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ABSTRACT

The cost and power consumption of BNN (Binarized Neural Net-

work) hardware is dominated by additions. In particular, accumu-

lators account for a large fraction of hardware overhead, which

could be effectively reduced by using reduced-width accumulators.

However, it is not straightforward to find the optimal accumu-

lator width due to the complex interplay between width, scale,

and the effect of training. In this paper we present algorithmic

and hardware-level methods to find the optimal accumulator size

for BNN hardware with minimal impact on the quality of result.

First, we present partial sum scaling, a top-down approach to mini-

mize the BNN accumulator size based on advanced quantization

techniques. We also present an efficient, zero-overhead hardware

design for partial sum scaling. Second, we evaluate a bottom-up

approach that is to use saturating accumulator, which is more ro-

bust against overflows. Our experimental results using CIFAR-10

dataset demonstrate that our partial sum scaling along with our

optimized accumulator architecture can reduce the area and power

consumption of datapath by 15.50% and 27.03%, respectively, with

little impact on inference performance (less than 2%), compared to

using 16-bit accumulator.

KEYWORDS

Neural network accelerator, quantization, binarized neural network,

adder tree, accumulator, saturating arithmetic

ACM Reference Format:

Azat Azamat, Jaewoo Park, and Jongeun Lee. 2022. Squeezing Accumulators

in Binary Neural Networks for Extremely Resource-Constrained Applica-

tions. In IEEE/ACM International Conference on Computer-Aided Design

(ICCAD ’22), October 30-November 3, 2022, San Diego, CA, USA. ACM, New

York, NY, USA, 7 pages. https://doi.org/10.1145/3508352.3549418

∗Jongeun Lee is the corresponding author (E-mail: jlee@unist.ac.kr).

This work was supported by the Samsung Advanced Institute of Technology,
Samsung Electronics Co., Ltd., by IITP grants (No. 2020-0-01336, Artificial Intel-
ligence Graduate School Program (UNIST), and No. 1711080972, Neuromorphic
Computing Software Platform for Artificial Intelligence Systems) and NRF grant
(No. 2020R1A2C2015066) funded by MSIT of Korea, and by Free Innovative Research
Fund of UNIST (1.170067.01).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9217-4/22/10. . . $15.00
https://doi.org/10.1145/3508352.3549418

1 INTRODUCTION

Binarized neural networks (BNNs) [3] are arguably themost hardware-

friendly class of neural networks, and are a good match for ex-

tremely low-power and low-cost applications (e.g., inference on

IoT devices). BNN replaces multiplications with simple XNOR op-

erations [3], and some even adopt a streaming architecture (e.g.,

[17]), eliminating almost all offchip data transfers. These architec-

tural choices shift the source of hardware overhead to addition

operations. In particular, accumulators account for a major frac-

tion of hardware overhead in terms of cost and power consump-

tion (see Section 2.2), which could be effectively reduced by us-

ing reduced-width accumulators. However, reducing accumulator

width increases the likelihood of overflows, which are detrimental

to BNN performance.

To avoid overflows, one can add a scaling operation before accu-

mulation, which creates a complex optimization problem to deter-

mine the best combination of scale factor and accumulator width

that can maximize the quality of result while minimizing hard-

ware cost. We target the layer-wise architecture as opposed to the

streaming architecture, which means that the accumulator size is

the same across all layers. However, a networkmay havemany scale

factors depending on granularity (e.g., per-layer or per-channel).

Further if we consider network training and/or hardware features

such as saturating accumulator (which may be less sensitive to

overflows), the problem becomes even more complicated.

In this paper we first present a general methodology, called

Partial Sum Scaling (PSS), to optimize the precision as well as the

network weight and scale parameters. However, since the general

solution uses floating-point or fixed-point multipliers, which are

expensive and may defeat the purpose of reducing the accumulator

size, we also propose a simple yet effective version (HW-friendly

PSS). The simplification is based on the observation that the scale

factor is most heavily influenced by the architectural parameter

called tile size, which must be fixed across all layers. Thus by using

a constant scale factor, and further limiting it to a power of two, we

can eliminate nearly all hardware overhead of the general version.

Our experimental results using BinaryNet [3] on CIFAR-10 and

Bi-Real Net [10] on ImageNet demonstrate that our HW-friendly

version can generate architectures that achieve similar performance

as the general version, but with essentially zero hardware overhead,

and that our HW-friendly version can reduce the accumulator pre-

cision to 7-bit with little impact on inference performance (<1%),
which corresponds to about 21.48% reduction in power consump-

tion in the BNN datapath comparedwith using 16-bit accumulators.

Finally, combining our method with a different kind of accumulator,

i.e., saturating accumulator, shows acceptable network accuracy

within 2% from the baseline at extremely low width of 4-bit.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3508352.3549418&domain=pdf&date_stamp=2022-12-22
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In this paper we make the following contributions:

• We present a general methodology to find minimal accumu-

lator size based on existing quantization frameworks.

• We propose a hardware-friendly version, which relies on

bit-selection only, thus requiring no additional logic, as well

as a method to find optimal parameters such as partial sum

precision.

• We propose a novel accumulator architecture for BNNs,

which consists of either a modulo or saturating accumu-

lator, zero-overhead rounding, and bit-selection circuitry,

which, when used with our partial sum scaling, can reduce

accumulator precision quite significantly.

2 BACKGROUND AND RELATEDWORK

2.1 DNN Accelerator Architecture

The main computation of a BNN accelerator (e.g., FINN [17]) is

performed by XNOR-popcount circuit. Architecturally the XNOR-

popcount circuit is very similar to an array of multipliers followed

by an adder tree commonly found in (multi-bit) neural network

accelerators. The output of XNOR-popcount is called partial sum

(psum), as illustrated in Figure 1. Partial sums are accumulated

either temporally or spatially to produce the final sum, which is

the result of a tensor operation such as matrix-vector multiplica-

tion (MVM) and convolution. Note that accumulator is necessary

to handle a tensor operation of an arbitrary size on fixed-sized

hardware. To increase parallelism, multiple instances of XNOR-

popcount circuit can be employed, which may generate multiple

partial sums, exploiting the output channel parallelism.

2.2 Is Accumulator Size Worth Optimizing?

Figure 2 shows the area and power breakdown of BNN datapath,

which consist of XNOR-popcount logic and accumulators as illus-

trated in Figure 1. We have varied the tile size (i.e., the number of

input elements that can be handled simultaneously by the hard-

ware), which affects the number of XNORs and the size/height of

the adder tree for the popcount function. Accumulator size is set

to 16-bit. The results in Figure 2 show that the area and power

consumption due to accumulators can be quite significant, at about

20% area and 40% power with the tile size of 64. While accumula-

tor’s significance decreases as tile size increases, in applications

with extremely constrained resources (e.g., IoT devices), the tile size

would be small and being able to reduce some of the accumulator

power consumption would be very desirable.

2.3 Related Work

Accumulator size reduction has not received much attention in

multi-bit NPUs (Neural Processing Units), where the contribution

of accumulators to area and power consumption is very limited.

As a result, NPUs are often generous with accumulator sizing.

For instance, VTA [11], which is a configurable soft-core NPU for

FPGAs, allows power-of-two accumulator sizes only (8-bit, 16-bit,

32-bit, etc.).

FINN [17] is a well-known BNN generation framework, which

is based on the streaming architecture (i.e., all layers are imple-

mented with dedicated hardware), with very limited scalability
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Figure 1: MAC array of a (binary) NPU architecture.
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Figure 2: Breakdown of BNN MAC arrays (𝑥-axis: tile size).

for large networks such as those used in our experiments. FINN

used 32-bit accumulators in earlier versions, but the most recent

version includes accumulator size optimization, which determines

the worst-case accumulator size for each layer computed from layer

hyperparameters. Our work targets the layer-wise architecture,

which is scalable and has a single datapath shared across all layers.

There has been much interest in BNNs from the hardware de-

sign community [7, 13], but there is very little work on systematic

exploration or optimization of accumulator size.

Recent DNN quantization works focus on training methods

[5, 15] or novel quantizer functions [8], or both [9, 14], but they

rarely consider hardware evaluation or hardware details such as

accumulator. AQD [2] presents a method to get rid of all floating-

point operations, but does not attempt to reduce accumulator pre-

cision below 32-bit. Some other work [4, 18] shows that their ap-

proach with 16-bit accumulators has no more than 1% degradation

on CIFAR-10 and ImageNet image classification tasks. Authors in

[16] use 16-bit floating-point accumulators for both training and

inference. Authors in [12] have proposed to add an additional acti-

vation layer after each convolution/fully-connected layer to prevent

overflows in low-precision accumulator. They achieve compara-

ble results with the baseline while using only 8-bit accumulator.

However, they do not optimize hardware architecture nor target

BNNs. Finally, our proposed method has some similarity with our

previous work [1] in that both rely on neural network quantization,

but the latter targets analog ReRAM crossbar arrays with different

constraints.

3 OUR PROPOSED METHODOLOGY

3.1 Overall Flow

Figure 3 illustrates our optimization methodology. First we con-

struct an back-annotated computation graph (BCG), which is based
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on a neural network graph but is a concrete computation graph

with hardware architecture details added, such as tile size and

partial sums. Second we define a quantizer function and add it to

the BCG. The quantizer function is evaluated in terms of hardware

implementation cost as well as expected network performance (e.g.,

classification accuracy), which is the most time-consuming step.

This process is repeated varying the precision and quantizer func-

tion until desired performance and efficiency results are achieved.

3.2 Back-annotated Computation Graph

A back-annotated computation graph (BCG) is a neural network

graph (or a computation graph) reconstructed from a hardware

design of a neural network. A BCD essentially performs the same

computation as the neural network from which it is derived, but

there can be many differences such as in the order and precision

of computation.

One such difference is partial sum. Since XNOR-popcount circuit

(or amultiplier-and-adder array) is limited in size, it cannot perform

an arbitrarily large matrix multiplication directly. As an example,

consider the output of a fully-connected layer, which is computed

as the dot product between two 𝑁 -dimensional vectors, weight𝑤
and input 𝑥 .

𝑦 =
𝑁∑
𝑖=1

𝑤𝑖 · 𝑥𝑖 = 2

𝑁∑
𝑖=1

popcount(XNOR(𝑤𝑖 , 𝑥𝑖 )) − 𝑁 (1)

If𝑤𝑖 and 𝑥𝑖 take {−1, 1} binary values, the multiply-addition opera-
tion on the left can be replaced with the XNOR-popcount operation

on the right.

Now given the hardware tile size of𝑇 (i.e., hardware performs𝑇
XNORs and 𝑇 -bit popcount), we can rewrite the above as follows:

𝑦 = 2

�𝑁 /𝑇 �∑
𝑗=1

𝑇∑
𝑖=1

popcount(XNOR(𝑤𝑖 , 𝑥𝑖 ))

︸���������������������������������︷︷���������������������������������︸
𝑝𝑠𝑢𝑚

− 𝑁 = 2

�𝑁 /𝑇 �∑
𝑗=1

𝑝 𝑗 − 𝑁

The inner summation for the partial sum is done by XNOR-popcount

circuit as illustrated in Figure 1, but partial sum values should be

added using an accumulator to produce the final output. Thus

after explicitly identifying accumulators in the input neural net-

work graph, we can proceed to reduce their precision by quantizing

partials sums before accumulation.

3.3 Quantizer Function

Since the underlying neural network is already binarized, the input

to the quantizer function, partial sum, is an integer with a finite

range. That is, 0 ≤ 𝑝 ≤ 𝑇 , where 𝑝 is a partial sum and 𝑇 is the tile

size.

An example quantizer is given below:

𝑝 = clip(
⌊ 𝑝
Δ

⌉
; 0, 2𝑎 − 1) (2)

𝑝 = 𝑝 · Δ (3)

where clip(𝑥 ;𝑎, 𝑏) = min(max(𝑥, 𝑎), 𝑏), �·� is the round operation,
Δ is a quantizer parameter called scale factor, and 𝑎 is the accumu-
lator’s precision.

Note that 𝑝 is the integer value that is given to the accumulator
as input. Therefore only integer accumulators are required, and
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Figure 3: Our optimization methodology.

the scaling-back operation, (3), is performed after accumulation.

However the real-valued output, 𝑝 , is used to capture the full effect
of quantization. This version of quantizer (i.e., 𝑝), called simulated

quantizer, makes it easy to compute gradient and commonly used

in DNN quantization.

Our partial sum quantization needs to implement four opera-

tions: scaling (division by Δ), round, clip, and scaling-back (multi-
plication with Δ), which requires additional logic such as floating-
point multipliers, incurring hardware overhead. We present a sim-

pler version that eliminates such overhead in Section 4.

3.4 Network Performance Evaluation

After deciding the quantizer function, along with the range of the

quantization parameter(s), network performance evaluation can

begin. This step is similar to DNN quantization and can be done

using existing methods (e.g., [5]). As in DNN quantization, it can

be done as post-training quantization (PTQ) or quantization-aware

training (QAT). This step takes long because it involves optimization

of free variables, such as scale factor Δ, and weight in the case of
QAT, to obtain the best possible network performance.

4 HW-FRIENDLY PARTIAL SUM SCALING

4.1 Simplification

Since our general methodology in Figure 3 requires floating-point

or fixed-point multipliers to implement scale factor(s), we propose

a simpler version that restricts the range of the scale factor(s).

First we restrict the scale factor to a power of two, which allows

for replacing multiplications with bit-shift operations. Second, we

propose to use the same scale factor for all layers. While there are

a number of factors determining the optimal scale factor value, one

of the most important is the tile size, which is fixed in any given

hardware. By hard-coding the scale factor, we can eliminate even

the bit-shift operation, requiring bit-selection only, which does not

require any logic gates.

Let 𝑎 and 𝑏 denote accumulator precision and effective psum
precision, respectively. We call 𝑏 effective psum precision, because

technically the psum precision should be equal to the accumulator

precision (see Figure 4). However, since the effect of a power-of-

two scale factor is to essentially shed off a few, say 𝑐 , bits from
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Figure 4: Proposed scaling accumulator with round opera-

tion.

a psum value, 𝑏 = 𝑎 − 𝑐 can be regarded as the effective psum
precision. The question of how to determine the optimal value of

𝑐 (or 𝑏) is considered in the next section. Once 𝑏 is determined,
the corresponding scale factor can be computed easily using the

following formula:

Δ =
𝑇

2𝑏 − 1
≈

𝑇

2𝑏
(4)

Note that tile size (𝑇 ) is usually chosen as a power of two (e.g., 32,
64 or 128), making the scale factor Δ above also a power of two,

thus requiring no multiplier.

4.2 Finding Optimal Psum Precision

In our original partial sum scaling methodology, the scale factor Δ
is the primary parameter and can be easily optimized, e.g., via gradi-

ent descent. Now that 𝑏 (effective precision of psum) is the primary
parameter and Δ is computed from 𝑏, it makes our optimization
problem more difficult because 𝑏 is a discrete variable. Although
one could determine the value of 𝑏 via gradient descent, doing so
would require discretization and gradient estimate of 𝑏, which is
at best approximate and cannot guarantee optimality. Instead, we

employ an exhaustive search strategy varying 𝑎 and𝑏 in all possible
combinations, which generates only a few dozens of combinations

while certainly being able to find the optimal precisions.

Another advantage of using an exhaustive search is that it can

be used in the PTQ setting. For QAT, we first determine the psum

precision (and consequently scale factor) using PTQ via exhaustive

search, and then apply QAT with the psum precision fixed to the

value found in PTQ. The time complexity of the exhaustive search

for PTQ is quadratic to the number of precision values considered

(see, for instance, Table 1, of which each entry takes one simple

inference to generate).

4.3 Efficient Hardware Implementation

Zero-Overhead Round Operation. The round operation in quantiza-

tion equation (as in (2)) usually requires an adder that will increase

the overhead of the hardware. However, it can be avoided by simply

Figure 5: Actual result (𝑦-axis) vs. ideal result (𝑥-axis) of ordi-
nary (OA) and saturating adder (SA). 4-bit example.

truncating the input and feed the most significant bit of the trun-

cated bits as the carry in (𝑐𝑖𝑛) for the accumulator. Figure 4 shows
an example with 5-bit psum and scale parameter of 4, which means

truncating the last two bits, one of which is fed to the accumulator.

This way we can implement round operation without using extra

adder.1

Scaling Operation. The scale factor is a power of two and the same

across all layers. Therefore both scaling and scaling-back operations

can be implemented without consuming any logic gates if we

target one specific network, as is the case with FPGA accelerators

(e.g., FINN [17]). Otherwise, we need a bit-shifter if we want to

support different network models with possibly different optimal

psum precision values. In either case, scaling-back operation can be

merged with the following layer’s input quantization, and requires

no extra hardware.

Clipping Operation. In (2) we need a clipping operation to ensure

that we do not use more bits than we are allowed (note the scale

factor can take any value during training). During inference, we do

not need clipping operation if the expression inside the clipping is

known to be within accumulator precision’s range. In the partial

sum scaling, the scale factor is dictated by psum precision, and is

always greater than 1. Thus the clipping operation can be safely

removed.

4.4 Example: Saturating Adder

One example to demonstrate the usefulness of our proposedmethod-

ology is the evaluation of saturating adder (SA). Saturating adders

are less sensitive to overflow than ordinary adders, which may help

achieve more robust performance across many precision settings or

networks. Figure 5 compares 4-bit ordinary and saturating adders.

Ordinary adder is a modulo adder defined as𝑦 ← (𝑦+𝑝)mod 2𝑎 ,

or 𝑦 = (
∑
𝑖 𝑝𝑖 ) mod 2𝑎 . Note that modulo and addition are asso-

ciative, therefore we can change the order of operations freely,

resulting in the more easier-to-compute formula. Saturating adder

is defined as 𝑦 ← clip(𝑦 + 𝑝, 0, 2𝑎 − 1). However, it can not be

simplified to clip(
∑
𝑖 𝑝𝑖 , 0, 2

𝑎 − 1), because clip and addition are

not associative. This means that in order to evaluate the effect of

using saturating adders accurately, we must use a more hardware-

accurate framework such as Figure 3 that models tile size and

partial sum explicitly.

1According to our synthesis result, our zero-overhead rounding circuit using the
carry-in input for the cheap “add 1” functionality has a very small overhead of one
half-adder, compared with not having such rounding feature. Though not completely
zero, the overhead is very small nonetheless.
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Table 1: PTQ with Binary ResNet-18 on CIFAR-10 (P: partial

sum, A: accumulator)

P
A

9-bit 8-bit 7-bit 6-bit 5-bit 4-bit 3-bit 2-bit

9-bit 9.92 - - - - - - -
8-bit 10.29 10.23 - - - - - -
7-bit 50.26 10.33 10.40 - - - - -
6-bit 90.04 49.79 9.87 10.41 - - - -
5-bit 90.11 89.62 55.54 10.76 9.98 - - -
4-bit 89.78 89.78 89.56 59.66 11.09 10.20 - -
3-bit 86.86 85.86 85.86 85.76 58.97 11.15 9.93 -
2-bit 9.92 9.92 9.92 9.92 9.92 10.05 10.20 10.01

General 90.47 90.12 89.81 88.34 65.25 11.79 10.90 10.56

Table 2: PTQwith Bi-Real Net 18 on ImageNet (P: partial sum,

A: accumulator)

P
A

9-bit 8-bit 7-bit 6-bit 5-bit 4-bit 3-bit 2-bit

9-bit 0.09 - - - - - - -
8-bit 0.14 0.11 - - - - - -
7-bit 0.48 0.14 0.09 - - - - -
6-bit 48.42 0.50 0.14 0.10 - - - -
5-bit 54.93 50.55 0.82 0.14 0.09 - - -
4-bit 53.25 53.25 48.80 0.84 0.14 0.10 - -
3-bit 38.40 38.40 38.78 36.45 0.80 0.14 0.08 -
2-bit 0.16 0.16 0.15 0.15 0.17 0.10 0.10 0.09

5 EXPERIMENTS

5.1 Experimental Setup

To evaluate the effectiveness of our proposed method, we use two

BNNs, BinaryNet on CIFAR-10 and Bi-Real Net 18 on ImageNet.

The CIFAR-10 BinaryNet [3] is a binarized version of ResNet-18 [6]

and widely used in the literature. The Bi-Real Net [10] is a recent,

state-of-the-art BNN model, showing very competitive accuracy

on ImageNet. The network structure and learning conditions of the

BinaryNet and Bi-Real Net are the same as in the original papers

[3] and [10], respectively. We fix the tile size as 𝑇 = 64 in all our

experiments. We do not apply PSS to the first and last layer in a

network. We compare the proposed method with a baseline design

that uses 16-bit accumulators, as NPUs often support power-of-two

accumulator sizes only (e.g., VTA soft-coreNPU for FPGAs [11]). For

hardware evaluation we design a BNN datapath in Verilog, which is

synthesized with Synopsys Design Compiler using Samsung 65 nm

technology.

5.2 Impact of Overflow on Network Accuracy

Table 3a and Table 4a show the inference performance of CIFAR-10

BinaryNet (based on ResNet-18) and ImageNet Bi-Real Net 18 for

different accumulator precision without applying our partial sum

scaling. For both networks, accuracy drops significantly when accu-

mulator is 9-bit or lower. Even after retraining, 9-bit accumulator’s

performance is not able to come within 1% degradation from the

baseline accuracy.

5.3 PTQ Result & Finding the Best Psum

Precision

As discussed in Section 4.2, we perform an exhaustive search for all

combinations of psum/accumulator precision in the post-training

quantization (PTQ) setting. Note that psum precision cannot exceed

accumulator precision. Scale factor is computed by (4) with 𝑏 as

Table 3: Binary ResNet-18 on CIFAR-10 with different accu-

mulator precision (baseline is 90.72%)

(a) w/o psum scaler

Accumulator Inference Retraining

32-bit 90.72 –
11-bit 90.72 –
10-bit 90.51 90.68
9-bit 49.16 89.34
8-bit 9.91 47.52
7-bit 9.82 11.18

(b) w/ psum scaler

Accumulator psum OA SA

9-bit 5-bit 90.59 90.66
8-bit 4-bit 90.52 90.58
7-bit 4-bit 90.33 90.17
6-bit 3-bit 88.72 89.04
5-bit 3-bit 88.67 88.90
4-bit 3-bit 81.81 88.84
3-bit 2-bit 21.34 88.37
2-bit 2-bit 10.56 80.43

Table 4: Bi-Real Net 18 on ImageNet with different accumu-

lator precision (baseline is 56.39%)

(a) w/o psum scaler

Accumulator Inference Retraining

32-bit 56.39 –
11-bit 56.39 –
10-bit 51.72 55.95
9-bit 0.56 52.01
8-bit 0.16 34.38
7-bit 0.10 12.44

(b) w/ psum scaler

Accumulator psum OA SA

7-bit 4-bit 55.32 55.68
6-bit 3-bit 52.59 53.51
5-bit 3-bit 49.99 53.04
4-bit 3-bit 38.01 52.95
3-bit 2-bit 25.47 48.73

the partial sum precision. Results for CIFAR-10 and ImageNet

are summarized in Table 1 and Table 2, respectively. The highest

network performance determines the optimal combination of psum-

accumulator. For instance, 9-bit accumulator works best with 5-bit

psum, etc.

To see how close our HW-friendly version’s network perfor-

mance is, compared to our general version’s where each layer has

its own floating-point scale factor, we perform a PTQ experiment

using the general version on the CIFAR-10 network, which finds

optimal scale factors via gradient descent (weights are frozen, but

only scale factors are trained using [5]). Figure 6 shows the result,

where the 𝑦-axis shows Δ as computed by (4) (HW-friendly PSS)

or found by gradient descent (general PSS). In the graph, the blue

dots representing floating-point scale factors for all 16 layers (ex-

cept the first and last layers) are so close to each other that they

appear as one dot, which confirms that there are very little differ-

ences among layers. Also the floating-point scale factors found by

gradient descent are very similar to the ones found by exhaustive

search, and in fact, if we limit the floating-point scale factors to

power-of-two values only, they all coincide with integer values. In

terms of the network performance, the differences are very small
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as shown in the last row of Table 1, with the differences being due

to the floating-point vs. power-of-two value differences.

5.4 QAT Result

After determining the optimal values of 𝑏, effective partial sum
precision, we retrain our networks using the QAT method similar

to [5]. Results are summarized in Table 3b and Table 4b. For Bi-

naryNet on CIFAR-10, 7-bit accumulator with both ordinary and

saturating adders shows comparable results within 0.5% degrada-

tion from the baseline. It is clear that ordinary adder cannot work

well on extremely-low accumulators (i.e., 3-bit and 2-bit). However,

saturating adder is more effective in this case and can improve

the performance significantly. For instance, 3-bit saturating adder

can achieve 88.37%, whereas 3-bit ordinary adder is only 21.34%.

On the other hand, saturating adder has additional overhead on

hardware due to an extra clipping operation (see synthesis result

in Table 5).

The same trend can be observed for the ImageNet result where

Bi-Real Net 18 is able to achieve near baseline result at 7-bit accu-

mulator with either ordinary or saturating adders.

5.5 Hardware Synthesis Results

To evaluate the hardware efficiency of the architectures generated

using our proposed method, we have designed 64×64 array binary

datapaths (having 64-input and 64-output, thus 4,096 XNORs and

64 adder trees, along with accumulators), which are then synthe-

sized to obtain area and power estimates. Results are summarized

in Table 5. The baseline is the 16-bit OA case.

Our architecture with 7-bit OA with PSS (partial sum scaling)

consumes 21.48% less power and 11.22% less area in the datapath

than the baseline. Moreover, the architecture with SA and PSS is

so robust that in the case of CIFAR-10, accumulator precision can

be squeezed down to 4-bit, reducing the power consumption by

27.03% and area by 15.50% with an acceptable network accuracy

loss of less than 2% compared to the 16-bit baseline.

5.6 Accuray-Efficiency Tradeoff

Figure 7 shows the accuracy-area tradeoff and accuracy-power

tradeoff of three different methods: OA without PSS, OA with

PSS, and SA with PSS. These results are for the Binary ResNet-18

Figure 6: Float-point and integer scale factor values for dif-

ferent accumulator precisions.

Table 5: Synthesis result (64×64 array)

Case Area (𝜇𝑚2) Power (𝜇𝑊 )

16-bit OA 1218.60 135

10-bit OA 1125.72 ( –7.62%) 118 (–12.59%)

7-bit OA + PSS 1081.80 (–11.22%) 106 (–21.48%)

5-bit OA + PSS 1048.68 (–13.94%) 101 (–25.18%)

7-bit SA + PSS 1099.80 ( –9.74%) 108 (–20.00%)

4-bit SA + PSS 1029.60 (–15.50%) 98.5 (–27.03%)

(a) Accuracy vs. area (b) Accuracy vs. power

Figure 7: Accuracy vs. area and power for CIFAR-10 Binary

ResNet-18.

on CIFAR-10. While 7-bit OA with PSS has the highest accuracy

with no hardware overhead, the graphs also show that on the

wider range of accumulator precision, SA with PSS makes the best

tradeoff among the three methods, followed by OS with PSS, which

confirms the superiority of our proposed method.

6 CONCLUSION

BNNs fit well with applications with extremely constrained re-

sources, but they still have relatively high accumulator overhead,

especially when the tile size is on the small side. To provide the

most optimized architecture, we have proposed a general method-

ology to squeeze even accumulators, PSS, which can help navigate

the complex optimization process involving accumulator precision,

psum precision, and scale factors. Our hardware-friendly version

of PSS eliminates nearly all hardware overhead of the general PSS

while achieving very similar performance. The exploration results

demonstrate that our methodology can reduce the accumulator

width to 7-bit with little degradation compared to 16-bit accumu-

lator. Moreover, combining our method with a different kind of

accumulator, i.e., saturating accumulator, shows acceptable net-

work accuracy within 2% from the baseline at extremely low width

of 4-bit. In this paper we assume the layer-wise architecture, but

the streaming architecture presents an even more interesting opti-

mization opportunity to use different accumulator precisions for

different layers, which is left for future work.
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