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Abstract—Recently, resistive RAM (ReRAM)-based hardware
accelerators showed unprecedented performance compared the
digital accelerators. Technology scaling causes an inevitable
increase in interconnect wire resistance, which leads to IR drops
that could limit the performance of ReRAM-based accelera-
tors. These IR drops deteriorate the signal integrity and quality,
especially in the crossbar structures which are used to build high-
density ReRAMs. Hence, finding a software solution, which can
predict the effect of IR drop without involving expensive hard-
ware or SPICE simulations, is very desirable. In this article, we
propose two neural networks models to predict the impact of
the IR drop problem. These models are used to evaluate the
performance of the different deep neural network (DNN) models
including binary and quantized neural networks showing similar
performance (i.e., recognition accuracy) to the golden validation
(i.e., SPICE-based DNN validation). In addition, these predication
models are incorporated into the DNN training framework to effi-
ciently retrain the DNN models and bridge the accuracy drop. To
further enhance the validation accuracy, we propose incremen-
tal training methods. The DNN validation results, done through
SPICE simulations, show very high improvement in performance
close to the baseline performance, which demonstrates the effi-
cacy of the proposed method even with challenging datasets, such
as CIFAR10 and SVHN.

Index Terms—Binary neural network, deep neural network
(DNN), IR drop, quantized neural network, resistive RAM
(ReRAM) crossbar array (RCA), variability.

I. INTRODUCTION

WHILE Resistive RAM (ReRAM) crossbar arrays
(RCAs) are considered as one of the most promising
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technologies for highly efficient neural network hardware,
much of its promise critically depends on the assumption that
RCAs can function as a computing unit as well as a storage
unit [2]. In an ideal condition, an RCA can do parallel matrix–
vector multiplication (MVM) between a weight conductance
matrix and an input voltage vector, with the time complexity
of O(1) instead of O(n2). RCAs can not only provide such an
extremely parallel matrix operation but also eliminate the von
Neumann bottleneck since the computation is done right where
the weight matrix is stored. For neural network hardware
that spends most of its energy doing matrix multiplications,
RCA could be an ideal technology, solving both computation
and communication problems simultaneously with radically
improved efficiency. Furthermore, a passive RCA, one that
consists of memristors only without active transistors (i.e.,
0T1R), has superior area advantage.

However, if an RCA cannot function as a computing unit, for
instance, due to its MVM result being unrecoverably distorted,
then an RCA would degenerate into a memory, annulling the
great promises mentioned above. Such is the threat that can be
caused by IR drop when the array size is large or wire resistance
increases relative to low-resistance state (LRS) resistance. Since
the size of RCA arrays is expected to grow, and device-to-wire
resistance ratio depends on many factors, including material
choice, it is important to address the IR drop problem at the
system level as much as possible.

Recently, using a comprehensive crossbar-based simulation
framework, He et al. [3] showed that IR drop can cause as
much as 66 percentage points (pps) drop in classification
accuracy for LeNet-5 on MNIST when using small RCAs
(64 × 64), which will worsen with larger RCAs or more chal-
lenging datasets. They also proposed a method, NIA, based on
random noise for training networks without expensive IR drop
simulation. Another method, called the mask method [4], was
shown to recover near-baseline classification accuracy for a
binarized neural network (BNN) on MNIST when using larger
RCAs (128 × 128). However, for more challenging datasets
such as CIFAR10, it turns out that the IR drop problem is
very difficult to mitigate even with BNNs, not to mention the
challenges of larger arrays and higher wire resistance, cast-
ing doubt on the feasibility and scalability of the RCA-based
neural network hardware approach.

In this article, we propose a novel method for passive
RCAs, which can learn as well as recall the distortion pat-
tern of MVM computation for any given input based on
statistical machine learning, in a fast and reliable manner.

1937-4151 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIST. Downloaded on January 09,2024 at 04:07:54 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-3092-6501
https://orcid.org/0000-0001-7139-3428
https://orcid.org/0000-0003-1523-2974
https://orcid.org/0000-0003-1849-083X
https://orcid.org/0000-0002-6982-365X


522 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 2, FEBRUARY 2023

Fig. 1. Performing MVM computation on a passive RCA.

Our method enables greatly enhanced training of RCA-based
neural networks, significantly increasing the range of usable
device-to-wire resistance ratios and RCA sizes.

In this article, we make the following contributions.
1) We interpret the IR drop problem in passive RCA-based

MVM computation as a function identification problem,
making it accessible to a number of known techniques,
such as regression and machine learning.

2) We propose two prediction models including a convo-
lutional neural network (CNN) to accurately learn and
predict the distortion pattern caused by IR drop.

3) We propose a novel incremental training method that
can improve the training performance of deep neural
networks (DNNs) under large wire resistance values.

4) We show empirically that our training method is effec-
tive in mitigating the effect of IR drop in passive
RCA-based neural network hardware for various RCA
sizes and wire resistance values.

This article is organized as follows: Section II explains the
IR drop problem and the previous works to mitigate the impact
of the problem on the DNNs performance. Section III-A dis-
cusses the proposed methodology on training DNNs. The
proposed IR drop predication methods are then discussed in
Section IV. Finally, Section VI discusses our experimental
setup and validation framework and results.

II. BACKGROUND AND PREVIOUS WORK

A. IR Drop in ReRAM Crossbar Array

Fig. 1 illustrates a passive RCA of size n×m performing an
MVM operation between a weight matrix W of size m×n and
an n-dimensional input vector x, generating an m-dimensional
output y = Wx, where x is given as voltage, y in current, and
W is programmed as conductance after transpose (G = WT ).

This works only if the voltage across the two terminals of
a ReRAM cell labeled with Gij is exactly xi. In a crossbar
structure, it is usually not the case. For instance, if the wire has
resistance, the input voltage xi is divided between the wire and
ReRAM cells, generating less current than Gijxi. Naturally, the
farther the ReRAM cell is from input/output ports, the higher
the IR drop.

The amount of IR drop depends on ReRAM cells’ resis-
tance, which is programmable, as well as wire resistance.

Thus, the single most important architecture parameter deter-
mining the overall severity of IR drop is the LRS-to-wire
resistance ratio. But to find out the exact amount of output
current, one needs SPICE simulation.

In addition to device faults and variation, ReRAM resistance
may drift due to stochastic noise, which, in turn, affects the
amount of IR drop. Therefore, all these effects must be con-
sidered together, which requires a huge amount of computing
resources (on the order of days with a capable workstation),
even to evaluate the inference accuracy of an MNIST-level
neural network.

B. Target Application

Our target application is RCA-based neural network hard-
ware, that is, a hardware accelerator for neural networks where
matrix multiplication is performed on RCAs [5]. A large
matrix multiplication is divided into smaller ones (via loop
tiling), each of which is mapped to an RCA, with necessary
input/output routing circuitry added using CMOS technology.
All RCAs are dedicated, i.e., completely parallel, since pro-
gramming ReRAM is costly. Convolution operation can be
implemented using matrix multiplication [6].

Quantized neural networks (QNNs) often have batch nor-
malization (BN) layers [7]. BN consists of shift and scaling
operations, and help training converge faster. BN is crucial,
not just for BNNs but for all low-precision networks. The
problem with BN is that the computation is a bit complicated,
including a division operation. However, for QNNs with binary
activation, we can actually eliminate BN layers by modifying
the bias values of the preceding layer [8]. Note that the bias
values in BNNs, whether before or after BN elimination, does
not require very high precision, and much less than in multibit
networks.1

C. Related Work

Several ReRAM-based neural network architectures have
been proposed [5], [9], [10], which are all based on MVM
operation on RCA. ISAAC [5], for instance, carefully opti-
mizes the system throughput and cost while supporting multi-
bit weight and activation. However, the RCA output, which is
analogue, needs to be converted to digital through costly ADC,
which is shared and becomes a performance bottleneck. Some
ReRAM-based neural network architectures [11], [12] support
training as well as inference using ReRAM arrays. However
all these architectures assume perfect MVM operation, and
do not address the training problem in the presence of dis-
torted MVM operation such as when using passive RCAs for
superior area advantage.

The consideration of IR drop needs to be done in
both inference and training of passive RCA-based neural
networks. He et al. [3] presented one such framework, with
two findings. First, the accuracy drop can be severe: 99% clas-
sification accuracy when IR drop is ignored, plummets to mere
32% when IR drop is considered, for the LeNet-5 network with

1Since only the sign of the output activation needs to be determined, the
bias only needs to be �log2 n�-bit, where n is the number of terms added in
the computation of output activation.
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the MNIST dataset, using 64 × 64 RCAs. Second, the RCA
size is a critical parameter; in the same setting, when the RCA
size is 32 × 32, the accuracy drop is only about 3%.

They also propose NIA, which is to model, as Gaussian
noise, RCA output current’s shift via IR drop-enabled infer-
ence simulation, and then generate the same Gaussian noise
to be added to RCA outputs during training. This way, NIA
can avoid costly IR drop simulation (during training) while
training a network with IR drop effect taken into account.

There are two problems with this method. First, using an
additive term to model the effect of IR drop may not be right.
Second, the IR drop pattern is inherently 2-D, varying across
rows and columns of an RCA, which is ignored by focusing
on the output of RCA, which is 1D.

The mask method [4] captures the IR drop pattern as a
2-D matrix that has the same size as the RCA. The mask is
multiplied to a weight matrix in an elementwise manner before
MVM computation. The mask method works because the IR
drop pattern has a high spatial correlation, which is captured
by mask.

Machine learning-based methods [13]–[15] to predict the
effect of IR drop is mentioned by a survey paper [16]. Ho and
Kahng [13] proposed an incremental method to predict and
fix violations called IncPRID, consisting of feature extraction,
IR drop prediction, and incremental design modification steps.
XGBIR [14] uses an ensemble tree and features extracted from
a power grid to estimate the region that suffers from IR drop.
PowerNet [15] is a CNN-based method with some pre- and
postprocessing. However, all these methods target power deliv-
ery network (PDN) applications and, as such, their objective
is to prevent IR drop by manually modifying PDN design,
whereas we do not modify RCA hardware but try to reclaim
RCA hardware despite IR drop by simply adjusting weight
parameters.

Huang et al. [17] proposed to add a tunable RRAM row to
an RCA to compensate for output current deviation. However,
for binary RCA adding one row is equivalent to adding
either 0 or 1, the effectiveness of which is very limited.
Zhu et al. [18] proposed hardware and software methods
based on the empirical observation of variation patterns due
to IR drop, demonstrating the effectiveness for the MNIST
classification task. Roy et al. [19] presented a nonideality
modeling framework for the purpose of on-chip training on
RCA hardware.

Apart from output error mitigation, Chakraborty et al. [20]
proposed a method (GENIEx) to predict the output distortion
in the presence of both IR drop and I-V nonlinearity. However,
it does not consider nonideality-aware training of target DNNs.

III. TRAINING UNDER DISTORTED MVM

The problem we deal with in this article is to find the best
weight of a DNN in the presence of MVM distortion such as
IR drop.

A. Methodology

Fig. 2 illustrates our experimental methodology. The first
step is baseline training. The weight obtained from baseline

(a)

(c)

(b)

Fig. 2. Our experimental methodology. (a) Baseline training: weight
optimized for perfect MVM. (b) Validation: inference using distorted MVM
(e.g., SPICE). (c) Example of training under distorted MVM.

training, if programmed to an accelerator that has perfect
MVM computation (e.g., digital CMOS), should give the iden-
tical accuracy as in software inference. In this case, Y = WX,
where Y is the MVM output, W is the weight matrix, and X
is the input activation.

Second, if we apply the weight from the baseline training
to an RCA-based accelerator, the distorted MVM will cause
poor accuracy. In this case, Y is still a function of W and X
but not WX; i.e., Y = g(W, X) �= WX. To find g out, we need
simulation such as SPICE, which takes long but is feasible if
we do inference only. This step is referred to as validation,
since if the accuracy in this setup is shown to be high enough,
it confirms that the weight has been correctly optimized under
MVM distortion.

Third, the validation setup is not useful for training due to
two reasons: 1) running IR drop simulation inside a training
loop is extremely time consuming and 2) such simulation is
not differentiable; thus, no guarantee on convergence. Instead,
our novel approach is to use a surrogate model that can predict
the outcome of the distorted MVM in a fast and differentiable
way, so that we can use the model for training. Once a suitable
model for g is found, it is substituted for distorted MVM com-
putation (i.e., SPICE simulation), and we run training again
to find a new W under MVM distortion.

Finally, we run validation again to see if the weight from
step 3 gives good accuracy when using the real distorted
MVM such as SPICE simulation. Note that there can be quite
a difference between the (test) accuracy evaluated with the
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surrogate model (i.e., accuracy from step 3), and the valida-
tion accuracy obtained in step 4. This is because the surrogate
model may not agree with SPICE simulation for every input
combination. The validation accuracy from step 4 is the main
evaluation metric we use in this article.

B. Linearity Principle

While the number of ways to model distorted MVM compu-
tation is unbounded, the following shows three possible ways,
according to which we can classify previous methods:

Y = g(W, X)
?= h1(WX) (1)
?= h2(W)X (2)
?= W · h3(X). (3)

NIA [3] assumes (1) and further that h1 is an addition with
some noise. Mask [4] assumes (2) and that h2 is an elemen-
twise multiplication. We take the same approach as [4] but
makes no assumption on h2, but instead identify it through
machine learning. Equation (3) is another possibility, but does
not seem very useful in modeling MVM distortion.

Later, in Section VI-C, we show through simulation that (2)
is sound for IR drop-induced distortion. The soundness of (2)
can be explained as follows. If we limit ourselves to the steady-
state behavior during MVM computation, an RCA can be seen
as a resistive network with constant, albeit programmable,
resistance values. Then, despite the complex pathways in the
crossbar, the output current should be linear to the input volt-
age, meaning that scaling and superposition properties on X
should hold, hence, (2).

Thus, we only need to predict We from W. We call the
former effective weight and the latter programmed weight. To
recap, the mask method [4] uses the following simple function:

We = W ◦ M (4)

where ◦ is the Hadamard product (i.e., elementwise multipli-
cation) and M has the same size as W. The intuition behind
this method is that the physical location within an RCA has a
dominant effect on the deviation of We from W. As we show in
Section VI, this method has limited accuracy. This is because
a mask can capture only the first-order effect (i.e., distance
from input/output) but ignores second-order effects such as
the resistance values of neighbor ReRAM cells, which is also
important to get correct We.

C. Impact of IR Drop Problem

Ideally, the absolute value of the sensed current per a
ReRAM cell should be constant, regardless of the position of
the cell in the array. But due to the existence of wire resistance,
which is inevitable in any interconnect, the sensed current can
vary depending on the location. The variation in the sensed
current is due to the voltage drops over the wire resistances
that create leakage paths throughout the array which is referred
as the sneak path problem.

To illustrate the effect of sneak paths, Fig. 3 plots the
sensed current from each cell while simulating random binary
weights. The sensed current is the perceived weight value as
seen at the output port. The graphs clearly show that the sensed

(a)

(b)

Fig. 3. Normalized sensed current for 128 × 128 crossbar array with one
reference column. (a) Rw = 0.1 �. (b) Rw = 2 �.

current decays exponentially across the diagonal direction of
an array instead of having constant values in {−1, 1}. Also,
with increasing wire resistance, the weights decay much faster.

D. DNN Application

The problem can be stated as follows: given a DNN, a train
dataset, and the physical parameters of RCAs, such as LRS,
HRS, wire resistance, array size, etc., to find the best synaptic
weights for the DNN to be programmed into RCAs such that
the accuracy of inference on RCAs can be maximized despite
the existence of sneak path currents.

The DNN part of the problem can be solved easily using
the backpropagation algorithm. The new challenge is how to
quickly and accurately estimate the effect of sneak path cur-
rents during training so that we can guide the backpropagation
algorithm to minimize or even compensate for the sneak paths.
Note that sneak path patterns can vary widely and nonlinearly
depending on the programmed binary weights, requiring re-
evaluation of sneak paths for every weight update.2 Also, since
the number of RCAs in a DNN can be quite large, a naïve
integration of SPICE simulation during training would require
a prohibitive amount of resources.

Now, if we limit ourselves to the steady-state behavior, a
passive RCA can be seen as a resistive network with constant,
albeit programmable, resistance values. Then, we can use the
result of previous work [21] on a generic resistive network
model, which is shown to be as accurate as SPICE simulation.
Importantly, this model implies that despite the presence of
sneak path currents, a resistive network’s output should be

2Possibly for every input as well if we do not take advantage of (5).
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linear to input. Therefore, we can express the observed output
current Y as the product of input voltage X and some matrix We

Y = g(W, X) = h(W)X = WeX. (5)

Here, W is the programmed weight matrix and We is the effec-
tive weight matrix. They have the same size as RCAs, which
is n × m. For QNN applications, input X is binary and weight
matrix W is fixed point, whereas effective weight matrix We

is real valued.
Hence, the goal is to find We from W. One may use SPICE

simulation or equivalent numerical models such as [21], both
of which are extremely slow. Inference, fortunately, does not
require many SPICE simulations; one simulation per RCA is
enough due to (5). This allows us to build an accurate and
practical evaluation setup for sneak path-aware inference on
RCAs. For training, however, we need a very fast model, and
preferably in a closed-form expression so that it can be directly
integrated into an existing DNN training framework. Also, for
backpropagation to work, the model must be differentiable.
This suggests that we can use regression methods to identify
the function g, treating W and We as the input and output of
the system to be identified.

In the next section, we present our solution to the regression
problem. Note that though in this article we obtain We from
SPICE or a SPICE-equivalent model, it could also be derived
from real device measurement data, to which our technique
should be applicable as well.

IV. PREDICTION OF EFFECTIVE WEIGHT

While the problem of predicting We from W can be seen
as a regression problem, typical regression functions such as
linear regression cannot be directly applied due to the high-
dimensionality of input/output data in our problem. With a
128 × 128 RCA, for instance, both input W and output We

have 16K dimensions, requiring 256 million parameters for
linear regression. We suggest two neural network models that
can effectively predict We as follows.

A. Row-Column Network

Row-column network (RCN) is a nonlinear model, built
by stacking multiple neural network layers. IR drop exists in
both row and column directions, thus combining rowwise and
columnwise models makes sense. We first define two layers
and combine them to create RCN.

Parallel Linear Layer: We divide the input and output
matrices into rows. Each row has its own linear regression
parameters, followed by nonlinear activation function. In what
follows, we use X and Y to refer to generic input and output
matrices (of the same size as W):

PLrow : X → Y where Y [i] = f
(

X[i] · Ri + �bi

)
(6)

where X[i] is the ith row of X and f a nonlinear activation
function (we use tanh), Ri a weight matrix of size m×m, and �bi

an m-dimensional bias vector. In neural network frameworks,
this layer can be easily implemented as a hierarchy of primitive
layers: a parallel layer and linear layers below it (hence, called
parallel linear layer).

Fig. 4. RCN consisting of PLrow, PLcol, and an elementwise scale layer.

Columnwise parallel linear layer is defined similarly

PLcol(X) = PLrow
(
XT)T

. (7)

Then, RCN is defined to capture both row- and column-
wise dependencies by stacking parallel linear layers of both
directions

RCN: We = PLcol(PLrow(W)) ◦ U (8)

where U is an n × m parameter matrix for the elementwise
scale layer, which is also trainable. It adjusts the output range
of RCN to match with We which can go beyond [−1, 1]. Fig. 4
illustrates parallel linear layers and RCN.

We train the network to minimize the mean squared error
(MSE) loss, defined as

L = 1

N

∥∥∥Ŵe − We

∥∥∥
2

2
(9)

where N = nm is the number of elements in We, and Ŵe is
the estimated effective weight matrix.

B. Scaling Convolutional Network

The scaling convolutional network (SCN) is our convolu-
tion approach to regression. Convolution layers are good at
capturing spatial patterns in the input with a small number of
parameters. On the other hand, SCN is clearly distinguished
from CNNs for image classification; the output is not class
labels, but a transformed version of the input, with the same
size and data type, as the input.

To simplify the process of designing a new network, we
leverage the mask idea to capture the spatial correlation, and
add convolution layers to compensate for the effect of ReRAM
cell values. At the top level, SCN consists of two element-
wise scaling layers and a convolutional network in between as
illustrated in Fig. 5.

The internal convolutional network is defined to be a stack
of n convolutional layers, each with c output channels, except
for the last (which has a single channel), where n and c are
design parameters. The convolution filter size is fixed to 3 × 3,
and padding and stride are both 1; no pooling layer is used.
Activation function, ReLU, is used in all layers except the last
one.

Specifically, the basic block CLc is a convolutional layer
with c output channels. We replicate the basic block n − 1
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Fig. 5. SCN consisting of n − 1 Conv-ReLU blocks, one convolution layer,
and two elementwise scale layers.

times and add one convolutional layer having a single channel

CLc: X → Y where Y = ReLU(Convc(X)) (10)

SCNn,c: We = Conv1(CLc(· · · (CLc(W ◦ U1)))) ◦ U2. (11)

The performance of SCN depends on the value of n and
c. Through exploration using a randomly generated dataset
for 128 × 128 array with wire resistance of 1 � (more
details in Section VI-A), we have found that SCN7,32 gives
the best balance between performance and model size; further
increasing the hyperparameters did not give much performance
improvement. SCN is also trained to minimize MSE.

Once the regression models are trained, they are integrated
into the target DNN’s training framework [see Fig 2(c)], so
that the training of target DNNs can find the best programmed
weight under predicted MVM distortion. During this training,
the regression model’s parameters are fixed.

V. EFFICIENT TRAINING OF RCA-MAPPED DNN MODEL

We now present our method for training a target neural
network. A target neural network is a network whose inference
is accelerated by the use of RCAs. In other words, a target
DNN is a DNN model whose operations are mapped in part
or in full to RCAs.

The key difference between training an RCA-mapped DNN
model and training an ordinary DNN model is whether to con-
sider RCA’s nonideality such as output distortion due to IR
drop, which we find can make training much harder to con-
verge. Thus, in addition to a nonideality-aware training flow
as has been suggested in previous work [4], we propose in
this article a novel incremental training framework based on
the concept of nonideality modulation. The idea is that by
gradually increasing the degree of nonideality, we can achieve
a much higher training performance, with a similar increase
in the final validation accuracy as we demonstrate in our
experimental results.

A. IR Drop-Aware Training

Using a prediction model from W to We, we train a tar-
get network (i.e., an RCA-mapped DNN model) as follows.
First, we pretrain the baseline DNN model without considering
RCA nonideality. This pretrained model is already quantized
according to how the RCA-mapped DNN model is quantized,
but no knowledge of RCA (such as how weight parameters
are partitioned into RCAs) or its nonideality is used in the
training. The pretrained model is used as the initial weight for
IR drop-aware training. Second, for the forward propagation
of IR drop-aware training, we modify weight matrices mapped

to RCAs in this way: 1) weight matrices are partitioned into
crossbar-sized submatrices; 2) the submatrices are transformed
into new matrices of the same size to reflect the weight dis-
tortion due to nonideality by invoking a nonideality prediction
model such as our SCN; and 3) the transformed submatrices
are combined back to the original size. Third, we perform
training of the target DNN using the modified weight matri-
ces. The training itself is exactly the same as ordinary DNN
training, but the difference is that we use the weight matri-
ces modified in the previous step. Performing a simple MVM
operation using the modified matrices can simulate the dis-
torted MVM operation as in (5). In the backpropagation stage,
the parameters of each layer are updated using the gradient
of task loss (w.r.t. the parameters), and since the computa-
tion of the gradient involves the value of the modified weight
matrices via the chain rule, the gradient descent algorithm will
adjust weight W in a way to best minimize the task loss in
the presence of IR drop. When calculating �W, we found
that using straight through estimator (assuming �W = �We)
is good enough to train the network. All the other parameters
are propagated and updated following the exact chain rule.
Fig. 6 describes how weights are transformed and updated dur-
ing the DNN training. After training is done, we can validate
the network with updated W.

Note that since our SCN network is a sequence of neural
network layers, it can be easily integrated into a target neural
network, and the evaluation of the integrated model can be
done very efficiently on GPUs.

B. Incremental Training

While the IR drop-aware training procedure described above
should be able to find the optimal weight parameters, we find
that training often reach only much lower performance. This
is likely due to gradient descent being stuck at one of local
minima, and we find that getting out of local minima is not
easy using common training recipes.

Our proposed method is based on the observation that often
the degree of nonideality can be adjusted easily. For instance,
the amount of distortion due to IR drop is proportional to the
value of Rw. Thus, if our intended Rw is 2 for instance, we
gradually increase Rw during training from 0.1 to 1 and to 2,
which seems to help gradient descent-based training to better
cope with changes in the search space, as compared with going
from Rw = 0 to Rw = 2 at once.

It would be better if we can modulate nonideality during a
single training session. While Rw is a real-valued parameter
and we can certainly change its value continuously, the bottle-
neck is in the creation of an IR drop prediction model, which
is specific to a certain Rw value. This is why we modulate Rw

value in a discrete fashion. However, if one uses an IR drop
prediction model that can take Rw as a continuous parameter,
we can module Rw during training in a continuous fashion.

VI. EXPERIMENTS

A. Experimental Setup

To evaluate the effectiveness of our proposed technique,
we have extended the BinaryNet framework [22] for MNIST,
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Fig. 6. IR drop-aware training flow. Red color indicates backpropagation stage.

TABLE I
NETWORK AND TRAINING PARAMETERS

CIFAR10, and SVHN datasets.3 Table I lists the key parame-
ters of the networks and of training. We also use 2- or 8-bit
weight quantized version of the networks.4 Our primary met-
ric is validation accuracy on unseen data (see Section III-A).
The baseline accuracy is the test accuracy on GPU, which
is the highest we can expect for validation accuracy. For the
training under distorted MVM (step 3 of Fig. 2) we retrain the
network from the baseline trained weight, which is commonly
called retraining. For retraining, we reduce the initial learning
rate to 1/8 as that of the baseline training. Incremental training
(Section V-B) is applied to cases where retraining accuracy is
low, which are all the SVHN cases with Rw > 0.1.

We compare the following five cases: NIA, mask, RCN,
SCN, and the validation accuracy from step 2 (referred to as
“w/o retraining”). We evaluate two different crossbar sizes,
64 × 64, and 128 × 128. We use the following device param-
eters, taken from recently fabricated devices [23]: LRS =
1E3 �, HRS = 1E6 �. The wire resistance per cell (Rw)
is varied from 0.1 to 2 �. This range agrees with that of
many previous work [21], [24], [25]. Li et al. [24] matched
the experimental setup with the simulations and the wire resis-
tance is found to be about 0.32 �/block (1T1R) with 2-μm
feature size for transistors, and [25] uses 1 �/block (1T1R).
Fouda et al. [21] reported that the estimated wire resistance is
1.908 �/segment (0T1R) for 50-nm feature size. Hence, we
wanted to test different scenario within these technologies. It
is also worth mentioning that lower technologies nodes would

3https://github.com/itayhubara/BinaryNet
4Our n-bit weight quantization uses 2n + 1 states due to the conductance

mapping scheme in Section VI-B.

experience an exponential increase in the wire resistance which
might not be practical to fabricate functioning ReRAM. These
parameters are also very similar to what is used in other
previous work [3], [4], including the device-to-wire resistance
ratio. We consider the interconnect wire resistance, which is
the main cause of the IR drop problem. Other nonidealities
such as driver and load resistances are not included, since
their effects can be eliminated by designing better circuits and
therefore considered not essential.

To train the IR drop prediction models, we use 50 000
randomly generated crossbar-sized data as weight (W) and
corresponding effective weights (We) generated from SPICE
simulations for each scenario. We store random data in cross-
bar arrays and we measure the effective conductance value by
measure the output current. The random data help to get an
average model that could work for any application, regardless
of spatial or repetition of the weights. For NIA, we use the
trained weights of each target network as described in [3]; thus,
the number of data samples differs depending on the network
and the crossbar size. For the mask method, we follow the pro-
cedure in [4], which uses 100 random data samples. Note that
we train the IR drop prediction models again for each device
parameter combination (RCA size and wire resistance), but use
the same trained model across different networks and between
training versus test. The only exception is the NIA method,
which is trained again for each network as well as for each
device parameter combination.

B. Neural Network Accelerator Setup

In this article, we evaluate networks with binary ({−1,+1}),
2-bit (five states), and 8-bit (257 states) weights. We assume
multistate ReRAM cells such that one weight parameter can
be represented by one ReRAM cell.

Due to the positivity of ReRAM conductance, a special
mechanism is necessary in order to represent negative weight
values. We store and represent weight values using a refer-
ence column, as is done in [4]. A reference column is an
extra column in an RCA, which is shared with all the other
columns in the RCA and has the following conductance value:
Gr = (Gmax + Gmin)/2 ≈ Gmax/2. A ReRAM cell with the
conductance value of G (Gmin ≤ G ≤ Gmax) can represent the
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TABLE II
WEIGHT-TO-CONDUCTANCE MAPPING EXAMPLES

weight value of (G − Gr)/�, where � is a scale factor set to
Gmax/2, so that the range of values represented by a ReRAM
cell corresponds to [−1, 1], which is the range of quantized
weight values. Table II shows binary and 2-bit (five states)
examples. Binary has only two values, which are assigned
to Gmax and Gmin. The 2-bit case has five values in steps
of 0.5, which corresponds to (Gmax − Gmin)/4 ≈ Gmax/4 in
conductance.

Note that this weight-to-conductance mapping is more
efficient in terms of the number of RCAs than two-device real-
ization (i.e., using two ReRAM cells per weight parameter).
We assume that the subtraction operation needed to imple-
ment the weight realization is implemented as digital circuit
after current-to-voltage conversion and ADC (analog-digital
conversion).

In addition, we assume that convolution layers are mapped
to RCAs by parallelizing the input channels and output chan-
nels [26]. That is, for an N×N RCA, an N-dimensional vector
corresponding to N input channels is given to an RCA as input
voltage, and the RCA generates as output another vector cor-
responding to N output channels. This is repeated so that all
MAC operations of a convolution can be covered.

C. Validation of Linearity Principle

We show through simulation that (2) is sound for IR drop-
induced distortion. To show, we run IR drop simulation [3]
using trained weights of an MNIST BNN as W. The network
is identical to the one used in Section VI except that it has 1024
hidden neurons in each hidden layer. Note that the network’s
weights are spread across 736 crossbar tiles of 64×64, mean-
ing that there are 736 different weight matrices to use for this
experiment. For X, we use input activations during MNIST
inference (for the first 500 test images). We record Y vectors,
which are output current from crossbar arrays obtained via IR
drop simulation.

From the collected X, Y pairs, we set up a linear equation,
WeX = Y , one per each crossbar, which is underparame-
terized and can be solved for We to minimize the MSE,
E = mse(WeX − Y). We report the error using the We found.
If (2) is sound, the error should be very small. Indeed the error
turns out to be within rounding error (2.09E-11), confirming
that (2) is sound.

D. MVM Computation Accuracy

We first evaluate the accuracy of various prediction
methods,5 that is, how close their prediction is to SPICE

5NIA and mask in the previous work are not intended to be a prediction
method, but they can be viewed as one.

TABLE III
MSE COMPARISON (RCA SIZE: 128 × 128, Rw = 1�)

TABLE IV
BNN VALIDATION ACCURACY (%)

simulation result. For this experiment, we use 1000 random
weight matrices quantized to binary, 2- and 8-bit as well as
1000 random binary input vectors.

The results summarized in Table III are carried out with
Rw = 1 � and 128×128 RCA. We compare the MSE of MVM
output (RCA output current), averaged over weight matrices.
The table clearly shows that our prediction models are def-
initely more accurate in predicting RCA behaviors than the
previous methods in terms of MSE by about 2–3 orders of
magnitude. Though the low MSE is not enough to guarantee
high performance in the DNNs, our methods also work for
large networks. We examine the DNN validation results in the
next section.

E. Network Training Performance

1) BNN Results: Table IV shows the validation accuracy
for MNIST, Cifar10, and SVHN BNNs. None means the case
without retraining. Again these results are from step 4, using
unseen test data.

From the result, we make the following observations. First,
the result confirms the severity of the IR drop problem in
RCA-based neural networks. In particular, even when wire
resistance is as low as 0.1 �, 128 × 128 RCA’s MVM com-
putation is so distorted that without retraining it is unusable
even for MNIST BNN. Second, all retraining methods, includ-
ing NIA and mask do help train the BNN. For instance, in
the case of 64 × 64 RCA with 1 �, the validation accuracy
without retraining is only about 20%, but through retraining,
all methods recover the baseline-level accuracy. Third, our
proposed methods consistently outperform the previous meth-
ods. The performance difference is more remarkable in the
case of CIFAR10 and SVHN.
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TABLE V
QNN (2-BIT) VALIDATION ACCURACY (%)

TABLE VI
QNN (8-BIT) VALIDATION ACCURACY (%)

The CIFAR10 and SVHN results unequivocally show the
superiority of our proposed methods over the previous meth-
ods. In particular, the SCN model not only outperforms all
the other methods but it also gives acceptable accuracy where
the previous methods have completely failed such as 64x64
RW = 1 case. Note that though the accuracy of “w/o retrain-
ing” for SVHN is sometimes near 20%, it is due to the
unbalanced label distribution; for SVHN, 20% accuracy is no
better than 10% or less.

2) QNN Results: To evaluate the scalability of our method,
we perform the same set of experiments using multibit neural
networks, called QNN. For the QNN model, we use the same
network models as BNNs but with 2- or 8-bit weights. Input
and output activations are kept binary, not only because doing
so simplifies the hardware around RCAs but also because our
focus in this work is in modeling the IR drop problem in
weight realization. In this experiment we omit RCN in favor
of SCN because SCN is shown to outperform RCN.

The results are summarized in Tables V and VI. Again,
these results are validation accuracy obtained through SPICE-
equivalent simulation, rather than retraining accuracy. We note
that retraining accuracy is very similar to the baseline accuracy
in all the cases, indicating that training itself has been success-
ful except a few cases for SCN (see Table VII). Compared
with the BNN results (see Table IV), we observe much higher
accuracy drop with all methods, with a few exceptions. Note
that there is no significant difference in the baseline accuracy,
i.e., test accuracy on GPU, among the BNN and QNNs (see
Table I).

First, the universal drop in validation accuracy indicates that
the problem of predicting IR drop patterns becomes harder
as weight precision increases. This is understandable, since
conductance values in, say, 8-bit RCAs are more densely
populated than those of 2-bit RCAs (see Table II), making

TABLE VII
SCN RETRAINING ACCURACY (%)

Fig. 7. Training time comparison (per iteration).

them more susceptible to distortion. Second, our SCN method
shows consistently higher performance than all the previous
methods considered, often with a large margin, which demon-
strates the effectiveness of our method in dealing with IR drop
on RCAs.

Third, with SCN, not all cases are worse at higher precision.
The best example is the CIFAR10 with 64 × 64 RCAs, for
which 2 and 8-bit QNNs show higher performance than with
BNN (for all Rw values). The 128 × 128 case with Rw = 0.1
exhibits a similar trend, though no such exceptions are seen
in the SVHN result. One way to understand this result is to
see IR drop mitigation as a Boolean outcome (success/fail).
The important parameter here is not the validation accuracy
when it succeed, which is anyway the result of a stochastic
process, but when it starts to fail or the difficulty level, which
is determined by Rw, RCA size and precision. Thus, the effect
of higher precision is to make SCN ineffective at a lower Rw

value.
In summary, QNNs represent a more challenging case for

the IR drop prediction problem, but our SCN method, which
vastly outperforms the previous methods, can achieve a similar
level of network accuracy recovery as with BNN, although
the range of cases where SCN succeeds is narrower at higher
precision.

F. Time Overhead Comparison

Fig. 7 compares the training time of BNNs using various
IR drop mitigation methods. The BNN framework is imple-
mented in Torch7, and training is done using a GPU (Nvidia
GeForce GTX 1080Ti) on a system with Intel Xeon CPU
E5-2630 v4. The total training time depends on the number
of iterations and the number of epochs as well. Though the
RCN and SCN cases take longer to train, which is due to the
evaluation of an additional neural network within the BNN
training, the increased training time is justifiable, given the
significant improvement in accuracy as shown in Table IV.
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Fig. 8. Accuracy drop (pp) of retrained networks compared to retraining accuracy.

Also, compared to other IR drop estimation methods such
as SPICE simulation, the overhead of RCN and SCN is
negligible.

G. Accuracy Drop From Retraining Accuracy

The SCN and other methods we consider in this article can
be regarded as IR drop prediction methods. From that per-
spective, the retraining accuracy, which is the test accuracy
on GPU after IR drop-aware retraining, should mirror the
final, validation accuracy as closely as possible. The higher
the gap between retraining and validation accuracy is, the less
useful the retraining accuracy will be in terms of predicting
the accuracy on real ReRAM hardware.

Thus, we compare different IR drop prediction methods in
terms of retraining–validation accuracy gap for various cases.
The results are summarized in Fig. 8, where the lower the
accuracy gap is, the more accurate and reliable the method is in
predicting the effect of IR drop. The results suggest that all the
methods are quite accurate for the easiest case (64 × 64, Rw =
0.1 �), but as the cases become more challenging, NIA and
Mask quickly become highly inaccurate. Our SCN method, on
the other hand, can reduce the gap greatly compared with the
other methods, achieving near zero gap for many cases. This
result unequivocally demonstrates the superiority of the SCN
method in predicting the IR drop effect on RCAs.

H. Effect of Incremental Training

To see the effect of incremental training, we perform
identical training experiments with and without incremental
training for SVHN 128 × 128 cases that show low retraining
performance. For nonincremental training, we use the pre-
trained weight (Rw = 0) as the initial weight and perform
IR drop-aware training for a given Rw value of 1 or 2. In
the case of incremental training, the Rw = 1 case is retrained
using Rw = 0.1 training result as the initial weight, and the

TABLE VIII
SCN INCREMENTAL TRAINING/VALIDATION ACCURACY (%)

Rw = 2 case is trained using Rw = 1 training result as the
initial weight.

Table VIII compares the results with and without incre-
mental training. The table clearly shows that our incremental
training consistently outperforms nonincremental training, not
only in terms of retaining accuracy but even in terms of valida-
tion accuracy. Moreover the advantage of incremental training
is often very significant. For instance, with 8-bit weight and
Rw = 2 �, incremental training achieves more then twice the
retraining accuracy as well as over 30-pp improvement in val-
idation accuracy compared with nonincremental training. This
result demonstrates that our IR drop-aware training coupled
with incremental training can find weight parameters of a tar-
get DNN that can effectively mitigate the nonideality due to
IR drop in RCAs.

I. Effect of Device Variation

The ReRAM device’s variability could cause nonnegligi-
ble drop in the DNN accuracy [27], [28]. Hence, we evaluate
the impact of device variation under the IR drop problem.
During validation, we inject Gaussian noise on We, which we
get from crossbar simulation during the validation stage. The
noise-injected weight Wn with noise parameter ρ follows:

Wn = We + N (0, σ 2
We

) = We(1 + N (0, ρ2)) (12)

where σWe = ρ · We.
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TABLE IX
SCN VALIDATION ACCURACY DROP (PP) WITH NOISE INJECTED TO

WEIGHT VALUES (64 × 64, Rw = 1 �)

Table IX shows the accuracy drop of SCN under noise for
some cases. (See Tables V and VI for performance without
noise) To compensate the effect of noise, we fine-tune the
network with noise-injected effective weight. For ρ = 5, the
effect of noise is relatively small and almost no loss is after
retraining. For higher noise parameters the effect becomes
more significant. In SVHN ρ = 20 case, for example, it suffers
over 40 pp of accuracy drop but it is compensated around 13
pp after fine-tuning. These results show that our SCN method
can be robust to weight variation if we are aware of noise
when training.

VII. CONCLUSION

We presented a novel method to incorporate the IR
drop problem during BNN and Q NN training with a
negligible overhead. Compared to hardware methods (e.g.,
new device/selector material, error compensating circuitry),
our training method is essentially free, and applicable on
top of any hardware methods. Our experimental results
demonstrate that while the IR drop problem renders
many passive ReRAM crossbar configurations unsuitable
for DNN inference, our proposed method can extend the
range of usable configurations significantly, achieving near-
baseline level test validation accuracy with MNIST and
SVHN BNNs, and a significant boost with CIFAR10 BNN
and QNNs.

We see many paths for future work. ReRAMs have
many nonidealities including variability, stochastic noise, and
permanent faults, with some of them very damaging. Training
in the presence of unpredictable nonidealities is left for future
work.
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