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Hong Kong World: Leveraging Structural Regularity
for Line-Based SLAM
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Abstract—Manhattan and Atlanta worlds hold for the structured
scenes with only vertical and horizontal dominant directions (DDs).
To describe the scenes with additional sloping DDs, a mixture of
independent Manhattan worlds seems plausible, but may lead to
unaligned and unrelated DDs. By contrast, we propose a novel
structural model called Hong Kong world. It is more general
than Manhattan and Atlanta worlds since it can represent the
environments with slopes, e.g., a city with hilly terrain, a house
with sloping roof, and a loft apartment with staircase. Moreover,
it is more compact and accurate than a mixture of independent
Manhattan worlds by enforcing the orthogonality constraints be-
tween not only vertical and horizontal DDs, but also horizontal
and sloping DDs. We further leverage the structural regularity of
Hong Kong world for the line-based SLAM. Our SLAM method
is reliable thanks to three technical novelties. First, we estimate
DDs/vanishing points in Hong Kong world in a semi-searching
way. We use a new consensus voting strategy for search, instead
of traditional branch and bound. This method is the first one that
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can simultaneously determine the number of DDs, and achieve
quasi-global optimality in terms of the number of inliers. Second,
we compute the camera pose by exploiting the spatial relations
between DDs in Hong Kong world. This method generates concise
polynomials, and thus is more accurate and efficient than existing
approaches designed for unstructured scenes. Third, we refine the
estimated DDs in Hong Kong world by a novel filter-based method.
Then we use these refined DDs to optimize the camera poses and
3D lines, leading to higher accuracy and robustness than existing
optimization algorithms. In addition, we establish the first dataset
of sequential images in Hong Kong world. Experiments showed
that our approach outperforms state-of-the-art methods in terms
of accuracy and/or efficiency.

Index Terms—Camera pose, dominant direction, line, SLAM,
structural regularity, vanishing point.

I. INTRODUCTION

S TRUCTURED environments have been well studied in
computer vision and robotics fields [1], [2], [3]. As shown in

Figs. 1(a) and 2(a), Manhattan world [1] holds for the scenes with
two horizontal dominant directions (DDs) and a vertical DD.
These DDs are mutually orthogonal. We can model Manhattan
world by a frame whose axes correspond to DDs. Figs. 1(b)
and 2(b) show that Atlanta world [2] describes the scenes with
multiple horizontal DDs and a vertical DD. Horizontal DDs
are unnecessarily orthogonal to each other but all orthogonal
to the vertical DD. We can model Atlanta world by a set of
frames sharing a common vertical axis. The main shortcoming
of Manhattan and Atlanta worlds is limited generality. They
can only describe the structured scenes on the flat lands, but
not the structured environments with slopes (see Fig. 1(c)). A
straightforward solution is a mixture of Manhattan worlds [3]
(see Fig. 2(c)). This model assumes that all the Manhattan worlds
are independent. However, in practice, some Manhattan worlds
share a common DD. When expressing such type of scenes,
this model may result in unrelated and unaligned DDs. Thus,
the main limitation of a mixture of Manhattan worlds lies in
unsatisfactory compactness and accuracy. To solve the above
problems, in this paper, we propose a novel structural model
called Hong Kong world.

As shown in Figs. 1(c) and 2(d), our Hong Kong world consists
of a vertical DD, multiple horizontal DDs, and multiple sloping
DDs.1 These DDs satisfy three constraints. First, the vertical

1In our context, we do not differentiate between the positive and negative
orientations of DDs, following [4], [5].
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Fig. 1. Representative cities exhibiting various structural regularities. (a)
Manhattan with a vertical DD and two horizontal DDs. (b) Atlanta with a vertical
DD and multiple horizontal DDs. (c) Hong Kong with a vertical DD, multiple
horizontal DDs (see red arrow), and multiple sloping DDs (see yellow and green
arrows). Red, yellow, and green arrows are mutually orthogonal.

DD is orthogonal to all the horizontal DDs. For example, houses
are built along the gravity direction (see {red, blue} blocks in
Fig. 2(d)). Second, a horizontal DD is orthogonal to a set of
sloping DDs. For example, a wall of house adjoins a sloping
road (see Fig. 1(c)). Accordingly, the normal of this wall that
corresponds to a horizontal DD is orthogonal to both lane line
and normal of slope that correspond to two sloping DDs (see
{blue, cyan} or {red, gray} blocks in Fig. 2(d)). Note that there
may be more than one horizontal DDs (see yellow and gray
arrows in Fig. 2(d)), each of which is orthogonal to a set of
sloping DDs. Third, several pairs of horizontal or sloping DDs
are orthogonal. For example, normals of two orthogonal walls
that correspond to two horizontal DDs are orthogonal; Lane line
and normal of slope that correspond to two sloping DDs are
orthogonal (see magenta arrows in Fig. 2(d)).

Based on the above DD constraints, we model our Hong Kong
world by (1 +N) sets of frames. The first set of frames share
a common vertical axis (see {red, blue} blocks in Fig. 2(d)).
The nth (2 � n � 1 +N ) set of frames share a common hori-
zontal axis (see {blue, cyan} and {red, gray} blocks in Fig. 2(d)).
To some extent, our Hong Kong world is a generalization of
Atlanta world. Specifically, a single set of frames in Atlanta
world share a common vertical axis, while (1 +N) sets of
frames in Hong Kong world share (1 +N) common vertical
or horizontal axes. Our Hong Kong world has two main ad-
vantages. First, it is more general than Manhattan and Atlanta
worlds since it can represent the environments with slopes,
e.g., a city with hilly terrain, a house with sloping roof, and
a loft apartment with staircase. Second, it is more compact
and accurate than a mixture of independent Manhattan worlds
since frames are tightly coupled based on the orthogonality
constraints.

Our Hong Kong world has a large variety of potential ap-
plication fields, such as 3D reconstruction [6], scene under-
standing [7] and robot navigation [8]. In this paper, we focus
on applying it to a crucial technology of robot navigation,
i.e., simultaneous localization and mapping (SLAM). Existing
point-based SLAM methods [9], [10] are unstable in textureless
environments. To solve this problem, several line-based meth-
ods [11], [12], [13], [14] have been proposed. However, they

neglect the spatial relations between 3D lines that can provide
effective geometric constraints. Accordingly, their accuracy is
unsatisfactory. By contrast, recent line-based methods [15], [16]
consider particular spatial relations between 3D lines such as
parallelism and orthogonality in structured scenes. While these
methods improve the accuracy, they lead to low generality since
they are only applicable to Manhattan and Atlanta worlds. To
overcome this limitation, we propose a monocular line-based
SLAM method by leveraging the structural regularity of Hong
Kong world.

Our SLAM method is reliable thanks to three technical nov-
elties. First, we estimate DDs/vanishing points2 in Hong Kong
world in a semi-searching way. We use a new consensus voting
strategy for search, instead of traditional branch and bound
(BnB) [18], [19]. This method is the first one that can simul-
taneously determine the number of DDs, and achieve quasi-
global optimality in terms of the number of inliers. Second,
we compute the camera pose by exploiting the spatial relations
between DDs in Hong Kong world. This method generates
concise polynomials, and thus is more accurate and efficient
than existing approaches designed for unstructured scenes [20],
[21], [22]. Third, we refine the estimated DDs in Hong Kong
world by a novel filter-based method. Then we use these re-
fined DDs to optimize the camera poses and 3D lines, leading
to higher accuracy and robustness than existing optimization
algorithms [15], [16], [23]. For experiments, we establish the
first dataset of sequential images in Hong Kong world. It is
composed of 7 sequences (9077 images). We provide calibration
parameters and ground truth trajectories. Experiments showed
that our approach outperforms state-of-the-art methods in terms
of accuracy and/or efficiency. Our dataset and source code
will be publicly available on our project website3. Our main
contributions are:
� We propose a general, compact and accurate structural

model called Hong Kong world.
� We design a quasi-globally optimal and efficient DD esti-

mation method.
� We introduce an accurate and efficient camera pose esti-

mation approach.
� We present a novel DD refinement algorithm, and an accu-

rate and robust SLAM optimization strategy.
� We establish the first dataset of sequential images in Hong

Kong world.

II. RELATED WORK

In this section, we review existing line-based SLAM methods.
We classify them into three categories in terms of application
scenarios, i.e., arbitrary scenes (regardless of structured or un-
structured scenes), Manhattan world, and Atlanta world.

Most of them consist of two main modules, i.e., front-end for
motion estimation and back-end for optimization [24].

2Vanishing point is the intersection of a set of image lines projected from
parallel 3D lines [17]. DDs and vanishing points are equivalent in our context,
which will be introduced in Section III.

3https://sites.google.com/view/haoangli/projects/hk-slam
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Fig. 2. Illustration of various structural models. (a) Manhattan world [1] corresponds to a single block or frame. (b) Atlanta world [2] corresponds to multiple
blocks sharing a common vertical DD, e.g., gravity direction. (c) A mixture of independent Manhattan worlds [3] corresponds to multiple unaligned and unrelated
blocks. (d) In our Hong Kong world, {red, blue} blocks share a common vertical DD, e.g., gravity direction. {Blue, cyan} or {red, gray} blocks share a common
horizontal DD, e.g., a normal of wall (see Fig. 1(c)).

A. SLAM in Arbitrary Scenes

Front-end: The front-ends of SLAM methods [11], [12],
[25], [26] use various camera pose estimation algorithms. A
straightforward approach assumes the constant velocity motion
of camera [27]. While it is efficient, it becomes unstable when
the camera accelerates or turns. Despite different formulations,
the line correspondence-based algorithms all process each cor-
respondence independently, i.e., neglect the spatial relations
between 3D lines. Accordingly, they provide high generality.
However, they generate complex formulas such as high-order
polynomial equations [20], [21]. These formulas lead to rela-
tively unsatisfactory numerical stability, which affects the algo-
rithm accuracy. Moreover, solving these formulas is relatively
time-consuming.

Back-end: The back-end of earlier SLAM method [11] uses
the extended Kalman filter. It is prone to generating significant
drift error. By contrast, the back-ends of recent SLAM meth-
ods [12], [25], [26] are based on the graph, i.e., exploit bundle
adjustment that minimizes the re-projection error of lines. The
accuracy of the graph-based methods is typically higher than that
of the filter-based approaches [24]. While the back-ends of the
above methods are general, they neglect the structural regularity
when working in structured scenes. Therefore, there is still room
for improvement in accuracy.

B. SLAM in Manhattan World

Front-end: The front-ends of SLAM methods [8], [15], [23],
[28] fail to effectively leverage the structural regularity. Specifi-
cally, their camera pose estimation algorithms neglect the spatial
relations between DDs. By contrast, the front-end of a recent
SLAM method [29] employs a camera pose estimation algo-
rithm that explicitly considers the orthogonality between DDs.
However, this algorithm cannot handle non-orthogonal 3D lines
in Atlanta and Hong Kong worlds, leading to relatively low
generality.

Back-end: Different from the above front-ends, the
back-ends of SLAM methods [8], [15], [23], [28], [29]
effectively leverage the structural regularity. This regularity is
encoded by DDs/vanishing points. To estimate DDs, SLAM
methods [15], [23] exploit the data sampling-based algorithms
such as RANSAC [30] and J-Linkage [31]. However, these
algorithms are sensitive to noise. A SLAM method [28] uses

the parameter search-based algorithm [32] to estimate DDs.
While this algorithm provides high accuracy, its efficiency is
unsatisfactory, especially when prior information of camera
rotation is unavailable. Given the estimated DDs, SLAM
methods [15], [23] first estimate the structural lines and then
treat them as the landmarks to reduce the error accumulation.
The other SLAM methods [8], [28] directly exploit the
geometric constraints provided by DDs to optimize the camera
pose. While the above methods are reliable in Manhattan world,
their generality is low. Specifically, when working in more
complex structured scenes, e.g., Atlanta world, they may lead to
unsatisfactory accuracy due to insufficient estimated structural
lines and DDs. Moreover, they directly use DDs estimated by
a single image without refinement and outlier detection. These
DDs may be unreliable, which affects the SLAM accuracy and
robustness.

C. SLAM in Atlanta World

Front-end: The front-ends of SLAM methods [5], [16] fail to
effectively leverage the structural regularity. Specifically, their
camera pose estimation algorithms do not consider the spatial
relations between DDs. This limitation is similar to that of the
above SLAM methods in Manhattan world.

Back-end: The back-ends of SLAM methods [5], [16] both
use the constraints related to DDs for optimization. Their main
difference lies in DD estimation. Recall that in Atlanta world,
the number of DDs is unknown and the vertical DD is orthogonal
to any horizontal DD, which increases the difficulty of DD esti-
mation. The above SLAM methods fail to fully overcome these
challenges. Specifically, Zou et al. [16] first used the inertial
measurement unit (IMU) to obtain the vertical DD, and then
employed RANSAC to estimate the horizontal DDs. However,
this algorithm is prone to missing some DDs since RANSAC
may fail to sample inlier image lines associated with these DDs.
This algorithm also leads to relatively low generality since it
relies on the extra IMU. Li et al. [5] exploited T-Linkage [33]
to non-iteratively estimate DDs based on numerous samplings.
While this algorithm can robustly retrieve all the DDs, it fails
to satisfy the orthogonality constraint between the vertical and
horizontal DDs. Moreover, the above algorithms are both sensi-
tive to noise due to the uncertainty of sampling. The other DD
estimation algorithms in Atlanta world [2], [4] are not suitable
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Fig. 3. Overview of our SLAM framework in Hong Kong world. The 3D scene in this example is analogous to part of a shopping mall with a floor and two
staircases. (a) We extract image lines and compute their associated normals of projection planes. Then we use these normals to estimate DDs. (b) We match lines
between two images, and use 2D-2D line correspondences to triangulate 3D lines. We match 3D lines aligned to DDs against image lines, and use 3D-2D line
correspondences to estimate the camera pose. (c) We recursively refine the global DDs and use these refined DDs to optimize the camera poses and 3D lines.

for SLAM due to high computational complexity or requirement
of prior knowledge regarding the number of DDs.

Overall, leveraging the structural regularity can improve the
SLAM accuracy, but existing structural regularity-based SLAM
methods still have some limitations. First, they rely on strict
Manhattan or Atlanta world assumption, leading to relatively
low generality. Second, the accuracy and/or efficiency of their
DD and camera pose estimation algorithms are unsatisfactory.
Third, their SLAM optimization algorithms are sensitive to
noise and outliers of DDs. By contrast, our SLAM method is
applicable to not only Manhattan and Atlanta worlds, but also
Hong Kong world. Moreover, our algorithms of both DD and
camera pose estimation are accurate and efficient. In addition,
our DD-based SLAM optimization is reliable thanks to the
proposed refinement and outlier removal of DDs.

III. OVERVIEW OF OUR SLAM FRAMEWORK

Our SLAM framework in Hong Kong world consists of reg-
ularity encoder, front-end, and back-end (see Fig. 3).

Regularity Encoder: We use DDs/vanishing points to encode
the structural regularity of Hong Kong world. Vanishing point
in a calibrated image4 is equivalent to DD. Intuitively, a DD is
aligned to the 3D direction defined by a vanishing point and the
camera center (see green direction in Fig. 4). Mathematically, a
vanishing point c in homogeneous coordinates can be expressed
by c = KdwhereK is the calibration matrix andd is a DD [17].
Based on several image lines extracted by LSD [34], we compute
the unit normals of projection planes. Let o1 and o2 denote the
homogeneous coordinates of two endpoints of an image line l. A
normal n of projection plane can be computed by n = ô1 × ô2

where ô1 = K−1o1 and ô2 = K−1o2. Then given the computed
normals, we cluster them by the unknown-but-sought DDs. We
will introduce this DD estimation method in Section IV. Our
regularity encoder provides the geometric constraints related to

4In our context, we follow conventional SLAM methods [9], [10], [11] to
assume a calibrated camera.

Fig. 4. Illustration of the projective geometry in Hong Kong world. A 3D
depiction of this Hong Kong world is shown in Fig. 3(b). Representative 3D
lines L1 and L2 are both aligned to a horizontal DD h. Their corresponding
image lines l1 and l2 intersect at a vanishing point.

DDs for both front-end and back-end to improve their perfor-
mances.

Front-end: We match image lines across two views by LBD
descriptor [35]. Then we use a 2D-2D line correspondence to
triangulate a 3D line. Accordingly, this 3D line is associated with
the descriptors of image lines. We match this 3D line against
an extracted line in a new image based on their descriptors
following [25], [29]. Given a set of 3D-2D line correspondences,
we estimate the camera pose by exploiting the spatial relations
between DDs estimated by our regularity encoder. We will
present this camera pose estimation method in Section V.

Back-end: We follow conventional SLAM methods [9], [11]
to treat the first camera frame as the world frame. The global
and local DDs represent DDs in the world and camera frames,
respectively. Given frame-by-frame local DDs estimated by our
regularity encoder, we propose a filter-based strategy to refine the
global DDs. By aligning the local DDs to the refined global DDs,
we optimize the camera pose. In addition, we align 3D lines to the
global DDs when conducting optimization. We will introduce
our global DD refinement and DD-based SLAM optimization
in Section VI.
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Fig. 5. Illustration of our sequential DD estimation in Hong Kong world. A
3D depiction of this Hong Kong world is shown in Fig. 3(b). (a) We first compute
the vertical DD vm (see blue DD) based on sampling or IMU. Then we search
for a set of horizontal DDs {hn} (see red, green, cyan, and gray DDs) that are
orthogonal to vm. (b) Given a horizontal DD hn, we search for a set of sloping
DDs {sz} (see yellow and magenta DDs) that are orthogonal to hn.

IV. DD ESTIMATION

In Hong Kong world, given K image lines {lk}Kk=1, we aim
to estimate the vertical, horizontal, and sloping DDs. Note that
we estimate DDs instead of vanishing points in the image for
two main reasons. First, the image plane is unbounded, i.e.,
a vanishing point may be very far from the image center. By
contrast, the unit sphere is a bounded space, which facilitates the
parameter search. Second, on the unit sphere, we can explicitly
enforce the orthogonality constraint between DDs.

As shown in Fig. 4, we compute the unit normals of projection
planes {nk}Kk=1 (hereinafter we call them “normals”) that are
associated with the input image lines. We treat a normal nk

orthogonal to a vertical, horizontal or sloping DD as a vertical,
horizontal or sloping inlier, respectively. We consider a normal
that is not orthogonal to any DD as an outlier. Note that for a set
of inliers with respect to the same DD, they are all orthogonal
to this DD (see horizontal inliers {n1,n2} and horizontal DD h
in Fig. 4).

A. Sequential DD Estimation

We propose to sequentially estimate the vertical, horizontal,
and sloping DDs in Hong Kong world. We first use sampling
or IMU to estimate the vertical DD, followed by searching
for the horizontal and sloping DDs. We call this strategy the
semi-searching strategy. Our approach overcomes the limita-
tions of existing DD estimation methods introduced in Section II.
Specifically, it can simultaneously determine the number of
DDs, and achieve high accuracy and efficiency.

Vertical DD: Fig. 5(a) shows that we can compute a unit
vertical DD v using any two vertical inliers n3 and n4, i.e.,
v = (n3 × n4)/‖n3 × n4‖. However, in practice, we do not
have prior knowledge regarding which two normals are vertical
inliers. To solve this problem, we employ RANSAC [30]. Specif-
ically, we sample two normals M times to guarantee at least one
valid sampling, i.e., sampling two vertical inliers (computation
of M is available in the supplementary material, available on-
line). Accordingly, we generateM candidate vertical DDs {vm}

Fig. 6. Illustration of our sequential DD estimation in Hong Kong world. A
3D depiction of this Hong Kong world is shown in Fig. 3(b). A node of tree
represents an estimated DD. The number associated with a node represents
the number of identified inliers with respect to DD. (a) A tree generated by
sampling two outliers. (b) A tree generated by sampling two inliers associated
with different DDs. (c) A tree generated by sampling two sloping inliers. (d) A
tree generated by sampling two vertical inliers.

(m=I, II · · ·M )5. In addition, if an IMU is available, we use it
to obtain the vertical DD, following [16].

Horizontal DDs: As shown in Fig. 5(a), given a candidate
vertical DD vm, we search for a set of horizontal DDs {hn}
(n=I, II · · ·N ) orthogonal to vm. We use a new consensus
voting strategy for search, instead of traditional BnB [18], [36]
(details of our strategy and reason for disusing BnB will be
introduced in the next subsection). Our method can automat-
ically determine the number N of horizontal DDs. Moreover,
it achieves quasi-global optimality in terms of the number of
horizontal inliers. For illustration, let us assume a candidate
vertical DD estimated by a valid sampling. This DD is correct
but may be affected by noise. Under the condition that this DD
should be orthogonal to all the estimated horizontal DDs, our
search guarantees to retrieve the maximum number of horizontal
inliers. In practice, given M candidate vertical DDs generated
above, we can obtain M candidate sets of horizontal DDs. In
addition, our method can achieve global optimality if the input
vertical DD is obtained by a (nearly) noise-free sensor [37],
[38].

Sloping DDs: Given a horizontal DD hn of a candidate set
estimated above, we search for a set of sloping DDs {sz}
(z = I, II · · ·Z) orthogonal to hn (see Fig. 5(b)). Similar to
the above horizontal DD estimation, we use a consensus voting
strategy for search. Our method can automatically determine the
number Z of sloping DDs, and achieve quasi-global optimality
in terms of the number of sloping inliers. The reason for quasi-
global optimality is that our estimated sloping DDs should be
orthogonal to the input horizontal DD, but this horizontal DD
may be affected by noise.

Fig. 6 shows that each two-normal sampling and its follow-up
search correspond to a tree. An invalid sampling results in a
small number of the identified inliers. Specifically, an invalid
sampling refers to sampling two outliers (see Fig. 6(a)), or two
inliers associated with different DDs (see Fig. 6(b)), or two
sloping inliers (see Fig. 6(c)). By contrast, a valid sampling,
i.e., sampling two vertical inliers leads to a large number of the

5We use Arabic numerals, e.g., 1 and 2 to denote the indices of normals, while
we use Roman numerals, e.g., I and II to denote the indices of DDs.
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Algorithm 1: Sequential DD Estimation.

identified inliers (see Fig. 6(d)). We save the tree associated with
the largest number of the identified inliers. Our full sequential
DD estimation is described in Algorithm 1. In addition, our
approach is also applicable to Atlanta or Manhattan world by
only conducting the above first two steps, i.e., estimating the
vertical and horizontal DDs.

B. Searching for Horizontal and Sloping DDs

In the following, we first illustrate our consensus voting-based
horizontal DD search, and then extend it to our sloping DD
search. As shown in Fig. 5(a), let us assume that we have obtained
a correct but noisy candidate vertical DD vm and its associated
vertical inliers. To parametrize a horizontal DD hn, we rotate
an arbitrary vertical inlier, e.g., n3 by an unknown-but-sought
angle θn ∈ [−π

2 ,
π
2 ] around the known vertical DD vm as

hn(θn) = R〈vm,θn〉n3, (1)

where R〈axis, angle〉 denotes a rotation based on axis-angle repre-
sentation [17]. Accordingly, each element of hn(θn) is a linear
combination of cos θn and sin θn. Fig. 5(a) shows that in the
noise-free case, the horizontal DD hn(θn) is strictly orthogonal
to a horizontal inlier nk, i.e., hn(θn)

�nk = 0. By substituting
(1) into this constraint, we obtain a · cos θn + b · sin θn = 0,
where a and b are known. Deviations of a and b are available in
the supplementary material, available online. Under the presence
of noise, we define the residual function fk(θn) of the horizontal
inlier nk by

fk(θn) = |a · cos θn + b · sin θn| � ε, (2)

where ε denotes the inlier threshold (ε = cos(π2 − π
90 ) in the

experiments). In practice, we do not have prior knowledge
regarding whether a normal nk is an inlier or outlier. Given K
normals {nk}Kk=1 corrupted by outliers, we aim to find N
horizontal DDs (N is unknown) that maximize the number of

Fig. 7. Evolution of the function | sin(θ + arctan(a/b))| in (4c).

horizontal inliers. Mathematically,

max
N,{θn}Nn=I

N∑
n=I

K∑
k=1

I (fk(θn))︸ ︷︷ ︸
cn

, subject to cn > τ, (3)

where

I (fk(θn)) =

{
1, if fk(θn) � ε;
0, otherwise,

cn represents the cardinality of an inlier set associated with a
horizontal DD hn, and τ represents the cardinality threshold
(τ = 5 in our experiments). Note that we only save an inlier
set whose cardinality is higher than τ . The reason is that some
outliers and a small number of inliers may coincidently define
a fake DD [39]. Experiments on value setting of the above
thresholds ε and τ are available in the supplementary material,
available online.

To solve the problem in (3), traditional BnB [18] seems feasi-
ble. Specifically, it first divides the ranges of the unknown angles
{θn}Nn=1 into several sub-ranges, and computes the bound of (3)
for each sub-range. Then BnB identifies whether a sub-range is
valid (i.e., potentially contains the optimal solution) by com-
paring the bound in this sub-range with the best-so-far bound.
An invalid sub-range is discarded, while a valid sub-range is
further divided until the optimal solution is found. BnB leads
to unsatisfactory efficiency due to numerous range divisions,
especially when the number N of angles {θn}Nn=1 is large.
Moreover, BnB assumes that the number N is known a priori.
To overcome these limitations, we propose a novel voting-based
approach as follows.

We begin with computing a “valid interval” of each normal
nk, regardless of whether nk is an inlier or outlier. Specifically,
within the valid interval with respect to the angle θ, we can treat
the normal nk as a horizontal inlier based on (2), i.e.,

fk(θ) = |a · cos θ + b · sin θ| � ε (4a)

⇔ |
√

a2 + b2 · sin (θ + arctan(a/b)) | � ε (4b)

⇔ | sin (θ + arctan(a/b)) | � ε/
√
a2 + b2 � ε̃. (4c)

Equation (4b) is based on the harmonic addition theo-
rem [40]. The evolution of the function | sin(θ + arctan(a/b))|
in (4c) within a one-period interval is shown in Fig. 7.
Accordingly, we can obtain a valid interval with respect
to the angle θ, i.e., [− arcsin(ε̃)− arctan(a/b), arcsin(ε̃)−
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Fig. 8. Consensus of a set of inliers with respect to the same horizontal DD. (a)
Residual functions of these inliers lead to adjacent “troughs”. (b) Valid intervals
of these inliers overlap with each other.

arctan(a/b)]. Intuitively, for a set of inliers with respect to
the same horizontal DD hn, their valid intervals enclose the
same unknown-but-sought angle θn, i.e., follow a consensus. In
another word, these valid intervals overlap with each other. By
contrast, valid intervals of outliers are disordered. We leverage
this fact to solve the problem in (3).

Let us consider some normals corrupted by outliers for il-
lustration. The residual functions and valid intervals of these
normals are shown in Figs. 8(a) and (b), respectively. At the
unknown-but-sought position θI or θII, the number of overlap-
ping intervals achieves a local maximum, and also is higher than
the cardinality threshold τ . Therefore, we treat both θI and θII as
the positions of maximum consensus, and substitute them into
(1) to compute the horizontal DDs hI and hII. We introduce how
we search for the positions θI and θII in the next subsection.
Therefore, our approach can automatically determine the num-
ber of horizontal DDs, and also obtain the horizontal DDs that
maximize the number of inliers.

We extend the above horizontal DD search to the sloping
DD search. As shown in Fig. 5(b), let us assume that we have
obtained a correct but noisy horizontal DD hn and its associated
horizontal inliers. To parametrize a sloping DD sz , we rotate an
arbitrary horizontal inlier, e.g., n5 by an unknown-but-sought
angle ωz∈ [−π

2 ,
π
2 ] around the known horizontal DD hn. Then

for each normal nk, we compute its valid interval with respect to
the angleω. Based on these intervals, we search for the positions
of maximum consensus {ωz} (z = I, II · · ·Z). Finally, we use
these positions to compute the sloping DDs.

C. Searching for Positions of Maximum Consensus

In the above subsection, we use several positions of maximum
consensus {θn} (n = I, II · · ·N ) to compute the horizontal DDs.
In the following, we introduce how we search for these positions.
Given a set of valid intervals, we use a probe to scan the endpoints
of these intervals (see Fig. 9). If the probe scans a left/right
endpoint of a valid interval, we increase/decrease the number
of votes by 1. After probe scanning, each endpoint is associated
with the number of votes. This number of votes equals to the
number of overlapping valid intervals. For example, the number
of votes at the endpoint θI, i.e., 5 equals to the number of
overlapping valid intervals within the region [θI, θ

′
I). Recall that

we aim to maximize the number of overlapping valid intervals.

Fig. 9. Illustration of how we search for the positions of maximum consen-
sus θI and θII. Here, the cardinality threshold τ = 3.

Accordingly, we select the midpoint of each region6 whose
associated number of votes achieves a local maximum and also
is higher than the cardinality threshold τ in (3). For example,
we select the midpoints of the regions [θI, θ

′
I) and [θII, θ

′
II)

whose associated number of votes, i.e., 5 and 6 are both local
maxima and also higher than the threshold τ . Finally, we treat
the selected midpoints as the positions of maximum consensus.
We also use the above strategy to search for the positions of
maximum consensus {ωz} (z = I, II · · ·Z) for the sloping DD
estimation.

In practice, the above method may result in multiple cardinal-
ity peaks. Specifically, if the noise level of image lines is too high,
the computed valid intervals deviate from each other to some
extent. Accordingly, more than one cardinality peaks occur, lead-
ing to adjacent under-stabbing probes. We solve this problem
by merging two sets of valid intervals if their corresponding
under-stabbing probes are close (distance is smaller than π

90 in
our experiments). In addition, we propose a simple but effective
strategy to enforce the orthogonality constraint between a pair of
horizontal or sloping DDs for consensus voting. Due to limited
space, we introduce it in the supplementary material, available
online.

V. CAMERA POSE ESTIMATION

In Hong Kong world, 3D line directions are aligned to DDs.
Given several 3D lines in the world frame and their correspond-
ing image lines, we aim to estimate the camera pose aligning the
camera frame to the world frame. Recall that we treat the first
camera frame as the world frame.

A. Sampling Correspondences

In practice, 3D-2D line correspondences are inevitably
corrupted by outliers. To solve this problem, we employ
RANSAC [30]. Specifically, we sample three correspondences
several times to guarantee at least one valid sampling, i.e.,
sampling pure inliers. For each three sampled correspondences,
their 3D lines constitute a 3D line triplet. Fig. 10 shows that

6In terms of maximizing the cardinality of consensus set, any other positions
within this region are equivalent to the midpoint. Briefly, the probes at arbitrary
positions within this region stab the same set of intervals, i.e., correspond to the
same consensus set.
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Fig. 10. Typical 3D line triplets aligned to DDs in Hong Kong world. (a) Fully-
orthogonal triplet. (b) Partially-orthogonal triplet. (c) Non-orthogonal triplet.

Fig. 11. Illustration of camera pose estimation problem in Hong Kong world.
Given three 3D-2D line correspondences {(Lk, lk)}3k=1, we separately esti-
mate the (a) rotation R and (b) translation t that align the camera frame to the
world frame.

in Hong Kong world, three types of 3D line triplets exist. A
fully-orthogonal triplet represents three mutually orthogonal
3D lines. A partially-orthogonal triplet corresponds to three
3D lines where two lines are not orthogonal to each other but
both orthogonal to the third. A non-orthogonal triplet holds
for three non-orthogonal 3D lines. Note that we can easily
identify which type a 3D line triplet belongs to based on its
known coordinates in the world frame. Our camera pose esti-
mation approach is applicable to all the above types of 3D line
triplets.

Instead of random sampling, we preferentially sample three
correspondences whose 3D lines constitute a fully-orthogonal
triplet, and give the lowest priority to a non-orthogonal triplet.
The reason is that the formulas generated by a fully-orthogonal
triplet is the easiest one to solve, and a non-orthogonal triplet
leads to the highest difficulty (details are available in the next
subsections). In addition, we preferentially sample the line cor-
respondences whose image lines are long since long lines are
robust to noise.

As shown in Fig. 11, let us assume that we have sampled
three inlier line correspondences. We estimate the rotation and
translation separately, and propose a novel rotation estimation
method. A key step of our rotation estimation is to compute
the directions of a 3D line triplet in the camera frame. We
parametrize these directions by unknown angles in Section V-B,
and then solve these angles in Section V-C.

B. Parametrizing Line Directions by Angles

We aim to parametrize the directions of a 3D line triplet in
the camera frame by unknown angles. As shown in Fig. 11(a),
we first compute the normal nk of projection plane associated
with an image line lk. We then compute a unit orthogonal ba-
sis {u1,v1} of the projection plane orthogonal to the normaln1.
The 3D line L1 lies within this projection plane. Therefore, we
can use {u1,v1} to parametrize the unit 3D line direction e1 by
an unknown-but-sought rotation angle α as

e1(α) = cosα · u1 + sinα · v1. (5)

Similarly, we compute a unit orthogonal basis {u2,v2} of the
projection plane orthogonal to the normaln2. The 3D lineL2 lies
within this plane. Therefore, we can use {u2,v2} to parametrize
the unit 3D line direction e2 by an unknown-but-sought rotation
angle β as

e2(β) = cosβ · u2 + sinβ · v2. (6)

In the following, we use the above anglesα and β to parametrize
the unit directione3 of the 3D lineL3 of different 3D line triplets.

Fully-Orthogonal Triplet: Fig. 10(a) shows that the direc-
tions e1, e2, and e3 are mutually orthogonal. Therefore, we can
compute e3 by

e3(α, β) = e1(α)× e2(β). (7)

Partially-Orthogonal Triplet: As shown in Fig. 10(b), we
know the angle γ between the line directions e1 and e2. We
define an auxiliary unit direction b1 that is orthogonal to the di-
rection e1 and also lies on the plane spanned by the directions e1
and e2. We compute b1 by b1(α, β) =

e2(β)−cosγ·e1(α)
sinγ . The

directions e1, b1, and e3 are mutually orthogonal. Therefore,
we can compute e3 by

e3(α, β) = e1(α)× b1(α, β). (8)

Non-Orthogonal Triplet: Similar to the above partially-
orthogonal triplet, we first compute the auxiliary direction b1

(see Fig. 10(c)). In addition, we know the angle φ between the
line directionse2 ande3. We define an auxiliary unit directionb2

orthogonal to the plane spanned by the directions e1 and b1.
We compute b2 by b2(α, β) = e1(α)×b1(α, β). Then we can
express the direction e3 by

e3(α, β) = sinφ · b2(α, β) + cosφ · e2(β). (9)

In the next subsection, we will solve the above angles α and β
to obtain the line directions e1, e2, and e3.

C. Solving Angles of Line Directions

We introduce two constraints to solve the above angles α and
β. First, based on the above known angle γ between the line
directions e1 and e2 (see Fig. 10), we have

e�1 e2 = cos γ. (10)

We call it the “angle constraint”. Second, Fig. 11(a) shows that
the line direction e3 is orthogonal to the normal n3 of projection
plane, i.e.,

e�3 n3 = 0. (11)
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We call it the “projection constraint”. In the following, we use
the above constraints to generate formulas with respect to the
unknown angles α and β and then solve these angles. We define
a vectorκ = [cosα · cosβ, cosα · sinβ, sinα · cosβ, sinα ·
sinβ]� that will be used below. We provide detailed derivations
of the known coefficients/coefficient vectors of the following
polynomial equations in the supplementary material, available
online.

Fully-Orthogonal Triplet: We substitute the directions e1(α)
in (5) and e2(β) in (6) into the angle constraint in (10), obtaining

κ�m1 = cos γ = 0, (12)

where κ is defined above, m1 is a known coefficient vector,
and cos γ = 0 since the directions e1 and e2 are orthogonal (see
Fig. 10(a)). Then we substitute the direction e3(α, β) in (7) into
the projection constraint in (11), obtaining

κ�m2 = 0, (13)

where κ is defined above and m2 is a known coefficient
vector. Polynomials in (12) and (13) are both quadratic ones
with respect to cosα, sinα, cosβ and sinβ. We reduce these
polynomials to linear ones by Werner formulas [40], i.e., sinα ·
sinβ = cosm−cosp

2 , cosα · cosβ = cosm+cosp
2 , sinα · cosβ =

sinp+sinm
2 , and cosα · sinβ = sinp−sinm

2 , where p = α+ β
and m = α− β. Accordingly, we can transform (12) and (13)
into {

cosm = A1 · cos p+B1 · sin p,
sinm = A2 · cos p+B2 · sin p, (14)

where A1, B1, A2 and B2 are known coefficients. We substitute
(14) into the constraint cos2 m+ sin2 m = 1, obtaining[

cos2 p, cos p · sin p, sin2 p, 1]m3 = 0, (15)

where m3 is a known coefficient vector. We simplify (15) by
power reduction formulas [40], i.e., cos2 p = 1+cos(2p)

2 , sin p ·
cos p = sin(2p)

2 , and sin2 p = 1−cos(2p)
2 . Accordingly, we have

a · cos(2p) + b · sin(2p) + c = 0 (16a)

⇔
√

a2 + b2 · sin (2p+ arctan(a/b)) = −c (16b)

where a, b and c are known coefficients, and (16b) is based
on the harmonic addition theorem [40]. We compute p as p =
arcsin(−c/

√
a2+b2)−arctan(a/b)

2 and substitute it into (14) to com-
pute m. Finally, we obtain the angles α = p+m

2 and β = p−m
2

Partially-Orthogonal Triplet: We substitute the direc-
tions e1(α) in (5) and e2(β) in (6) into the angle constraint
in (10), obtaining

κ�a1 = cos γ, (17)

where κ is defined above, a1 is a known coefficient vector,
and cos γ 
= 0 (see Fig. 10(b)). Then we substitute the di-
rection e3(α, β) in (8) into the projection constraint in (11),
obtaining

κ�a2 = 0, (18)

where a2 is a known coefficient vector. Based on the above
Werner formulas, we can transform (17) and (18) into{

cosm = A1 · cos p+B1 · sin p+ C1,
sinm = A2 · cos p+B2 · sin p+ C2.

(19)

where A1, B1, C1, A2, B2 and C2 are known coefficients,
p = α+ β, and m = α− β. We substitute (19) into the con-
straint cos2 m+ sin2 m = 1, obtaining[

cos2 p, cos p · sin p, sin2 p, cos p, sin p, 1]a3 = 0, (20)

where a3 is a known coefficient vector. Note that (20) contains
additional linear terms with respect to cos p and sin p, compared
with (15). Accordingly, we do not use the above power reduction
formulas to simplify (20). Instead, we exploit Weierstrass substi-
tution [40]. Specifically, we define w = tan(p2 ), and substitute

cos p = 1−w2

1+w2 and sin p = 2 w
1+w2 into (20). Accordingly, we can

obtain a quartic polynomial equation with respect to w, i.e.,

[w4, w3, w2, w, 1]�a4 = 0, (21)

wherea4 is a known coefficient vector. We solve this polynomial
equation using the eigenvalue-based method [17] to obtain w.
Then we substitute w back into the above Weierstrass substitu-
tion to compute p, and further computem based on (19). Finally,
we obtain the angles α = p+m

2 and β = p−m
2 .

Non-Orthogonal Triplet: As shown in Fig. 10(c), the angle
constraint of the non-orthogonal triplet is the same as that of the
partially-orthogonal triplet. Accordingly, we have

κ�h1 = cos γ, (22)

where κ is defined above and h1 is a known coefficient vector.
Then we substitute the direction e3(α, β) in (9) into the projec-
tion constraint in (11), obtaining

ρ�h2 = 0, (23)

where ρ=[κ�, cosα, sinα, cosβ, sinβ]� and h2 is a known
coefficient vector. Note that ρ contains additional terms cosα,
sinα, cosβ, and sinβ, compared with κ. Accordingly, we do
not use the above Werner formulas to simplify (22) and (23).
Instead, we use Weierstrass substitution. Specifically, we define

q1 = tan(α2 ) and q2 = tan(β2 ), and substitute cosα =
1−q21
1+q21

,

sinα = 2q1
1+q21

, cosβ =
1−q22
1+q22

, sinβ = 2q2
1+q22

into (22) and (23).
Accordingly, we can generate a quartic polynomial system with
respect to q1 and q2, i.e.,{[

q21q
2
2 , q

2
1q2, q

2
1 , q1q

2
2 , q1q2, q1, q

2
2 , q2, 1

]�
h3 = 0[

q21q
2
2 , q

2
1q2, q

2
1 , q1q

2
2 , q1q2, q1, q

2
2 , q2, 1

]�
h4 = 0

(24)
where h3 and h4 are known coefficient vectors. We solve this
system based on the Gröbner basis [41] to obtain q1 and q2.
Then we substitute q1 and q2 back into the above Weierstrass
substitutions to obtain the angles α and β.

Overall, based on the angle and projection constraints, we
generate equations with respect to the unknown angles α and
β of our 3D line directions. Then we solve these equations to
obtain the angles α and β. We summarize our equations and
solvers in Table I.
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TABLE I
EQUATIONS AND SOLVERS WITH RESPECT TO DIFFERENT 3D LINE TRIPLETS

Fig. 12. Illustrations of the relation between the local and global DDs, as well
as our global DD refinement. (a) The camera rotation Ri from the camera frame
to the world frame aligns each local DD di to the global DD gi denoted by the
red arrow. (b) We recursively refine a global DD based on Kalman filter.

D. Computing Rotation and Translation

Given the angles α and β estimated above, we compute
the line directions e1, e2, and e3 in the camera frame (see
Section V-B). In addition, we compute the corresponding line
directions in the world frame using the known coordinates of
3D lines in the world frame. Based on these line direction
correspondences, we use [42] to obtain the closed-form solution
of the rotation R. Then based on the known rotation R, we
compute the translation t. Specifically, as shown in Fig. 11(b),
a 3D point pk in the world frame lies on a 3D line Lk. The
direction defined by pk and the camera center is orthogonal to
the normal nk of projection plane. We express this constraint
as n�

k (R
�(pk − t)) = 0 in the camera frame, and transform

it as (n�
kR

�)t = n�
kR

�pk. Each 3D-2D line correspondence
can provide such a linear equation with respect to the unknown
translation t. Given three correspondences, we combine their
linear equations as a linear system to compute the translation t.

VI. BACK-END

As introduced in Section III, the global and local DDs rep-
resent DDs in the world and camera frames, respectively. We
use our regularity encoder to estimate N local DDs {dn

i }Nn=1 in
the ith camera frame. In addition, we use our front-end of the
SLAM system to estimate the rotation Ri of the ith camera. As
shown in Fig. 12(a), given the local DD di and rotation Ri, we
can compute the global DD gi by

gi = Ridi. (25)

In practice, both rotation Ri and local DD di are inevitably
affected by noise. Accordingly, the computed global DDgi (e.g.,
g1 = R1d1 used by existing SLAM methods [15], [16]) may

deviate from the unknown ground truth one. To obtain accurate
global DDs, we propose to recursively refine the computed
global DDs in Section VI-A. Then we use these refined global
DDs to optimize the camera poses and 3D lines in Section VI-B.

A. Refining Global DDs

We propose a Kalman filter-based method to recursively refine
the global DDs. Recall that a local DD corresponds to a vanishing
point that is the intersection of a set of image lines. We model the
uncertainty of an extracted image line by a covariance matrix,
following [43]. For a set of image lines associated with a vanish-
ing point/local DD, we use their covariance matrices to compute
the covariance matrix of a local DD by error propagation [17].
We then compute the observed global DD go

i and its covariance
matrix Σo

i based on (25) and error propagation. In addition, let
us assume that we have obtained the refined global DD ĝi−1 and
its covariance matrix Σ̂i−1 of the (i− 1)th camera. Considering
that the unknown ground truth global DD is a constant, we treat
the above refined result (ĝi−1, Σ̂i−1) as the prediction (dp

i ,Σ
p
i )

of the ith camera.
By combining the above observation and prediction, we can

refine the global DD and update its covariance matrix (see
Fig. 12(b)). Specifically, we first use the predicted covariance
matrix Σp

i and the observed covariance matrix Σo
i to compute

the Kalman gain Gi [27]. Then we use Gi, the predicted global
DD gp

i , and the observed global DD go
i to obtain the refined

global DD ĝi by

ĝi = gp
i +Gi · (go

i − gp
i ). (26)

Moreover, we use Kalman gain Gi and the predicted covariance
matrix Σp

i to obtain the updated covariance matrix Σ̂i by

Σ̂i = (1−Gi) ·Σp
i . (27)

We treat the refined result (ĝi, Σ̂i) of the ith camera in (26) and
(27) as the prediction (gp

i+1,Σ
p
i+1) of the (i+ 1)th camera, and

thus complete an iteration.

B. Optimizing Camera Poses and 3D Lines

Based on the above refined global DDs, we propose a DD
alignment-based method to optimize the camera poses and 3D
lines. Specifically, traditional landmarks like 3D points or lines
can be only observed by a limited number of cameras. By con-
trast, DDs can be observed in the global scene. Let us consider
the ith camera to illustrate our DD alignment-based rotation
optimization. Given N estimated local DDs {dn

i }Nn=1 and their
corresponding refined global DDs {ĝn

i }Nn=1, we aim to find the
optimal rotation Ri to align each pair of global-local DDs based
on (25). Such an alignment is independent of the other cameras,
and thus can significantly reduce the error accumulation of
rotation. A straightforward way for alignment is combining all
pairs of global-local DDs {ĝn

i ,d
n
i }Nn=1 to generate the equation

[ĝ1
i , ĝ

2
i , . . . , ĝ

N
i ] = Ri[d

1
i ,d

2
i , . . . ,d

N
i ]. While Ri can be eas-

ily solved by [42], this combination is prone to being affected by
outlier, i.e., false association between a pair of global and local
DDs [23]. To overcome this limitation, we propose a robust
method as follows.
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Fig. 13. Sample images of our CUHK-SLAM dataset. Each column corresponds to an image sequence satisfying Hong Kong world configuration.

We repeatedly sample three non-coplanar DDs (e.g., a vertical
DD, a horizontal DD, and a sloping DD) to define a DD triplet.
Given N DDs, we can generate S different DD triplets. Note
that S �

(
N
3

)
since we do not consider three coplanar DDs (e.g.,

three horizontal DDs) that may result in degeneration. We treat
the DD triplets in the world and camera frames as the global and
local triplets, respectively. In the noise- and outlier-free case, the
rotation Ri aligns a local DD triplet Di to a global DD triplet Gi

by Gi = RiDi, which is similar to (25). In practice, given S
pairs of global-local DD triplets {(Gs

i ,Ds
i )}Ss=1, we compute

S candidate rotations {Rs
i}Ss=1 by Rs

i = Gs
iDs

i
−1. Then we

leverage [44] to average these candidate rotations, obtaining the
optimal rotation R̂i, i.e.,

min
R̂i

S∑
s=1

L1(R̂i,R
s
i ), (28)

where L1(·, ·) denotes the L1-mean. Our method is robust to
outliers and noise thanks to rotation averaging based on L1-
mean.

In addition, we follow [8], [23] to conduct the DD-constrained
bundle adjustment. Specifically, we align 3D line directions to
their corresponding refined global DDs when minimizing re-
projection error.

VII. EXPERIMENTS

We first introduce our dataset of sequential images in Hong
Kong world. Then we compare our SLAM method with state-
of-the-art approaches introduced in Section II. Finally, con-
sidering that the overall SLAM accuracy depends on various
modules (e.g., DD/vanishing point estimation, camera pose es-
timation, and back-end optimization), we conduct ablation study
of each module independently. Additional experimental results
are available in the supplementary material, available online.
All the methods in our experiments are implemented in C++.
We conduct tests on a computer equipped with an Intel Core i7
3.2 GHz CPU and 16 GB RAM.

A. Our CUHK-SLAM Dataset

Existing SLAM datasets [16], [38] are only suitable for the
experiments in Manhattan and Atlanta worlds. To evaluate the
proposed algorithms, we establish the first dataset of sequential
images in Hong Kong world. We collect data on the campus of

TABLE II
INFORMATION REGARDING IMAGE SEQUENCES OF OUR CUHK-SLAM

DATASET

The Chinese University of Hong Kong (CUHK) and call our
dataset “CUHK-SLAM dataset”. Fig. 13 and Table II show that
our dataset is composed of 7 image sequences (9077 images).
Each sequence corresponds to a scene with at least one sloping
DD, e.g., sloping road, stairway, and sloping roof. We obtain data
by a handhold platform equipped with camera, IMU and real-
time kinematic (RTK) positioning module. We associate data of
different sensors by the timestamps of robot operating system.
We provide calibration parameters of each sensor. The image
size is 1280 × 720 pixels, and we undistort images beforehand.7

We use IMU to obtain the accurate vertical DD in the camera
frame, following [47]. We use RTK that can provide centimeter-
level positioning to obtain the ground truth trajectory.

B. SLAM Methods

Evaluation Criteria: We employ Umeyama algorithm [48] to
align the estimated and ground truth trajectories, following [23],
[37]. Accordingly, two aligned trajectories share the same scale
and start point. Given the ground truth position x̂i and the
estimated position xi that are associated by the timestamps,
we compute the absolute trajectory error [37] by ‖x̂i − xi‖.
To evaluate the overall accuracy of the estimated trajectory, we
compute the root mean square of the absolute trajectory errors.

Methods for Comparison: We compare the following line-
based SLAM methods:

7An alternative strategy is to directly detect arcs [45] or curves [46] in the
distorted image. Then we can use these arcs or curves to estimate the distortion
parameters, and further undistort these arcs or curves into straight lines.
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TABLE III
ABSOLUTE TRAJECTORY ERRORS OF VARIOUS SLAM METHODS ON ALL THE IMAGE SEQUENCES OF OUR CUHK-SLAM DATASET

Fig. 14. Trajectories estimated by various SLAM methods on three image sequences of our CUHK-SLAM dataset.

Fig. 15. 3D lines reconstructed by our HK-SLAM on two image sequences of our CUHK-SLAM dataset. 3D lines aligned to the vertical, horizontal, and sloping
DDs are shown in red, {green, blue}, and {yellow, magenta}, respectively. The black dotted lines denote the trajectories estimated by our HK-SLAM.

� FI-SLAM [11]: The filter-based method without consider-
ing the structural regularity.

� GR-SLAM [26]: The graph-based method without using
the structural regularity.8

� AT-SLAM [16]: The filter-based method exploiting the
structural regularity of Atlanta world.

8For a fair comparison, we let [26] use only lines but not points.

� MA-SLAM [23]: The graph-based method utilizing the
structural regularity of Manhattan world.

� HK-SLAM: Our optimization-based method leveraging the
structural regularity of Hong Kong world.

On our CUHK-SLAM dataset, while sub-trajectories may
intersect with each other, it is difficult to detect loop closure due
to different viewpoints of cameras. Accordingly, our reported
results do not involve loop correction.

Experimental Results: As shown in Table III, as well as
Figs. 14 and 16, we compare trajectories estimated by various
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Fig. 16. Trajectories estimated by various SLAM methods on three image sequences of our CUHK-SLAM dataset. The colored and black lines denote the
estimated and ground truth trajectories, respectively. Pentagram represents the starting point of trajectory. Color bar indicates the magnitude of the absolute
trajectory error.

SLAM methods. We also present 3D lines reconstructed by
our HK-SLAM in Fig. 15. FI-SLAM leads to unsatisfactory
accuracy since its filter is relatively sensitive to noise and also
it does not exploit the structural regularity for optimization.
GR-SLAM improves the accuracy to some extent by bundle
adjustment. However, it also neglects the structural constraints

and thus becomes unstable at sharp turns.AT-SLAM treats all the
sloping inliers as outliers. Accordingly, it fails to use sufficient
observations to compensate for noise. In addition, similar to
FI-SLAM, its unreliable filter results in inferior performance to
GR-SLAM on some sequences. MA-SLAM cannot enforce the
structural constraints related to the sloping and partial horizontal
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Fig. 17. Accuracy and efficiency comparisons between various DD estimation methods on three testing images of our CUHK-SLAM dataset. (a) Image lines
extracted by LSD [34]. (b) The ground truth image line clusters. (c) The clustered image lines associated with the vertical, horizontal, and sloping DDs are shown
in red, {green, blue, cyan}, and {yellow, magenta}, respectively. The unclustered image lines are shown in black. A dotted line represents the connection between
the midpoint of a clustered image line and an estimated vanishing point. The numbers below each image represent the precision, recall, and run time, respectively.
We highlight the best and second-best results by “ ” and “ ”, respectively.

DDs. Despite this limitation, it still outperforms GR-SLAM on
most sequences, demonstrating the effectiveness of the struc-
tural constraint-based optimization. OurHK-SLAM achieves the
highest accuracy since it can exploit information regarding the
sloping DDs and also our DD alignment-based optimization is
effective.

C. DD/Vanishing Point Estimation

Evaluation Criteria: We randomly sample 500 images from
our CUHK-SLAM dataset and treat them as the testing images
(see Fig. 17). We follow [49] to manually assign image lines with
ground truth cluster labels. Based on these labels, we follow [50]
to evaluate the algorithm accuracy in terms of precision and
recall of image line clustering. Specifically, the precision is
defined by C

C+W , and recall is defined by C
C+M , where C, W

and M denote the numbers of the correctly identified, wrongly
identified and missing inliers, respectively. We also compute
the F1-score that simultaneously encodes the precision and
recall by F1 = 2×precision×recall

precision+recall . For an unbiased comparison, we
follow [51] to report the original results without least-squares
global optimization, as we will do in Section VII-D.

Methods for Comparison: We compare the following DD
estimation methods:
� BR-DD [18]: The branch and bound-based method de-

signed for Manhattan world.

� IMU-RA-DD [16]: The IMU and RANSAC-based method
used by AT-SLAM.

� JL-DD [31]: The J-Linkage-based method used by MA-
SLAM.

� HK-SA-DD: Our method that is designed for Hong Kong
world and estimates the vertical DD by sampling (see
Section IV).

� HK-IMU-DD: Our method that is designed for Hong Kong
world and estimates the vertical DD by IMU (see Sec-
tion IV).

Experimental Results: We present the accuracy comparisons
in Figs. 17 and 18. BR-DD can only estimate three orthogonal
DDs. Accordingly, in addition to sloping DDs, it may neglect
partial horizontal DDs. While IMU-RA-DD can retrieve all the
horizontal DDs, it fails to estimate the sloping DDs. Moreover,
its estimated horizontal DDs are relatively inaccurate since
RANSAC is sensitive to noise. While JL-DD can theoretically
determine the number of DDs, in practice, it is prone to result
in over/under clustering due to the uncertainty of sampling.
Moreover, its accuracy is unsatisfactory since it neglects the
orthogonality between DDs and also its line descriptor generated
by sampling is sensitive to noise. Our HK-SA-DD can reliably
identify all the DDs. Moreover, it is more robust to noise than
IMU-RA-DD and JL-DD since it estimates most DDs by search
instead of sampling. Our HK-IMU-DD further improves the
accuracy. Thanks to IMU, it obtains the accurate vertical DD
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Fig. 18. Accuracy comparison between various DD estimation methods in
terms of F1-score of image line clustering on all the testing images of our
CUHK-SLAM dataset.

TABLE IV
EFFICIENCY COMPARISON BETWEEN VARIOUS DD/VANISHING POINT

ESTIMATION METHODS IN TERMS OF AVERAGE RUN TIME ON ALL THE

TESTING IMAGES OF OUR CUHK-SLAM DATASET

and also reduces the error propagation when searching for the
horizontal and sloping DDs.

Fig. 17 and Table IV show the efficiency comparisons. BR-
DD leads to relatively low time cost since it only computes
three DDs. The efficiency of IMU-RA-DD is also satisfactory.
This method does not consider the vertical inliers identified by
IMU when estimating the horizontal DDs, which increases the
probability of valid sampling. JL-DD results in unsatisfactory
efficiency since it generates line descriptors by more than 1000
samplings in general. By contrast, ourHK-SA-DD achieves near
real-time efficiency for two main reasons. First, it uses a small
number of samplings to reduce the search space. Second, the
computational complexity of our search strategy, i.e., consensus
voting is relatively low. Our HK-IMU-DD achieves real-time
efficiency since it uses IMU to avoid sampling, and only searches
on a single tree.

D. Camera Pose Estimation

Evaluation Criteria: We randomly sample 500 images from
our CUHK-SLAM dataset and treat them as query images (see
Fig. 19). We follow [52] to associate each query image with a set
of 3D-2D line correspondences. We use these correspondences
to estimate the pose of query image. Given the ground truth
rotation R̂ and translation t̂, we follow [21], [29] to evaluate
the estimated rotation R and translation t. The rotation error is
defined by the mean of {arccos(r�s r̂s)× 180/π}3s=1 (degree),
where rs and r̂s represent the sth columns of R and R̂, respec-
tively. The translation error is defined by ‖t̂− t‖/‖t‖ × 100
(%). In addition, we follow [52] to evaluate the accuracy in terms

of visual alignment between 2D edges. Specifically, we manu-
ally extract some ground truth edges in the image (see cyan edges
in Fig. 19). Then we manually match these 2D edges between
images and use the ground truth camera poses to reconstruct 3D
edges by triangulation. We project these 3D edges back to the
query image using the camera pose estimated by each method,
obtaining the projected 2D edges (see yellow edges in Fig. 19).
A better alignment between the ground truth and projected 2D
edges represents higher accuracy of the estimated camera pose.

Methods for Comparison: We compare the following camera
pose estimation methods:
� CO-CP [27]: The constant velocity motion model used by
FI-SLAM and AT-SLAM.9

� EN-CP [21]: The endpoint constraint-based method used
by GR-SLAM.

� OR-CP [29]: The orthogonality constraint-based method.
� PR-CP [22]: The projection constraint-based method with-

out exploiting the structural regularity.
� HK-CP: Our method designed for Hong Kong world (see

Section V).
Experimental Results: We present the accuracy comparisons

in Figs. 19 and 20. CO-CP leads to low accuracy since the
constant velocity motion model is unreliable when the camera
accelerates or turns. EN-CP is relatively sensitive to noise. The
reason is that image lines may not be completely extracted
and thus the endpoints of 3D-2D line correspondences may
not be associated. The accuracy of OR-CP is satisfactory when
the fully-orthogonal triplets of 3D-2D line correspondences are
sufficient. However, when this configuration is unobservable,
OR-CP mistakenly estimates the camera pose. For example,
on the first and third images of Fig. 19, we can only observe
the partially-orthogonal triplets but not fully-orthogonal triplets.
PR-CP and our HK-CP both achieve high accuracy thanks to
their respective advantages. Specifically, on partial images (e.g.,
the second image of Fig. 19), ourHK-CP leverages the structural
regularity to generate lower-order polynomial equations, and
thus provides higher numerical stability/accuracy than PR-CP.
On the other images (e.g., the first image of Fig. 19), 3D line
triplets of 3D-2D line correspondences are perturbed by noise,
which affects the structural constraint. Accordingly, our HK-CP
is slightly inferior to PR-CP.

Fig. 19 and Table V show the efficiency comparisons. CO-
CP is the fastest method since the constant velocity motion
model is simple. EN-CP is relatively time-consuming due to
its complex endpoint-based constraint. OR-CP provides high
efficiency since it uses the orthogonality constraint to simplify
equations. The run time of PR-CP is relatively unsatisfac-
tory due to its high-order polynomial equations. Our HK-CP
is slower than OR-CP, but faster than PR-CP. Specifically,
when our HK-CP uses the fully-orthogonal triplet, its efficiency
approximates to that of OR-CP. When our HK-CP uses the
partially-orthogonal or non-orthogonal triplet, it is slower than
OR-CP. Still, it is faster than PR-CP thanks to lower-order
polynomial equations.

9CO-CP does not use 3D-2D line correspondences, which is different from
the other camera pose estimation methods.
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Fig. 19. Accuracy and efficiency comparisons between various camera pose estimation methods on three query images of our CUHK-SLAM dataset. The numbers
below each image represent the rotation error, translation error and run time, respectively. The ground truth and projected 2D edges are shown in cyan and yellow,
respectively. We highlight the best and second-best results by “ ” and “ ”, respectively.

Fig. 20. Accuracy comparison between various camera pose estimation meth-
ods in terms of (a) rotation error and (b) translation error on all the query images
of our CUHK-SLAM dataset.

E. Back-End

In this section, we conduct ablation study of our Kalman
filter-based global DD refinement (see Section VI-A) and DD
alignment-based camera pose optimization (see Section VI-B).

Evaluation Criteria: We use the absolute trajectory error
introduced in Section VII-B to evaluate the trajectory accuracy.

Methods for Comparison: We design two baseline ap-
proaches. Except for partial modules of back-ends, these ap-
proaches are the same as the proposed SLAM method. We
compare these approaches with our method as follows:

TABLE V
EFFICIENCY COMPARISON BETWEEN VARIOUS CAMERA POSE ESTIMATION

METHODS IN TERMS OF AVERAGE RUN TIME ON ALL THE QUERY IMAGES OF

OUR CUHK-SLAM DATASET

� NEI: Baseline approach that uses neither of the filter-based
global DD refinement and DD alignment-based camera
pose optimization.

� ALI: Baseline approach that only exploits the DD
alignment-based camera pose optimization.

� FIL+ALI: Our method that leverages both filter-based
global DD refinement and DD alignment-based camera
pose optimization.

All the above methods employ the DD-constrained bundle
adjustment (see Section VI-B).

Experimental Results: As shown in Fig. 21 and Table VI,
NEI results in significant error due to unrefined global DDs
and lack of effective camera pose optimization. ALI reduces the
error to some extent thanks to our DD alignment-based camera
pose optimization. On partial sequences, our FIL+ALI is more
accurate than ALI. Specifically, the estimated local DDs in the
first camera frame are not accurate enough. Accordingly, the
global DD initialization is unreliable. Our filter-based global
DD refinement mitigates the effect of unreliable initialization,
and thus improves the SLAM accuracy. On the other sequences,
the accuracy improvement is limited since the global DD initial-
ization is reliable.
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Fig. 21. Trajectories estimated by baseline approaches and our method on the image sequence Station_Road of our CUHK-SLAM dataset. Pentagram denotes
the starting point of trajectory. Color bar indicates the magnitude of the absolute trajectory error.

TABLE VI
ABSOLUTE TRAJECTORY ERRORS OF BASELINE AND OUR SLAM METHODS ON

DIFFERENT IMAGE SEQUENCES OF OUR CUHK-SLAM DATASET

VIII. CONCLUSION

In this article, we propose a novel structural model called
Hong Kong world to describe the structured scenes with vertical,
horizontal, and sloping DDs. It is more general than Manhattan
and Atlanta worlds, and also more compact and accurate than a
mixture of independent Manhattan worlds. We further leverage
the structural regularity of Hong Kong world for the line-based
SLAM. Our SLAM method is reliable thanks to three technical
novelties. First, our method to estimate DDs in Hong Kong world
is the first one that can simultaneously determine the number of
DDs, and achieve quasi-global optimality in terms of the number
of inliers. Second, our camera pose estimation method exploits
the spatial relations between DDs in Hong Kong world. It is
more accurate and/or efficient than existing methods designed
for unstructured scenes. Third, we refine DDs in Hong Kong
world by a novel filter-based method. Then we use these refined
DDs to optimize the camera poses and 3D lines, leading to higher
accuracy and robustness than existing optimization algorithms.
In addition, we establish the first dataset of sequential images
in Hong Kong world. Experiments showed that our approach
outperforms state-of-the-art methods in terms of accuracy and/or
efficiency.

A main limitation of our method is that it can only han-
dle structured environments. In an unknown environment, our
method can automatically determine whether it can work or
not. Specifically, on sequential images, if the regularity encoder

always fails to detect DDs associated with sufficient inliers, our
method can (indirectly) identify the scene as a non-structured
environment. Accordingly, we can suppose that our method is
unsuitable for this scene. In addition, we treat the extension to
a visual-inertial odometry or multi-camera system as our future
work.
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