

-A
si

a
(I

C
C

E-
A

si
a)

 |
97

9-
8-

35
03

-4
43

1-
8/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
C

E-
A

si
a5

99
66

.2
02

3.
10

32
63

58

Authorized licensed use limited to: UNIST. Downloaded on January 09,2024 at 05:26:50 UTC from IEEE Xplore. Restrictions apply.

support the dedicated data mapping for TConv and
stride 2 Conv, increasing the throughput and reducing
the redundant EMA caused by meaningless zero
computation. We implemented the proposed GAN
accelerator on Xilinx’s ZCU 104 FPGA designed for
surveillance and drones.

The rest of this paper is organized as follows.
Section II introduces the proposed algorithm
optimization process, including data remapping for
TConv and dynamic FXP quantization. Section III
describes the proposed hardware and its operation.
Implementation results and conclusion will be
followed in Section IV and V, respectively.

2. Data remapping for TConv and layer-
wise dynamic FXP quantization

Fig. 3 shows the proposed data remapping for
TConv (DRT) which alleviates redundant
computation caused by injected zero input during
TConv operation. The 4 patterns that occur in the 3×3
TConv operation are shown in Fig. 3(a). As
highlighted in the 4 colors of matching patterns in Fig.
3(b), which are repeated every 2 rows and columns,
they cause unnecessary zero multiplications and
decrease effective PE utilization by 89%.

Since the 4 patterns are associated with different
weight values, it is possible to reorganize patterns that
correspond to the same activation. Therefore, as
depicted in Fig. 3(c), upsampling the activation by a
factor of 2 and sliding the reorganized weights with a
stride of 2, make it possible to obtain four sets of
TConv results, simultaneously. Thanks to DRT, not
only ineffective MAC operation caused by injected
zero, but also loading meaningless zero data can be
skipped. By managing the dataflow, EMA caused by

TConv is reduced by 50.6% and 4× higher throughput
is achieved by getting 4 output activation in a single
convolution process.

To efficiently utilize the limited resources of
FPGA, the layer-wise dynamic FXP quantization
(LDX-Quant) with 8-bit precision is applied to weight
and activation data of StarGAN [1], target network of
this work. Dynamic FXP representation is commonly
used in DNN to support variable bit-precision. Fig.
4(a) describes the representation of dynamic FXP.
The fractional length (FL) in the dynamic FXP can
determine the location of decimal points and
quantization steps. Since each layer in StarGAN has
its own ranges of weight and activation, applying
LDX-Quant enables the network to maximize peak
signal-to-noise ratio (PSNR) when compared to an
unquantized network. Fig. 4(b) shows the decided FL
of each layer to achieve maximum PSNR, 33.95 dB,
which means the result shows almost similar quality
compared to the results of original network. The
optimization is conducted using the randomly
sampled images from the CelebA dataset.

3. Hardware architecture

Fig. 5 illustrates the overall architecture of the

proposed accelerator. It consists of 8 dual-mode bit-
combined convolution cores (DB-Conv Cores), an
activation shared register (ASR), a top controller, and
on-chip memories. All on-chip memories and the top
controller are connected to external memory with a
32-bit AXI bus. An IMEM is composed of double
buffers, thus, the data from external memory is loaded
to a single buffer while the other produces the data to
DB-Conv Cores, effectively hiding EMA latency and
increasing the system throughput.

Fig. 4. (a) Explanation of dynamic FXP

quantization and (b) Layer-wise fractional
lengths of StarGAN

Fig. 3. Proposed data remapping for TConv

Authorized licensed use limited to: UNIST. Downloaded on January 09,2024 at 05:26:50 UTC from IEEE Xplore. Restrictions apply.

Fig. 6 shows the architecture and operation modes
of ASR suggested to support the various stride types
of convolutions. Shift-register-based ASR consists of
three registers for perfecting the data from IMEM,
threes for holding the data for stride 2 Conv operation,
and nines for producing input data to DB-Conv Core.
From the IMEM, 1×1 size of inputs along 256 input
channels are fetched and ASR broadcasts the 3×3
input feature map to 8 DB-Conv Cores.

For Conv operation with stride 1, three input
activations are loaded from IMEM for prefetching
during 3 cycles. After the prefetch of input data, the
data waits for CB-Conv Core to be done and then
propagated to the right registers. The propagation of
data to the right column involves a stride 1 sliding,
and the DB-Conv Core initiates computations using
the propagated data in ASR.

In the case of stride 2 convolution, data is loaded
into the prefetch register in the same way as in the
stride 1 convolution operation. However, after the
prefetch, the data is not shifted to registers for
processing, but for holding. Then, the prefetched and
held data is directly propagated next to the nearby
register. Since, operation of DB-Conv Core takes 16
cycles, preparation of data for operation can be done
without stall of DB-Conv Core operation.

DB-Conv Core has a 16×9 Bit-combined PE Array
(BCPEA), a weight buffer which holds two weight
kernels and a dual-mode aggregation engine (DAE),
and a Conv controller.

Fig. 7 shows the schematic of the proposed bit-
combined PE (BCPE). Each BCPE consists of a DSP,
a shift register for bit-combination, and an overflow
estimator for error detection and correction. In an

embedded DSP module in FPGA, circuits for 25-bit
addition, 26-bit and 18-bit multiplication, and 48-bit
accumulation are built in. A 25-bit input port of BCPE
is utilized for multiplication of two FXP8 weights and
activation, shown in equation (1).

(W0 × 217 + W1) × A = AW0 × 217 + AW1 (1)

A multiplication result of two 8-bit data is

represented in 16-bit, which means that two
multiplications can be operated simultaneously by
shifting an 8-bit data over 16 bits. However, when the
sign of the LSB multiplier and multiplicand (A and
W1) are different, an overflow occurs due to the
negative sign bit of the result, and it affects the result
in MSB multiplication result (AW0). Overflow
estimator circuit detects the sign bit for multiplier and
multiplicand in LSB, and inserts the correction bit for
obtaining two multiplication results without any error.

Computation results of BCPEA are accumulated
along input channel direction, and left operations are
progressed in DAE. The different operations of DAE
for Conv, and TConv are explained in detail in Fig. 8.
DAE determines different accumulation paths for
different types of convolution operation, and progress
bias addition, batch normalization, ReLU activation,
and descaling according to the FL of the next layer.

 In case of Conv operation, single output activation
is accumulated and post processing is progressed. On
the other hand, in operating TConv, the accumulation
path is separated and 4 output activations are
accumulated simultaneously. Thus, a parallel-in
serial-out register temporarily stores data, and outputs
it sequentially.

Thanks to stride 2 mode operation in ASR and
TConv mode operation in DAE, redundant zero
skipping of DRT can be implemented on our system.
Input data for TConv can be upscaled in the prefetch
process in ASR, which increases throughput of the
system by 4× without latency for complex data

Fig. 5. Overall architecture of the proposed

GAN accelerator

Fig. 6. Data path for (a) stride 1 and (b) stride 2
Convolution in ASR

Fig. 7. The hardware structure of the BCPE

Fig. 8. Schematic and different operation of

DAE

Authorized licensed use limited to: UNIST. Downloaded on January 09,2024 at 05:26:50 UTC from IEEE Xplore. Restrictions apply.

alignment or EMA for loading overlapped data. In
addition, partial sums are only accumulated in DB-
Conv Core, so descaled FXP8 final output results are
stored in OMEM, which can downsize 71.4% of
memory size when storing partial sums.

4. Implementation results

Fig. 9 shows the results of inferencing StarGAN
with FXP8 quantization and LDX-Quant. The
performance degradation of FXP quantization with 8-
bit precision results is noticeable, making style
transfer tasks are meaningless. However, LDX-Quant
results have almost negligible performance
degradation compared to the unquantized results.

Table 1 summaries specifications of the accelerator.
Proposed accelerator is implemented on Xilinx
ZCU104. Under the 100MHz frequency, it consumes
6.08W power and achieves 398.8 GOPS and 1595
GOPS of Conv and TConv peak performance,
respectively. Table 2 shows comparisons with
previous FPGA GAN accelerators. By employing
BCPE and DRT, the proposed accelerator is the most
energy and resource efficient FPGA-based GAN
accelerator with 76.38 GOPS/W, which is 1.93 x
improvement over [6].

5. Conclusion

An energy-efficient GAN processor for mobile
image translation is proposed. The accelerator
employs FXP8 operations through layer-wise
dynamic fixed-point quantization and adopt bit-
combined PE, resulting in a 2× increase in throughput.
Moreover, thanks to the proposal of data remapping

for transposed convolution, throughput of transposed
convolution increase 4×. As a result, the proposed
GAN processor achieves the peak performance of
1595 GOPS on transposed convolution while 6.08W
power consumption. As a result, it achieves energy
efficiency of 76.38 GOPS/W for mobile image-to-
image translation.

6. Acknowledgment

This work was supported in part by Institute of
Information & communications Technology Planning
& Evaluation (IITP) grant funded by the Korea
government (MSIT) (No.2020-0-01336, Artificial
Intelligence Graduate School Program (UNIST)) and
in part by the U-K BRAND Research Fund
(1.230019.01) of UNIST (Ulsan National Institute of
Science & Technology)’

References

[1] Choi, Y. et. al., (2018). Stargan: Unified
generative adversarial networks for multi-domain
image-to-image translation. In CVPR (pp. 8789-
8797).
[2] Karras, T et. al., (2019). A style-based generator
architecture for generative adversarial networks. In
CVPR (pp. 4401-4410).
[3] Isola, P. et. al., (2017). Image-to-image translation
with conditional adversarial networks. In CVPR (pp.
1125-1134).
[4] Mondal, A. K. et. al., (2019). Revisiting
CycleGAN for semi-supervised segmentation. arXiv
preprint arXiv:1908.11569.
[5] Hammami, M. et. al., (2020). Cycle GAN-based
data augmentation for multi-organ detection in CT
images via Yolo. ICIP (pp. 390-393). IEEE.
[6] X. Di et. al., "Exploring Resource-Efficient
Acceleration Algorithm for Transposed Convolution
of GANs on FPGA," 2019 ICFPT, pp. 19-27.
[7] A. Yazdanbakhsh et al., "FlexiGAN: An End-to-
End Solution for FPGA Acceleration of Generative
Adversarial Networks," 2018 FCCM, pp. 65-72.
[8] S. Kang et al., "7.4 GANPU: A 135TFLOPS/W
Multi-DNN Training Processor for GANs with
Speculative Dual-Sparsity Exploitation," 2020 ISSCC,
pp. 140-142.
[9] S. Kim, et al., "An Energy-Efficient GAN
Accelerator with On-chip Training for Domain
Specific Optimization," 2020 A-SSCC, pp. 1-4.

Table 2: Performance comparison

Fig. 9. Result of LDX-Quant and comparison
with conventional Quant result

Table 1: Performance summary

Authorized licensed use limited to: UNIST. Downloaded on January 09,2024 at 05:26:50 UTC from IEEE Xplore. Restrictions apply.

