
On-NAS: On-Device Neural Architecture Search on
Memory-Constrained Intelligent Embedded Systems

Bosung Kim
UNIST

(Ulsan National Institute of Science and Technology)
Ulsan, South Korea

bosung.k@unist.ac.kr

Seulki Lee
UNIST

(Ulsan National Institute of Science and Technology)
Ulsan, South Korea

seulki.lee@unist.ac.kr

ABSTRACT
We introduce On-NAS, a memory-efficient on-device neural archi-
tecture search (NAS) solution, that enables memory-constrained
embedded devices to find the best deep model architecture and
train it on the device. Based on the cell-based differentiable NAS,
it drastically curtails the massive memory requirement of archi-
tecture search, one of the major bottlenecks in realizing NAS on
embedded devices. On-NAS first pre-trains a basic architecture
block, calledmeta cell, by combining 𝑛 cells into a single condensed
cell via two-fold meta-learning, which can flexibly evolve to various
architectures, saving the device storage space 𝑛 times. Then, the
offline-learned meta cell is loaded onto the device and unfolded to
perform online on-device NAS via 1) expectation-based operation
and edge pair search, enabling memory-efficient partial architecture
search by reducing the required memory up to 𝑘 and𝑚/4 times,
respectively, given 𝑘 candidate operations and𝑚 nodes in a cell, and
2) step-by-step back-propagation that saves the memory usage of the
backward pass of the 𝑛-cell architecture up to 𝑛 times. To the best
of our knowledge, On-NAS is the first standalone NAS and training
solution fully operable on embedded devices with limited memory.
Our experiment results show that On-NAS effectively identifies
optimal architectures and trains it on the device, on par with GPU-
based NAS in both few-shot and full-task learning settings, e.g.,
even 1.3% higher accuracy on miniImageNet, while reducing the
run-time memory and storage usage up to 20x and 4x, respectively.

CCS CONCEPTS
• Computer systems organization→ Embedded software.

KEYWORDS
Mobile Computing, Neural Network, Neural Architecture Search
ACM Reference Format:
Bosung Kim and Seulki Lee. 2023. On-NAS: On-Device Neural Architecture
Search on Memory-Constrained Intelligent Embedded Systems. In ACM
Conference on Embedded Networked Sensor Systems (SenSys ’23), November
12–17, 2023, Istanbul, Turkiye. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3625687.3625814

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SenSys ’23, November 12–17, 2023, Istanbul, Turkiye
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0414-7/23/11. . . $15.00
https://doi.org/10.1145/3625687.3625814

Embedded, Mobile,
and IoT Devices

Training
Environment

(Training Data)

New Real
Environment
(Real data)

Performance
(Accuracy)

Improvement:
30% → 99%

Limited Memory
(RAM)

+

Before NAS After NASNo Cloud Server

Memory-Efficient
On-Device Neural Architecture Search

(On-NAS)

Figure 1: On-NAS enables memory-efficient neural architecture search (NAS)
on the device, which effectively tackles the dataset shift problem intrinsic in
many deep learning-based embedded, mobile, and IoT applications. It drasti-
cally curtails the huge memory (RAM) usage required by neural architecture
search, which is one of the major bottlenecks of NAS, thus allowing memory-
constrained embedded devices to update (adapt) their model architecture to
new real data accordingly in a memory-efficient manner solely on the device
without relying on external systems, e.g., cloud servers.

1 INTRODUCTION
As deep learning has made huge progress over the past decade [6,
45, 82, 87], various deep models are now actively deployed onto a
wide range of embedded and mobile devices [51, 97]. Currently, the
de facto way of bringing a deep model to those devices is to train a
small-size deep model on a GPU machine offline and then deploy it
onto the device primarily for inference tasks. However, the offline-
train-and-deploy strategy suffers from a significant problem called
dataset shift [74] that ruins the model performance, e.g., lower
prediction accuracy, caused by the disparity between the training
and real data distributions [64]. Since a real environment to which
devices are deployed is likely to be different from the pre-defined
training environment, the offline-trained deep model can hardly
make correct inferences on new real environment data unless it is
re-trained with real environment data online in a timely manner [1].
Considering that 1) most real environments keep evolving, and 2)
their data distributions change accordingly, the performance and
reliability of many deep learning applications, such as computer
vision [96], NLP [39], and reinforcement learning [34], unable to
be trained with real data, tend to deteriorate over time. Specifi-
cally, dataset shift is prevalent in embedded and mobile settings,
as those devices are highly likely to keep running into dynamic
environments and various users. Tab. 1 shows some examples of
deep model performance degradation caused by dataset shift.

https://doi.org/10.1145/3625687.3625814
https://doi.org/10.1145/3625687.3625814
https://doi.org/10.1145/3625687.3625814

SenSys ’23, November 12–17, 2023, Istanbul, Turkiye Bosung Kim and Seulki Lee

To solve the dataset shift problem, various on-device training
techniques have been proposed to adapt (update) deep models to
real environment data [30, 49, 94] in the wild. Although they have
enabled resource-efficient and lightweight deep model training on
the device, the model’s performance, adaptability, and flexibility
on new real data are still limited to some extent since they only
update the model’s weight parameters without adjusting the model
architecture to new data, as the learning effect of weight update is
significantly limited by the model architecture and capacity [17, 40].

Task (Dataset) Metric Training (ID) Real (OOD) Gap
CMNIST [46] Avg Acc (%) 87.4 17.1 70.3

CIVILCOMMENTS [43] Worst Group Acc (%) 92.2 56.0 36.2
CAMELYON17 [43] Avg Acc (%) 93.2 70.3 22.9

Table 1: Deep models trained only with the pre-defined training data
are likely to experience performance drops when encountering real
data on the field of which distribution is different from that of the
training data, i.e., in-distribution (ID) vs. out-of-distribution (OOD).
More experimental details can be found in the original references [43,
46]. The tasks above are dedicated to simulating dataset shift.

Unlike theweight-only-update training,Neural Architecture Search
(NAS) [22] finds the best-performing model architecture and weight
parameters simultaneously for target data. Since NAS optimizes not
only the weight parameters but also the model architecture, it is well
known that NAS, in general, can better adapt to new data, com-
pared to keeping the model architecture intact and only updating
the weight parameters [22]. For instance, the weight-only-update
YOLOv3 [76] and the NAS-based NAS-FPN [29] achieves an average
precision of 22.1 and 48.3 on the COCO test-dev [54], respectively,
exemplifying a huge performance gap between them. Furthermore,
in perspective of addressing temporal dataset shift with NAS, Au-
toML4ETC [63] has recently shown state-of-the-art performance
at encrypted traffic classification (ETC) tasks with NAS, showing a
substantial amount of robustness toward temporal dataset shift.

SEDONA
MileNAS

AutoFormer
CDARTS BeagleBoard

Raspberry Pi 3
Jetson Nano

Memory (GB)
0 2 4 6 8 10 12 14

Figure 2: The memory requirement of NAS (CDARTS [98], AutoFormer [12],
MileNAS [35], and SEDONA [71]) vs. the memory capacity of embedded plat-
forms (BeagleBoard [16], Raspberry Pi 3 [70], and Jetson Nano [11]).

Although NAS enables deep models to better adapt to new data
by composing the optimal network architecture for it, it comes at the
cost of computing resources, especially huge memory usage [77, 99].
As NAS typically trains multiple candidate architectures simultane-
ously in search of the best one, the required memory space easily
becomes to exceed that of the weight-only-update training that only
deals with a single fixed model. Unlike the compute-intensive pro-
cess of NAS, which has been alleviated by recent studies [10, 90, 95],
the memory bottleneck remains the biggest obstacle to the practical
implementation of NAS [95]. Considering the limited size of mem-
ory on resource-constrained embedded, mobile, and IoT devices,
realizing NAS on such devices has been regarded as a formidable
task so far despite its superior performance. Fig. 2 compares the
memory requirement of state-of-the-art NAS and the memory ca-
pacity of commercial embedded platforms, clearly showing that

existing NAS solutions can hardly run on memory-constrained
embedded devices.

In this paper, we propose On-NAS—a memory-efficient on-device
neural architecture search (NAS) which enables deep models run-
ning on a memory-constrained embedded system to adapt to new
data within the tight memory budget based on gradient-based meta-
learning [23] and differentiable architecture search [59]. It curtails
the run-time memory usage and the storage requirement of NAS
with three approaches: 1) two-fold meta-learning, 2) expectation-
based operation and edge pair search, and 3) step-by-step back-propaga-
tion. Those proposed three methods allow a deep model to best
learn new data on the device through joint optimization of the model
architecture and weight parameters, providing improved flexibility
and adaptability in data adaptation when compared to updating
only the weight parameters, as illustrated in Fig. 1. With On-NAS,
memory-constrained embedded devices become able to provide sta-
ble model performance in response to data changes (dataset shift)
on their own without a manual effort of architecture design, leading
such devices to be flexible and capable self-learning agents. To the
best of our knowledge, On-NAS is the first standalone on-device NAS
entirely run on the device without relying on external systems, unlike
existing on-device NAS [3] that offload the NAS workloads as well
as the device data to the cloud and then receive back the resulting
model architecture.

We argue that On-NAS can tackle many dataset shift problems
of intelligent embedded systems, especially for few-shot learn-
ing [67, 83], as On-NAS allows an agile architecture search with
a reasonable number of architecture search steps on the device,
enabled by the proposed meta cell pre-trained with multiple meta-
learning tasks. Besides, differential architecture search allows effi-
cient architecture adaptation by greatly reducing search time via
gradient-based optimization. Furthermore, On-NAS can also apply
to more severe dataset shift problems as future proof, including full-
task learning where an optimal model architecture is found using
the entire training dataset, which usually takes a larger number of
search steps.

On-NAS can be best utilized when an intelligent embedded sys-
tem, e.g., a robot, health care, military deployments, and infras-
tructures of rural areas, needs to adapt to the heterogeneity and/or
change of data by itself [28, 33, 52] in a situation not allowing fre-
quent deployments of newly-trained offline models as well as data
transfer, possibly due to scarce network connectivity or privacy
issues. For instance, underground power tunnels constructed 40m
deep with minimum or no connectivity should be monitored for
anomalies in power transmission lines. To monitor a wide range of
incidents, including internal subsidence cracks [33], recent studies
apply neural networks [33] for detection. Since such tunnels vary a
lot in their structures, e.g., spatial difference, colors, etc., an offline-
trained model can hardly make proper inferences on each tunnel as
expected because of the disparate data distributions of each tunnel
and their diverse deteriorations over time, e.g. aging, wear, and tear.
In this case, On-NAS would be a feasible solution, as it is capable of
adapting the model architecture and weight parameters to evolving
or unseen data of each tunnel on the device without connections.
Moreover, On-NAS leverages meta-learning, enabling itself to adapt
faster to new data, when the number of newly acquired real data

On-NAS: On-Device Neural Architecture Search on Memory-Constrained Intelligent Embedded Systems SenSys ’23, November 12–17, 2023, Istanbul, Turkiye

samples with labels are not abundant, which can be interpreted as
few-shot tasks.

We implement On-NAS on NVIDIA Jetson Nano [11] with Py-
Torch [68] and open-source it with an anonymous public git repos-
itory1, which can be easily adapted to various embedded plat-
forms. We evaluate On-NAS in two dataset shift scenarios with
NAS benchmark tasks widely used to assess the performance of
architecture search: 1) few-shot learning of miniImageNet [88] and
Omniglot [48], and 2) full-task learning of CIFAR-10 [44] and CIFAR-
100 [44]. The experiment results demonstrate that On-NAS reduces
the run-time memory and storage usage of NAS up to 20x and 4x,
respectively while successfully finding optimal architectures for
various data configurations on the device, achieving competitive
classification accuracy to existing GPU-running NAS consuming
20x more memory, e.g., 63.3% (On-NAS) vs. 62.0% (MetaNAS [23])
on 5-shot learning of miniImageNet.

2 BACKGROUND
2.1 Differentiable Architecture Search
Although neural architecture search (NAS) [19, 22, 37] can produce
optimal architectures in various domains [7, 24, 29, 38, 101], they
take a painfully long search time. For instance, a reinforcement
learning-based NAS [103] takes 2,000 GPU days for an image task,
implying they are infeasible for resource-limited embedded devices.
To address this problem, many approaches have been suggested, in-
cluding cell-based motifs [77] and differentiable architecture search
(DARTS) [59] which takes 1.5 GPU days at same task.

In On-NAS, we take the combination of the cell-based motif [69]
and differentiable architecture search (DARTS) [59] as the basic strat-
egy. It allows efficient architecture search with cell-based structure
and gradient descent with continuous relaxation [59], enabling us
to achieve both a significant reduction in search time and superior
performance, making it a practical choice for on-device NAS.

The super network of differentiable architecture search (DARTS)
is a stack of multiple cells consisting of several nodes, 𝑥 (𝑖) , in
each, where the node 𝑥 (𝑖) is the summation of outputs computed
through previous edges that take the previous nodes as input [59].
Each direct edge (𝑖, 𝑗) between two nodes 𝑥 (𝑖) and 𝑥 (𝑗) contains
a set of candidate operations 𝑜 (𝑖, 𝑗) , e.g., convolution and pooling,
to be included in the final architecture, which transforms 𝑥 (𝑖) by
applying 𝑜 (𝑖, 𝑗) as:

𝑥 (𝑗) =
∑︁
𝑖< 𝑗

𝑜 (𝑖, 𝑗) (𝑥 (𝑖)) (1)

If we let O be a set of candidate operations, where each operation
𝑜 (·) ∈ O is applied to 𝑥 (𝑖) , the problem of categorical selection of
operations is relaxed as follows:

𝑜 (𝑖, 𝑗) (𝑥) =
∑︁
𝑜∈O

exp(𝛼 (𝑖, 𝑗)𝑜)∑
𝑜 ′∈O exp(𝛼 (𝑖, 𝑗)

𝑜 ′)
𝑜 (𝑥) (2)

where the vector 𝛼 (𝑖, 𝑗) of length |O| denotes the operation mixing
weight, also called operation parameter in this paper, for a pair
of nodes (𝑖, 𝑗). Thus, the task of architecture search is reduced
to optimizing (learning) the operation parameter 𝛼 = {𝛼 (𝑖, 𝑗) }

1https://github.com/eai-lab/On-NAS

through the gradient descent [79]. From this, the final architec-
ture is fixed by selecting the most-likely operation 𝑜 (𝑖, 𝑗) from
𝑜 (𝑖, 𝑗)=argmax𝑜∈O𝑎

(𝑖, 𝑗)
𝑜 , as shown in Fig. 3.

Node 0

Node 1
Node 2

Node 3

Cell 1

Cell nα
αα

Operation
parameter(α)

α

Edge pair
parameter(β)

Operation
with largest α

(a) Before search (b) After search (c) n-Cell architecture

C
o
nv

 N
xN

Po
o
lin

g
C
o
nv

 M
xM Edge pair

with largest β

Node 0

Node 1

Node 2

Node 3

Node 0

Node 1

Node 2

Node 3

Node 0

Node 1
Node 2

Node 3

Node 0
Node 1

Node 2

Node 3

Cell 2Node 0

Node 1
Node 2

Node 3

Figure 3: In differentiable architecture search (DARTS [59]), candidate op-
erations, e.g., convolution and pooling, are deployed on edges in a repeated
motif named "cell". The operation parameter 𝛼 and the edge pair parameter
𝛽 assigned to each operation and edge pair, respectively, are learned via the
gradient descent to determine which operations and edge pairs to be included
in the final architecture. (a) before optimizing (learning) 𝛼 and 𝛽 , (b) the final
architecture after optimizing 𝛼 and 𝛽 , and (c) the cell-based architecture con-
sisting of a stack of 𝑛 cells as the basic building block. Figures are from [59].

Similar to the operation parameter 𝛼 , another parameter 𝛽 for
each possible pair of𝑚 input nodes in a cell, called edge pair param-
eter, is introduced [23] to sparsify the combination of nodes used as
inputs to the next node. Hence, by learning the edge pair parameter
𝛽 along with 𝛼 , optimal model architectures can be found after
the discretization of architecture by gradually optimizing them
simultaneously.

In sum, the task of differentiable architecture search is reduced
to find optimal 𝛼 and 𝛽 along with the weight parameter, denoted
as𝑤 , where a designated number of operations with higher 𝛼 and
edge pairs with higher 𝛽 survive in the final architecture among
vast search space, whereas the other remaining operations and edge
pairs with lower 𝛼 and 𝛽 are pruned away.

2.2 Meta-Learning Architecture Search
Recently, the concept of meta-learning-applied architecture search
[20, 23, 41] has been introduced to expand the advantage of meta-
learning [65, 75], i.e., finding the best initial weight parameter set
that can readily adapt to new datasets, to the domain of neural archi-
tecture search, i.e., finding the best initial architecture for faster and
better model architecture adaptation. For instance, MetaNAS [23]
optimizes the initial operation parameter 𝛼 and edge pair param-
eter 𝛽 from multiple tasks (datasets) using the gradient descent,
along with the initial weight parameter 𝑤 , prior to adapting to
new data. As meta-learning-applied architecture search utilizes the
gradient-based optimization similar to differentiable architecture
search (DARTS), the idea of connecting them naturally becomes to
work through the computational graphs. Therefore, a meta-learned
architecture becomes more flexible to new situations with scarce
or expensive data, making it a suitable pre-training strategy prior
to on-device NAS.

In On-NAS, we utilize MetaNAS [23] and Reptile [66] for meta-
learning-applied initial architecture setup (𝛼 , 𝛽 , and𝑤) as the pre-
liminary step of on-device architecture search, considering its low
computation complexity and simplicity.

https://github.com/eai-lab/On-NAS

SenSys ’23, November 12–17, 2023, Istanbul, Turkiye Bosung Kim and Seulki Lee

Figure 4: The overview of On-NAS: On-NAS first performs offline two-fold meta-learning over two axes, i.e., meta-task (dataset) learning and meta-cell learning, to
pre-train a single meta cell, which combines 𝑛 cells into one, saving the device storage usage 𝑛 times. Next, given a real new dataset to adapt, a memory-efficient
on-device architecture search is executed online by unfolding the meta cell and letting it evolve accordingly via the expectation-based operation (𝛼) and edge pair
(𝛽) search over 𝑘 candidate operations and𝑚 nodes in a cell, respectively, with step-by-step back-propagation, which collectively reduces the run-time memory
requirement of architecture search up to 𝑘 ·𝑚/4 · 𝑛 times.

2.3 Memory Burden of Architecture Search
Unfortunately, neural architecture search is considered one of the
most resource-demanding as well as time-consuming tasks [61],
as the search process usually entails multiple model training and
validation sub-processes. Although differential architecture search
(DARTS) [59] greatly reduces search time as described above, it
suffers from a huge memory burden. The primary reason comes
from that it needs to save intermediate outputs of all candidate
operations [9], also known as activation [30, 99, 102], used to learn
the operation parameter 𝛼 in Eq. (2), edge pair parameter 𝛽 , and the
model weight parameter𝑤 through the back-propagation [20, 23].

For example, the super network [59, 100] composed for CIFAR-
10 [44] is a stack of 8 cells, where each of the cells consists of 7
nodes, which makes 27 edges including 8 candidate operations
each [59]. As a result, a total of 1, 728 = 8 × 27 × 8 outputs (tensors)
should be saved in memory at run-time. Even worse, it is amplified
proportionally to the mini-batch size used in the back-propagation,
e.g., 55, 296 = 1, 728 × 32 tensors to be saved when the batch size
is 32, which is 11 times larger than ResNet-152 [36] that requires
saving roughly 4, 864 = 152 × 32 tensors in memory for its training.

2.4 Search Space for Few-Shot Tasks
It is known that the performance of neural architecture search
(NAS) significantly depends on the designated search space. Main-
taining a balance between the search time and the optimal model
architecture’s performance necessitates careful consideration of the
search space. To elaborate, a broader range of candidate operations
and complex target architectures increases the likelihood of finding
the optimal design. However, this approach inevitably requires a
painfully-long search time, making such NAS algorithms practi-
cally unfeasible. In this paper, we leverage the well-established
modular search space of MetaNAS [23], widely regarded as a suit-
able NAS technique for few-shot tasks, as shown by multiple prior
works [20, 23, 57]. Few-shot tasks can be interpreted as an adap-
tation toward dataset with different distributions, aligning with
numerous prior works to mitigate dataset shift through few-shot
learning [60, 89, 91], which results in notable performance in few-
shot classification tasks. We assume that the suggested search space
of MetaNAS [23] would be suitable for our specific circumstances.

3 OVERVIEW
Fig. 4 depicts the overview of On-NAS, taking two steps: 1) offline
two-fold meta-learning and 2) online on-device architecture search.

3.1 Two-Fold Meta-Learning
Two-Fold Meta-Learning. The first step of On-NAS is to pre-train
a single meta cell offline via two-fold meta-learning that performs
meta-learning over two axes: 1) meta-task learning and 2) meta-
cell learning, as shown in the left side of Fig. 4. Unlike existing
meta-learning NAS [23] that performs only meta-task learning
over multiple tasks to boost the adaptability to new data, On-NAS
additionally performs meta-cell learning over 𝑛 cells and combines
them into a single meta cell such that it readily evolves to any
necessary optimal cell architecture accordingly during on-device
architecture search. By having only one meta cell, not 𝑛 cells, the
device storage requirement reduces to 𝑛 times, where 𝑛 denotes the
total number of cells in the model architecture, enabling it to fit the
limited storage of the embedded device. To generate a meta cell that
can effectively evolve to necessary architectures while folding it
into a single cell conveying only 1/𝑛 information, On-NAS applies
the task coefficients and cell coefficients to the meta-task and meta-
cell learning, respectively. The offline-learned meta-cell is loaded
onto the device and used as a starting backbone cell.

3.2 On-Device Architecture Search
The second step of On-NAS is to perform an online on-device
architecture search from the pre-trained meta cell for real new data.
It first unfolds the meta cell into 𝑛 cells to construct the initial
architecture and applies three memory-saving search algorithms:
1) expectation-based operation search, 2) expectation-based edge pair
search, and 3) step-by-step back-propagation, as shown on the right
side of Fig. 4.
Expectation-based Operation Search. In the cell-based architec-
ture search [69], an edge connects two nodes (Eq. (1)) through 𝑘

candidate operations. To determine which of them to be included in
the final architecture, the relative probability [59] of each operation,
represented by the operation parameter 𝛼 in Eq. (2), is computed
using differentiation. As 𝛼 parameters of all operations are com-
puted at the same time, it becomes to consume a large amount of
memory. To reduce memory usage, On-NAS updates 𝛼 parameters

On-NAS: On-Device Neural Architecture Search on Memory-Constrained Intelligent Embedded Systems SenSys ’23, November 12–17, 2023, Istanbul, Turkiye

only for a selected subset of operations at a time based on their
expected value at the final search step obtained by estimating the
gradients of remaining future search steps. It saves the run-time
peak memory up to 𝑘 times when a single operation is selected to be
updated while allowing for optimal operation selection comparable
to updating all 𝛼 simultaneously.
Expectation-based Edge Pair Search. Among a set of possible
edges that connect𝑚 nodes in a cell, On-NAS includes a pair of
edges for each node as the final architecture [23], where each possi-
ble edge pair is weighted by the edge pair parameter 𝛽 , representing
the relative probability of each edge pair in architecture search. The
edge pair parameter 𝛽 works similarly to 𝛼 for candidate operations,
determining which edge pair will be included in the final architec-
ture. To decrease the memory usage of edge pair search, On-NAS
selects a subset of edge pairs and only updates the selected subset of
𝛽 at a time based on their expectation computation similar to that
of 𝛼 . It allows finding the best edge pairs of the final architecture
using up to𝑚/4 times less memory.
Step-By-Step Back-Propagation. Finding an optimal architec-
ture (𝛼 and 𝛽) along with the weight parameter (𝑤) entails the
back-propagation [93] computation. Since it requires saving the
intermediate output (activation) of each layer in memory [95], the
amount of memory needed for it easily becomes to exceed the
limited capacity of embedded devices. To tackle this problem, On-
NAS performs back-propagation for each cell separately one by
one, starting from the last cell to the first one by maintaining the
intermediate gradient required to calculate the chain of gradients
between the cells and reusing the same memory space repeatedly
in a similar manner to the re-materialization [31] and gradient
check-pointing [13, 32]. Based on the repeated cell-based architec-
ture, On-NAS first analyzes the entangled connections and then
determines which gradients should be saved in memory in the
computational graph of the back-propagation. By executing the
back-propagation of each cell one at a time and reclaiming the mem-
ory space, the memory usage of a 𝑛-cell architecture is reduced up
to 1/𝑛 while producing the exactly same back-propagation result.

4 TWO-FOLD META-LEARNING
As the preliminary step of On-NAS, the meta cell is pre-trained
offline via two-fold meta-learning performed over two axes, i.e., 1)
meta-task learning and 2) meta-cell learning. The two-fold meta-
learning incorporates 𝑛 cells into a single meta cell based on the
task and cell coefficients that we propose to take into account the
relative importance of each task and cell during the meta-learning
for performance improvement and architecture search acceleration.
Fig. 5 depicts the procedure of two-fold meta-learning for a single
meta-epoch.
4.1 Task and Cell Coefficients
To generate a single meta cell that can readily adapt to new datasets,
we apply the task and cell coefficients when aggregating the opera-
tion (𝛼), edge pair (𝛽), and weight (𝑤) parameters of multiple tasks
and cells during the two-fold meta-learning. By utilizing those two
independent coefficients over two axes, it can learn more important
tasks and cells with higher weights (coefficients) than less signifi-
cant ones, which is crucial to attaining optimal initial architecture.
Task Coefficients. To represent the relative significance of the
optimized model architecture for a task, we assume that a certain

Unfold

Meta Model Architecture
Task-Learned

Model Architectures

Task
Learning

Meta-Task Learning

Learned Meta Cell
Architecture

Meta-Cell Learning

Initial Meta Cell Architecture

Meta-Learned Model Architecture

Fold

Figure 5: The illustration of two-fold meta-learning for a single meta-epoch:
1) the initial meta cell is unfolded to the 𝑛-cell meta architecture, 2) the meta
architecture is updated with multiple task architectures (meta-task learning),
and 3) the learned meta architecture is folded back to the single meta cell
(meta-cell learning).

task is more crucial for finding the optimal initial architecture state
than other tasks if it requires a longer Euclidean distance to get
optimized. We define this distance representing the optimization
strength of a task as the task coefficient and apply it to meta-task
learning. The task coefficients promote the direction of parameter
updates closer to more important tasks, yet further from the updates
invoked by relatively less important tasks. Hence, they are expected
to increase the performance of meta-learning-applied architecture
search by reflecting the importance of each task accordingly while
accelerating architecture search, unlike existing works [20, 23] that
do not apply such coefficients.

Let 𝛼𝑚𝑒𝑡𝑎 , 𝛽𝑚𝑒𝑡𝑎 , and 𝑤𝑚𝑒𝑡𝑎 be the meta operation, edge pair,
and weight parameter, respectively, which we want to find through
meta-task learning. Then, for the 𝑖-th task 𝑇𝑖 among a total of 𝑑
tasks to be meta-learned, its task operation, edge pair, and weight
parameters, denoted as 𝛼𝑇𝑖 , 𝛽𝑇𝑖 , and 𝑤𝑇𝑖 , respectively, and their
task gradients over 𝑠 search steps, denoted as G𝛼

𝑇𝑖
, G𝛽

𝑇𝑖
, and G𝑤

𝑇𝑖
,

respectively, are defined as:

𝛼𝑇𝑖=𝛼𝑚𝑒𝑡𝑎−𝜆𝛼
𝑠∑︁
𝑗=1

𝜕L𝑇𝑖,𝑗
𝜕𝛼𝑇𝑖

, G𝛼
𝑇𝑖
≜𝜆𝛼

𝑠∑︁
𝑗=1

𝜕L𝑇𝑖,𝑗
𝜕𝛼𝑇𝑖

=𝛼𝑚𝑒𝑡𝑎−𝛼𝑇𝑖

𝛽𝑇𝑖=𝛽𝑚𝑒𝑡𝑎−𝜆𝛽
𝑠∑︁
𝑗=1

𝜕L𝑇𝑖,𝑗
𝜕𝛽𝑇𝑖

, G𝛽
𝑇𝑖
≜𝜆𝛽

𝑠∑︁
𝑗=1

𝜕L𝑇𝑖,𝑗
𝜕𝛽𝑇𝑖

=𝛽𝑚𝑒𝑡𝑎−𝛽𝑇𝑖

𝑤𝑇𝑖=𝑤𝑚𝑒𝑡𝑎−𝜆𝑤
𝑠∑︁
𝑗=1

𝜕L𝑇𝑖,𝑗
𝜕𝑤𝑇𝑖

, G𝛽𝑤𝑖
≜𝜆𝑤

𝑠∑︁
𝑗=1

𝜕L𝑇𝑖,𝑗
𝜕𝑤𝑇𝑖

=𝑤𝑚𝑒𝑡𝑎−𝑤𝑇𝑖

(3)

where 𝜆𝛼 , 𝜆𝛽 , and 𝜆𝑤 is the learning rate of 𝛼𝑇𝑖 , 𝛽𝑇𝑖 , and 𝑤𝑇𝑖 , re-
spectively, and L𝑇𝑖,𝑗 is the loss of 𝑇𝑖 at the 𝑗-th step.

As shown on the right part in Eq. (3), the gradients of the 𝑖-
th task 𝑇𝑖 , i.e., {G𝛼𝑇𝑖 ,G

𝛽

𝑇𝑖
,G𝑤

𝑇𝑖
}, are efficiently computed by taking

the distances between the meta parameters and the task param-
eters [66], i.e., {𝛼, 𝛽,𝑤}𝑚𝑒𝑡𝑎 − {𝛼, 𝛽,𝑤}𝑇𝑖 . The distances between
them represent the optimization strength of the 𝑖-th task 𝑇𝑖 over
the axes of {𝛼, 𝛽,𝑤}, which is equivalent to the summation of the
task gradients over 𝑠 steps [66].

SenSys ’23, November 12–17, 2023, Istanbul, Turkiye Bosung Kim and Seulki Lee

By normalizing the task gradients, {G𝛼
𝑇𝑖
,G𝛽

𝑇𝑖
,G𝑤

𝑇𝑖
} in Eq. (3), with

the softmax operation [4], the task coefficients of {𝛼, 𝛽,𝑤}𝑇𝑖 , de-
noted as {T𝛼

𝑇𝑖
,T 𝛽

𝑇𝑖
,T𝑤

𝑇𝑖
}, are obtained as follows.

T𝛼
𝑇𝑖
,T 𝛽

𝑇𝑖
,T𝑤

𝑇𝑖
=

exp(G𝛼
𝑇𝑖
)∑𝑑

𝑗=1 exp(G𝛼
𝑇𝑗
)
,

exp(G𝛽
𝑇𝑖
)∑𝑑

𝑗=1 exp(G𝛽
𝑇𝑗
)
,

exp(G𝑤
𝑇𝑖
)∑𝑑

𝑗=1 exp(G𝑤
𝑇𝑗
)
(4)

The task coefficients, {T𝛼
𝑇𝑖
,T 𝛽

𝑇𝑖
,T𝑤

𝑇𝑖
} in Eq. (4), are used as the

relative importance weight of 𝑇𝑖 during two-fold meta-learning,
along with the cell coefficients described below.
Cell Coefficients. In a similar way to computing the task coef-
ficients, the cell coefficients among multiple cells can be derived
for meta-cell learning. By considering cells at different locations
in a 𝑛-cell architecture as different tasks that the cells have to be
optimized, it becomes possible to calculate the relative coefficients
among them.

We define the cell coefficients, {C𝛼𝑐𝑙 , C
𝛽
𝑐𝑙
, C𝑤𝑐𝑙 }, of the 𝑙-th cell 𝑐𝑙

as the softmax normalization of the cell gradients, {G𝛼𝑐𝑙 ,G
𝛽
𝑐𝑙
,G𝑤𝑐𝑙 },

similar to Eq. (4), which is given by:

C𝛼𝑐𝑙 , C
𝛽
𝑐𝑙
, C𝑤𝑐𝑙 =

exp(G𝛼𝑐𝑙)∑𝑛
𝑗=1 exp(G𝛼𝑐 𝑗)

,
exp(G𝛽𝑐𝑙)∑𝑛
𝑗=1 exp(G𝛽𝑐 𝑗)

,
exp(G𝑤𝑐𝑙)∑𝑛
𝑗=1 exp(G𝑤𝑐 𝑗)

(5)

Here, the cell gradients, {G𝛼𝑐𝑙 ,G
𝛽
𝑐𝑙
,G𝑤𝑐𝑙 }, are the gradients with re-

spect to the cell operation, edge pair, and weight parameter of the
𝑙-th cell 𝑐𝑙 over 𝑠 search steps, denoted as {𝛼𝑐𝑙 , 𝛽𝑐𝑙 ,𝑤𝑐𝑙 }, computed
with the distances from the meta parameters, i.e., {𝛼, 𝛽,𝑤}𝑚𝑒𝑡𝑎 −
{𝛼, 𝛽,𝑤}𝑐𝑙 , similarly in Eq. (3).

The cell coefficients, {C𝛼𝑐𝑙 , C
𝛽
𝑐𝑙
, C𝑤𝑐𝑙 } in Eq. (5), strengthen the

update of the cell that has been optimized far from the initial meta
cell, with respect to the proportion of updates among the cells. By
applying the cell coefficients that weigh the operation, edge pair,
and weight parameters among the repeated cells, multiple cells
are accelerated to converge into a single meta cell during two-fold
meta-learning.

4.2 Two-fold Meta-Learning
By using the task and cell coefficients, two-fold meta-learning is
performed to generate a single meta cell defined by the meta-cell
operation, edge pair, and weight parameter, denoted as 𝛼𝑚𝑒𝑡𝑎−𝑐𝑒𝑙𝑙 ,
𝛽𝑚𝑒𝑡𝑎−𝑐𝑒𝑙𝑙 , and 𝑤𝑚𝑒𝑡𝑎−𝑐𝑒𝑙𝑙 , respectively, or {𝛼, 𝛽,𝑤}𝑚𝑒𝑡𝑎−𝑐𝑒𝑙𝑙 in
short. Algorithm 1 summarizes the entire procedure of two-fold
meta-learning.

It first constructs a𝑛-cell meta architecture and theweight param-
eter, denoted as {𝛼, 𝛽,𝑤}𝑚𝑒𝑡𝑎 , by stacking (unfolding) a pre-defined
initial meta cell, {𝛼, 𝛽,𝑤}𝑚𝑒𝑡𝑎−𝑐𝑒𝑙𝑙 , 𝑛 times. Next, for each task 𝑇𝑖 ,
the task architecture and weight parameters of 𝑇𝑖 , i.e., {𝛼, 𝛽,𝑤}𝑇𝑖 ,
are composed (copied) from the meta architecture, {𝛼, 𝛽,𝑤}𝑚𝑒𝑡𝑎 ,
and updated to minimize the task loss L𝑇𝑖,𝑗 over 1 ≤ 𝑗 ≤ 𝑠 steps
via the gradient descent. After 𝑇𝑖 has been optimized during the
meta-task learning, the task coefficients for 𝑇𝑖 , i.e., {T𝛼

𝑇𝑖
,T 𝛽

𝑇𝑖
,T𝑤

𝑇𝑖
},

are computed as described in Eq. (4). Once finishing the meta-task
learning, it proceeds to update the 𝑛-cell meta architecture and
weight parameter, {𝛼, 𝛽,𝑤}𝑚𝑒𝑡𝑎 , by summing up all the optimized
task architectures and weight parameters, {𝛼, 𝛽,𝑤}𝑇𝑖 , based on
the distance between the meta architecture and each task archi-
tecture [66], {𝛼, 𝛽,𝑤}𝑚𝑒𝑡𝑎 − {𝛼, 𝛽,𝑤}𝑇𝑖 , as in Eq. (3), where each

Algorithm 1 Two-Fold Meta-Learning
Input :Distribution over tasks 𝑃 (𝑇)

Task learning rate 𝜆𝛼 , 𝜆𝛽 , 𝜆𝑤
Meta learning rate 𝜉𝛼 , 𝜉𝛽 , 𝜉𝑤
Meta-cell learning rate 𝛿𝛼 , 𝛿𝛽 , 𝛿𝑤

Result :Meta cell {𝛼, 𝛽, 𝑤}𝑚𝑒𝑡𝑎−𝑐𝑒𝑙𝑙
while not converged do
{𝛼, 𝛽, 𝑤}𝑚𝑒𝑡𝑎 ←− stack({𝛼, 𝛽, 𝑤}𝑚𝑒𝑡𝑎−𝑐𝑒𝑙𝑙)
Sample tasks𝑇1 . . .𝑇𝑑 from 𝑃 (𝑇)
for all𝑇𝑖 do

𝛼𝑇𝑖 , 𝛽𝑇𝑖 , 𝑤𝑇𝑖 ←− 𝛼𝑚𝑒𝑡𝑎, 𝛽𝑚𝑒𝑡𝑎, 𝑤𝑚𝑒𝑡𝑎

for 𝑗 ←− 1, ..., 𝑠 do
𝛼𝑇𝑖 ←− 𝛼𝑇𝑖 − 𝜆𝛼∇𝛼L𝑇𝑖,𝑗 (𝛼𝑇𝑖 , 𝛽𝑇𝑖 , 𝑤𝑇𝑖)
𝛽𝑇𝑖 ←− 𝛽𝑇𝑖 − 𝜆𝛽∇𝛽L𝑇𝑖,𝑗 (𝛼𝑇𝑖 , 𝛽𝑇𝑖 , 𝑤𝑇𝑖)
𝑤𝑇𝑖 ←− 𝑤𝑇𝑖 − 𝜆𝑤∇𝑤L𝑇𝑖,𝑗 (𝛼𝑇𝑖 , 𝛽𝑇𝑖 , 𝑤𝑇𝑖)

end
end
Compute {T𝛼

𝑇𝑖
, T𝛽

𝑇𝑖
, T𝑤

𝑇𝑖
} of𝑇𝑖 in Eq. (4)

𝛼𝑚𝑒𝑡𝑎 ←− 𝛼𝑚𝑒𝑡𝑎 − 𝜉𝛼
∑
𝑇𝑖
T𝛼
𝑇𝑖
(𝛼𝑚𝑒𝑡𝑎 − 𝛼𝑇𝑖) in Eq. (3)

𝛽𝑚𝑒𝑡𝑎 ←− 𝛽𝑚𝑒𝑡𝑎 − 𝜉𝛽
∑
𝑇𝑖
T𝛽

𝑇𝑖
(𝛽𝑚𝑒𝑡𝑎 − 𝛽𝑇𝑖) in Eq. (3)

𝑤𝑚𝑒𝑡𝑎 ←− 𝑤𝑚𝑒𝑡𝑎 − 𝜉𝑤
∑
𝑇𝑖
T𝑤
𝑇𝑖
(𝑤𝑚𝑒𝑡𝑎 − 𝑤𝑇𝑖) in Eq. (3)

Compute {C 𝑎𝑙𝑝ℎ𝑎
𝑐𝑙

, C𝛽𝑐𝑙 , C
𝑤
𝑐𝑙
} of 𝑐𝑙 for all 1 ≤ 𝑙 ≤ 𝑛 in Eq. (5)

𝛼𝑚𝑒𝑡𝑎−𝑐𝑒𝑙𝑙 ←− 𝛼𝑚𝑒𝑡𝑎−𝑐𝑒𝑙𝑙 − 𝛿𝛼
∑
𝑐𝑙
C𝛼𝑐𝑙 (𝛼𝑚𝑒𝑡𝑎−𝑐𝑒𝑙𝑙 − 𝛼𝑚𝑒𝑡𝑎𝑐𝑙

)
𝛽𝑚𝑒𝑡𝑎−𝑐𝑒𝑙𝑙 ←− 𝛽𝑚𝑒𝑡𝑎−𝑐𝑒𝑙𝑙 − 𝛿𝛽

∑
𝑐𝑙
C𝛽𝑐𝑙 (𝛽𝑚𝑒𝑡𝑎−𝑐𝑒𝑙𝑙 − 𝛽𝑚𝑒𝑡𝑎𝑐𝑙

)
𝑤𝑚𝑒𝑡𝑎−𝑐𝑒𝑙𝑙 ←− 𝑤𝑚𝑒𝑡𝑎−𝑐𝑒𝑙𝑙 − 𝛿𝑤

∑
𝑐𝑙
C𝑤𝑐𝑙 (𝑤𝑚𝑒𝑡𝑎−𝑐𝑒𝑙𝑙 − 𝑤𝑚𝑒𝑡𝑎𝑐𝑙

)
end

task is weighted by the task coefficients, {T𝛼
𝑇𝑖
,T 𝛽

𝑇𝑖
,T𝑤

𝑇𝑖
}. After that,

the cell coefficients for all 1 ≤ 𝑙 ≤ 𝑛 cells, i.e., {C𝛼𝑐𝑙 , C
𝛽
𝑐𝑙
, C𝑤𝑐𝑙 }, are

computed as described in Eq. (5). Finally, the 𝑛-cell meta architec-
ture {𝛼, 𝛽,𝑤}𝑚𝑒𝑡𝑎 is compressed (folded) back into a single meta
cell as {𝛼, 𝛽,𝑤}𝑚𝑒𝑡𝑎−𝑐𝑒𝑙𝑙 through meta-cell learning by taking the
distances between the meta cell and each cell of the meta architec-
ture, i.e., {𝛼, 𝛽,𝑤}𝑚𝑒𝑡𝑎−𝑐𝑒𝑙𝑙 − {𝛼, 𝛽,𝑤}𝑚𝑒𝑡𝑎𝑐𝑙

, where each cell 𝑐𝑙 is
weighted by the cell coefficients, {C𝛼𝑐𝑙 , C

𝛽
𝑐𝑙
, C𝑤𝑐𝑙 }.

5 ON-DEVICE ARCHITECTURE SEARCH
The offline-learned meta cell is loaded onto the device and un-
folded to construct the initial 𝑛-cell architecture. Then, a memory-
efficient online on-device architecture search is performed for a
target dataset through the expectation-based operation and edge pair
search, and step-by-step back-propagation.

5.1 Expectation-based Architecture Search
Expectation-based Search.While differentiable architecture search
[53, 59, 81, 100] achieves a search time reduction compared to the
alternative methods [22], it still requires an excessive amount of
memory. Since it utilizes the mixture of 𝑘 candidate operations, e.g.,
convolution, pooling, etc., for every single edge in a cell, which is
called MixedOp [59], weighted by the operation parameter 𝛼 , inter-
mediate outputs of all 𝑘 operations should be stored in memory for
the back-propagation, invoking the high memory consumption.

To enable memory-efficient differentiable architecture search,
we propose the expectation-based operation search, which curtails
the memory usage of 𝑘 candidate operations by partially updating
the selected subset of them. For each search step, it updates only

On-NAS: On-Device Neural Architecture Search on Memory-Constrained Intelligent Embedded Systems SenSys ’23, November 12–17, 2023, Istanbul, Turkiye

the selected 𝑞 operations, where 𝑞<𝑘 , based on the expected value
of the operation parameter 𝛼 at the final search step 𝑓 , which is
denoted as 𝛼 𝑓 , estimated from the recent trend of gradients over
the last 𝑡 search steps.

At the 𝑗-th search step for 𝑗<𝑓 , where 𝑓 is the final search step,
the operation parameter 𝛼 at the final search step 𝑓 , 𝛼 𝑓 , is computed
by the gradient descent given the loss L as:

𝛼 𝑓 =𝛼 𝑓 −1−𝜆𝛼
𝜕L𝑓 −1
𝜕𝛼

=𝛼 𝑗−𝜆𝛼
(𝜕L 𝑗

𝜕𝛼
+· · ·+

𝜕L𝑓 −2
𝜕𝛼
+
𝜕L𝑓 −1
𝜕𝛼

)
=𝛼 𝑗−𝜆𝛼

𝑓 −1∑︁
𝑖=𝑗

𝜕L𝑖
𝜕𝛼

(6)

By assuming the gradient 𝜕L𝑖

𝜕𝛼 converges to some constant 𝑐 (nearly
zero) for all 𝑖 ≤ 𝑓 as 𝑓 approaches to∞, the expected value of 𝛼 𝑓
in Eq. (6), which is denoted as E[𝛼 𝑓], can be estimated from the
gradients over the last 𝑡 search steps as:

E[𝛼 𝑓] = E
[
𝛼 𝑗 − 𝜆𝛼

𝑓 −1∑︁
𝑖=𝑗

𝜕L𝑖
𝜕𝛼

]
≃ 𝛼 𝑗 − 𝜆𝛼

𝑓 − 𝑗

𝑡

𝑗∑︁
𝑖=𝑗−(𝑡−1)

𝜕L𝑖
𝜕𝛼

(7)

from that E
[∑𝑓 −1

𝑖=𝑗
𝜕L𝑖

𝜕𝛼

]
≃ 𝑓 − 𝑗

𝑡

∑𝑗

𝑖=𝑗−(𝑡−1)
𝜕L𝑖

𝜕𝛼 if 𝜕L𝑖

𝜕𝛼 →𝑐 . Even if
𝜕L𝑖

𝜕𝛼 does not converge to a constant 𝑐 , the summation of the gra-
dients over the last 𝑡 steps is expected to help anticipate 𝛼 𝑓 by
providing the recent trajectory in the parameter space, similarly
working as the momentum factor [72].

Based on E[𝛼 𝑓], which can be estimated at an arbitrary search
step 𝑗 as in Eq. (7), we select 𝑞 operations having the highest E[𝛼 𝑓]
as a subset of 𝑘 candidate operations in an edge and only update
their 𝛼 parameters for each search step, whereas those of non-
selected operations are not updated.

While fully utilizing the forward execution of the entire architec-
ture with all 𝑘 operations, which allows for deriving stable model
outputs, we store only the intermediate outputs of selected 𝑞 opera-
tions in memory and discard those of the remaining 𝑘−𝑞 operations,
as the latter is not involved in the back-propagation computation.
From this, maximum 𝑘 times of memory can be saved when only
one operation is selected for update, i.e., 𝑞 = 1. By sampling a subset
of operations based on E[𝛼 𝑓] and only storing their intermediate
outputs in memory, the partial update of MixedOp becomes possi-
ble without significant performance degradation of the architecture
search, reducing both the memory usage and computation time
required by the back-propagation.
Exploration vs. Exploitation. Although the expected value of the
final operation parameter 𝛼 , i.e., E[𝛼 𝑓], can be effectively estimated,
it might keep updating a similar subset of operations repeatedly,
while the rest remains not selected for update, due to some potential
induced bias of E[𝛼 𝑓].

To tackle this problem, we incorporate the concept of exploration
and exploitation [15] into the expectation-based operation search,
which randomly samples 𝑞 operations without considering E[𝛼 𝑓]
with the probability 𝑝 , or alternatively, selects 𝑞 operations based
on E[𝛼 𝑓] with the probability 1 − 𝑝 for each search step. Namely,
the former explores new operations that may have lower E[𝛼 𝑓] at
the moment by updating their 𝛼 , while the latter exploits E[𝛼 𝑓],
that reflects the trend of gradients known so far, to focus on the

well-founded operations that are likely to be included in the final
architecture.

Thus, with the exploration and exploitation being applied, a set
of 𝑞 operations O𝑞 to be updated for each search step is composed
from a set of all 𝑘 candidate operations, O𝑘 , as:

O𝑞=
{
{𝑜1, . . ., 𝑜𝑞}⊆𝑅O𝑘 if 𝐵=1
{𝑜1, . . ., 𝑜𝑞}⊆O𝑘 s.t. E[𝛼𝑜𝑢

𝑓
]≥E[𝛼𝑜𝑣

𝑓
] for 𝑢≤𝑞<𝑣 if 𝐵=0 (8)

where ⊆𝑅 denotes the random subset relation, E[𝛼𝑜𝑢
𝑓
] and E[𝛼𝑜𝑣

𝑓
]

is the expected value of 𝛼 at the final search step 𝑓 for operation 𝑜𝑢
and 𝑜𝑣 , respectively, and 𝐵 is a random variable from the Bernoulli
distribution [86] as 𝐵∼𝐵𝑒𝑟𝑛(𝑝) taking the value 1 with probability
𝑝 , and 0 with probability 1 − 𝑝 .
Expectation-based Edge Pair Search. Given a set of edges con-
necting𝑚 nodes in a cell, where each edge contains 𝑘 candidate
operations on it, as shown in Fig. 3, we compose a set of possible
pairwise edges and select a subset of them to be included in the final
architecture. We apply the concept of pairwise edges to On-NAS
as they are known to enhance the efficiency of architecture search
and accelerate the optimization process [23]. To determine which
edge pairs to be included in the final architecture, the edge pair
parameter 𝛽 is assigned to each possible pair of edges and updated
over search steps in a similar way to the operation parameter 𝛼 .
Then, at the final search step 𝑓 , a designated number of edge pairs
with the highest 𝛽 are chosen as the final architecture.

To enable memory-efficient edge pair search by enabling a partial
update of the edge pair parameter 𝛽 , we propose the expectation-
based edge pair search, with which the expected value of 𝛽 at the
final search step 𝑓 , denoted as E[𝛽𝑓], is estimated similarly to the
expected value of the operation parameter 𝛼 , i.e., E[𝛼 𝑓] in Eq. (7).
Based on the expected value of 𝛽 at the final step 𝑓 , i.e., E[𝛽𝑓], a set
of 𝑔 edge pairs E𝑔 to be updated for each search step is composed
from a set of all possible ℎ edge pairs, Eℎ , where 𝑔 < ℎ, as:

E𝑔=
{
{𝑒1, . . ., 𝑒𝑔}⊆𝑅Eℎ if 𝐵=1
{𝑒1, . . ., 𝑒𝑔}⊆Eℎ s.t. E[𝛽𝑒𝑢

𝑓
]≥E[𝛽𝑒𝑣

𝑓
] for 𝑢≤𝑔<𝑣 if 𝐵=0 (9)

where E[𝛽𝑒𝑢
𝑓
] and E[𝛽𝑒𝑣

𝑓
] is the expected value of 𝛽 at the final

search step 𝑓 for edge 𝑒𝑢 and 𝑒𝑣 , respectively.
As the intermediate outputs of non-selected edge pairs are not

stored in memory, further memory reduction is achieved on top
of the expectation-based operation search. If only a single pair of
edges is chosen to be updated for each node in a cell consisting
of𝑚 nodes, i.e., 𝑔=2(𝑚−1) and ℎ=𝑚(𝑚−1)/2, at most𝑚/4 times
of memory can be reduced. Combined together, the expectation-
based operation and edge pair search reduce the memory usage
of architecture search up to 𝑘 · 𝑚/4 times without a significant
performance drop.

5.2 Step-By-Step Back-Propagation
To further reduce the memory consumption of on-device architec-
ture search, we propose the step-by-step back-propagation, which
optimizes the architecture andweight parameters (𝛼 , 𝛽 , and𝑤) of an
individual cell discontinuously from each other with a reasonable
cost of time by progressively storing the intermediate cell gradi-
ents in the computational chain, as a variant of re-materialization
(gradient check-pointing) [31].

SenSys ’23, November 12–17, 2023, Istanbul, Turkiye Bosung Kim and Seulki Lee

Cell 1

Cell 3

Cell 2

Cell 4

Cell 1

Cell 2

Cell 3

Cell 2

Cell 1Cell 1

Ephemeral Cell

Tracked Cell

Update

Passed Gradients

Gradients From Residual Path

Last Phase Gradient

Residual Connections

Phase 0 Phase 1 Phase 2 Phase 3

Figure 6: For a model architecture consisting of 𝑛 cells, the peak memory
consumption of the back-propagation is reduced to 1/𝑛 at maximum by evict-
ing the intermediate outputs of all ephemeral cells except for the designated
tracked cell, starting backward from the last cell. "Tracked cell" represents
the designated cell to be updated at the current phase, and "ephemeral cell"
represents the cell whose intermediate outputs are discarded from memory.
"Last phase gradient" depicts that the required gradients are passed from the
previous phase to the current phase to update the tracked cell.

In the cell motif-based architecture of On-NAS, a total of 𝑛 cells
are stacked and connected through their inputs and outputs with
residual connections [59], considering the input and output of each
cell as a computational node and their connection as an edge. Based
on that, the step-by-step back-propagation updates the operation,
edge pair, and weight parameters (𝛼 , 𝛽 , and𝑤) of each cell one by
one (phase by phase) in the backward chain of gradient computation
by utilizing the information passed from the previous phase.

As shown in Fig. 6, for the (𝑛 − 𝑙)th phase of the step-by-step
back-propagation, the forward propagation is first executed from
the first cell to the 𝑙-th designated cell (tracked cell), and then only
the gradient of the tracked cell is computed and stored in memory,
along with the cell output, while all the other outputs of preceding
cells (ephemeral cells) acquired during the forward propagation are
evicted from memory. Afterward, at the next (𝑛 − 𝑙 + 1)th phase,
the operation, edge pair, and weight parameters (𝛼 , 𝛽 , and 𝑤) of
the designated (𝑙 + 1)-th cell are updated by using the gradient and
output stored at the previous (𝑛 − 𝑙)th phase. By storing (track-
ing) only a few intermediate gradients and cell outputs for each
phase, requiring much less memory compared to saving all the
intermediate outputs of all cells, each cell can be independently
updated only using 1/𝑛 of memory. As the forward propagation is
not fully executed except for the first phase, the time required by
unnecessary forward propagation becomes minimized.

Given 𝑜𝑐𝑙 as the output of the 𝑙-th cell 𝑐𝑙 , the gradient of the loss
L with respect to the weight parameters of the two consecutive
(𝑙 + 1)-th and 𝑙-th cell, 𝑤𝑐𝑙+1 and 𝑤𝑐𝑙 , respectively, are calculated
by the chain of the back-propagation [78] as:

𝜕L
𝜕𝑤𝑐𝑙+1

=
𝜕L
𝜕𝑜𝑐𝑙+3

(𝜕𝑜𝑐𝑙+3
𝜕𝑜𝑐𝑙+2

𝜕𝑜𝑐𝑙+2

𝜕𝑜𝑐𝑙+1
+
𝜕𝑜𝑐𝑙+3

𝜕𝑜𝑐𝑙+1

) 𝜕𝑜𝑐𝑙+1
𝜕𝑤𝑐𝑙+1

(10)

𝜕L
𝜕𝑤𝑐𝑙

=
𝜕L
𝜕𝑜𝑐𝑙+2

(𝜕𝑜𝑐𝑙+2
𝜕𝑜𝑐𝑙+1

𝜕𝑜𝑐𝑙+1

𝜕𝑜𝑐𝑙
+
𝜕𝑜𝑐𝑙+2

𝜕𝑜𝑐𝑙

) 𝜕𝑜𝑐𝑙
𝜕𝑤𝑐𝑙

(11)

Here, the first and second term is for the connection with the next
cell and the residual connection with one after the next.

To compute the gradient of the 𝑙-th cell, 𝜕L
𝜕𝑤𝑐𝑙

in Eq. (11), at the

(𝑛−𝑙+1)-th phase, we store 𝜕L
𝜕𝑜𝑐𝑙+2

= 𝜕L
𝜕𝑜𝑐𝑙+3

𝜕𝑜𝑐𝑙+3
𝜕𝑜𝑐𝑙+2

, 𝑜𝑐𝑙+2 , and 𝑜𝑐𝑙+1

obtained from Eq. (10) in memory at the previous (𝑛−𝑙)-th phase

and pass them to the next (𝑛−𝑙+1)-th phase. By doing that, when
it proceeds to the next (𝑛−𝑙+1)-th phase, the gradient of the 𝑙-th
cell, 𝜕L

𝜕𝑤𝑐𝑙

in Eq. (11) can be computed from the passed 𝜕L
𝜕𝑜𝑐𝑙+2

, 𝑜𝑐𝑙+2 ,
and 𝑜𝑐𝑙+1 , in addition to 𝑜𝑐𝑙 and𝑤𝑐𝑙 which can be obtained from the
current (𝑛−𝑙+1)-th phase, resulting in the exactly same update to
normal back-propagation consuming up to 𝑛 times more memory.

6 EXPERIMENTS
Implementation. We implement the proposed On-NAS using Py-
Torch [68], the most popular deep learning framework, to provide
development convenience and portability to various embedded plat-
forms, which is publicly available at a git repository1. To evaluate
the offline two-fold meta-learning, we use an NVIDIA RTX 3090
GPU. For the evaluation of online on-device architecture search,
we deploy On-NAS onto NVIDIA Jetson Nano equipped with 2GB
of unified memory [11], where 1GB of memory is occupied by the
system, and the remaining 1GB of memory is left for On-NAS.
Evaluation. We first evaluate the effectiveness of the task and cell
coefficients used in two-fold meta-learning, along with the storage
usage of the meta cell. We next evaluate on-device architecture
search and measure the memory consumption under two dataset
shift scenarios, i.e., 1) few-shot learning with two widely used
benchmark datasets (miniImageNet [88] and Omniglot [48]) and 2)
full-task adaptation with two datasets (CIFAR-10 [44] and CIFAR-
100 [44]) that are popularly used in the NAS community to assess
the performance of architecture search from scratch.
Search Space. As established in previous works [23, 59], we opt for
a 4-cell structure for our over-parameterized model, consisting of 2
normal cells and 2 reduction cells. To conduct fair comparisons, we
also maintain consistency in other hyperparameter settings, includ-
ing the number of nodes, edge connectivity, and candidate opera-
tions as established in previous work, MetaNAS [23]. To clarify, our
set of candidate operations consists of Conv3x3, DilatedConv3x3,
Conv1x5-5x1, MaxPool3x3, AvgPool3x3, SepConv3x3 and SkipConnect.
Following MetaNAS [23], the cells have three intermediate nodes,
where each node passes an output to the next nodes, resulting in a
total of nine edges with MixedOP [59] for each cell. As we allow
two different edges at most for the input of single nodes after the
search, the total number of possible architecture configurations for
each cell is equivalent to 2 × 32 × 76, resulting in 22 × 34 × 712 pos-
sible configurations considering normal cell and reduction cell for
total model architecture, which is identical to previous work [23],
comparable to other DARTS-based methods [59, 100].
Baselines.We compare the memory usage and performance of On-
NAS against four state-of-the-art cell-based meta-learning-applied
and/or differential architecture search methods, i.e., DARTS [59],
MetaNAS [23], ProxylessNAS [10], and PC-DARTS [95].

6.1 Two-fold Meta-Learning
We first examine the performance of offline two-fold meta-learning
by measuring the effectiveness of the task and cell coefficients given
in Eq. (4) and Eq. (5) with the accuracy of the meta cell over meta
epochs. Fig. 7 plots the test accuracy of 5-shot learning on mini-
ImageNet [88] and Omniglot [48] over 15,000 meta epochs of GPU
training with the four cases of two-fold meta-learning: 1) without
coefficients, 2) task coefficients only, 3) cell coefficients only, and

On-NAS: On-Device Neural Architecture Search on Memory-Constrained Intelligent Embedded Systems SenSys ’23, November 12–17, 2023, Istanbul, Turkiye

4) both task and cell coefficients applied. It shows that applying
both task and cell coefficients enables the meta cell to achieve the
lowest loss (also the highest accuracy) and faster optimization for
both miniImageNet and Omniglot by minimizing the loss more
efficiently when compared to the cases without coefficients. For
example, "both_coeff" of miniImageNet in Fig. 7 starts to touch the
loss value of 1.20 around 5,000 epochs and finally arrives at 1.08,
while "no_coeff" records 1.22 at its lowest. While utilizing the task
and cell coefficient alone does not provide notable performance im-
provement, using them together gives a synergy in optimizing the
meta cell as they complement each other and work as a momentum
guiding the direction of the update towards the optimal point.

no_coeff
task_coeff
cell_coeff

both_coeff

no_coeff
task_coeff
cell_coeff

both_coeff

Epochs

62

60

58

56

54

52

miniImageNetLoss Omniglot

1.3

1.2

1.1

96

94

92

90

88

Loss
0.7

0.6

0.5

0.4

0.3

0.2

Acc(%) miniImageNet OmniglotAcc(%)

5000 10000 15000 5000 10000 15000

5000 10000 15000 5000 10000 15000

Figure 7: The performance of the meta cell pre-trained for 5-shot learning
of miniImageNet [88] and Omniglot [48] over meta epochs. The trajectory of
evaluation loss and accuracy demonstrates that two-fold meta-learning with
both task and cell coefficients enables it to converge faster to the lowest loss
(highest accuracy).

Fig. 8 shows examples of the normal and reduction cell [103],
unfolded from a single meta cell learned by two-fold meta-learning
for miniImageNet [88], where its search space, e.g., candidate op-
erations, is predefined identically with MetaNAS [23]. Those two
cells consist of separate operation and edge pair parameters (𝛼
and 𝛽) but with the same meta weight parameters (𝑤) based on
the weight sharing [69] implemented in On-NAS. As both 𝛼 and
𝛽 require only a trivial amount of storage, a single meta cell can
be space-efficiently unfolded into the full model architecture and
folded vice versa, by utilizing not only 𝛼 and 𝛽 but also𝑤 .

c_{k-1}

1

c_{k-2} 2

0

c_{k}

(a). reduction cell, miniImageNet.

c_{k-1}

c_{k-2}

2

0
c_{k}

sep_conv_3x3

(b). normal cell, miniImageNet.

1
avg_pool_3x3

max_pool_3x3

conv_3x3

conv_3x3

conv_3x3

sep_conv_3x3

conv_1x5_5x1

avg_pool_3x3

sep_conv_3x3
dil_conv_3x3

max_pool_3x3

Figure 8: The visualization of two classes of cells in the form of a directed
acyclic graph (DAG), i.e., the reduction and normal cell [103], unfolded from a
single meta cell found by two-fold meta-learning of miniImageNet [88]. Blue
and green boxes denote the cell input and output, respectively, and yellow
boxes represent the nodes connected through the edges of operations, e.g.,
conv and pooling.

For instance, the four cells of miniImageNet [88] (2.6MB) in Fig. 8
are folded into a single meta cell (0.6MB), achieving 4.3x storage

space saving. As themodel architecture hasmore cells, more storage
reduction is achieved, e.g., we observe 20x storage reduction (from
2,600MB to 128MB) in the scale-up DARTS-based model consisting
of 20 cells, 7 nodes, and 256 conv channels [92].

6.2 On-Device Architecture Search
We next evaluate online on-device architecture search on two
dataset shift settings, i.e., few-shot and full-task learning.
Few-Shot Learning. We measure the peak memory usage, model
performance (test accuracy), and search time of on-device architec-
ture search in few-shot learning settings, which requires a small
number of architecture search steps, and compare them against
three cell-based meta-learning-applied and/or differential architec-
ture search methods, i.e., DARTS [59], MetaNAS [23], Proxyless-
NAS [10], and PC-DARTS [95].

miniImageNet
NAS Memory(MB) Acc(%) Time(Device/GPU)

5-shot

DARTS 4123 62.40±0.91 X / 5.2s
MetaNAS 5100 62.00±0.87 X / 5.6s
PC-DARTS 1700 59.67±1.06 X / 5.1s

ProxylessNAS 2235 62.00±1.25 X / 20.1s
On-NAS (Ours) 243 63.33±0.11 8m 15s / 27.7s

1-shot

DARTS 1616 45.67±2.84 X / 2.5s
MetaNAS 1668 46.80±1.84 X / 2.5s
PC-DARTS 567 42.73±1.59 1m 02s / 2.2s

ProxylessNAS 753 41.19±1.14 X / 8.8s
On-NAS (Ours) 158 46.80±1.42 3m 06s / 13.6s

Omniglot
NAS Memory(MB) Acc(%) Time(Device/GPU)

5-shot

DARTS 534 98.82±0.16 4m 10s / 14.1s
MetaNAS 564 98.83±0.22 4m 33s / 14.1s
PC-DARTS 189 90.12±0.57 3m 10s / 13.9s

ProxylessNAS 272 96.08±0.34 13m 46s / 48.1s
On-NAS (Ours) 26 98.98±0.10 19m 26s / 1m 38s

1-shot

DARTS 192 87.10±0.51 1m 58s / 8.1s
MetaNAS 202 85.62±0.21 2m 10s / 8.2s
PC-DARTS 66 69.12±0.85 2m 21s / 8.1s

ProxylessNAS 112 91.83±1.24 5m 41s / 25.4s
On-NAS (Ours) 25 90.22±0.85 11m 10s / 56.0s

Table 2: The few-shot performance comparison among NAS methods. ‘Device’
and ‘GPU’ time indicates the required time for 10 search steps on Jetson Nano
and RTX 3090 GPU, respectively. ‘Device’ shows the time required for archi-
tecture search on the target device, and ‘X’ indicates that the NAS algorithm is
not able to run on the target device as lack of hardware (memory) resources.

Tab. 2 summarizes the experiment result of 5-way/20-way 5-shot
and 1-shot adaptation on miniImageNet [88] and Omniglot [48].
Each task takes 10 architecture search steps for dataset adaptation
on Jetson Nano with 1GB of free memory, starting from the un-
folded meta cell that is offline pre-trained for 30,000 meta-epochs
by two-fold meta-learning. All experiments are run under three
independent trials with random seeds and tested with 100 sampled
tasks per run, following the standard evaluation method of few-shot
learning [23, 75].

As shown in Tab. 2, On-NAS achieves comparable or slightly
superior performance over the four baselines, e.g., 1.3% higher
accuracy than MetaNAS [23] with 20x less memory consumption.
Although more time is required for architecture search, it enables
NAS tasks to be performed on the device with limited memory,
e.g., reducing 4,123MB memory to 243MB for 5-shot learning of
DARTS on miniImageNet, which has been impossible with existing

SenSys ’23, November 12–17, 2023, Istanbul, Turkiye Bosung Kim and Seulki Lee

miniImageNet
5-shot 1-shot

𝑞 Mem(MB) Acc(%) Time Mem(MB) Acc(%) Time
1 361 63.50±0.99 8m 05s 132 44.87±0.81 3m 04s
2 431 63.33±0.11 8m 34s 157 46.87±1.64 3m 19s
3 505 62.12±1.53 9m 11s 189 44.40±1.72 3m 26s
4 576 61.33±0.92 9m 35s 201 50.53±2.78 3m 32s
5 645 62.25±0.79 10m 11s 233 46.80±2.61 3m 42s
6 713 61.83±0.99 10m 35s 257 50.87±1.23 3m 46s
7 787 62.02±0.87 11m 18s 277 48.47±1.16 3m 54s

Omniglot
5-shot 1-shot

𝑞 Mem(MB) Acc(%) Time Mem(MB) Acc(%) Time
1 59 98.67±0.22 19m 23s 29 86.48±0.30 10m 58s
2 64 98.98±0.10 20m 03s 32 90.22±0.28 11m 18s
3 73 98.97±0.18 21m 23s 35 91.47±0.62 11m 51s
4 81 98.70±0.37 22m 03s 38 91.92±0.54 12m 21s
5 90 99.08±0.18 22m 50s 41 91.58±0.21 12m 35s
6 98 98.77±0.35 23m 15s 43 91.57±0.02 13m 09s
7 102 98.67±0.22 24m 00s 49 92.42±0.12 13m 33s

Table 3: The performance of On-NAS on 5-shot and 1-shot learning of mini-
ImageNet [88] (5-way) and Omniglot [48] (20-way) with different numbers of
operations (𝑞) to be selected for the update of their operation parameter (𝛼)
during on-device architecture search.

NAS. Although the Omniglot experiment shows that the baselines
could run on the device without applying On-NAS as their memory
requirements are smaller than the device memory capacity (1GB),
it implies that On-NAS can be utilized for on-device architecture
search on a more resource-constrained low-end embedded platform,
e.g., STM32 Cortex-M7 boards [5] with 32MB RAM, as memory
consumption of architecture search is decreased 8x from 202MB
(MetaNAS) to 25MB (On-NAS).
Memory Reduction. Fig. 9 provides the breakdown of memory
reduction achieved by On-NAS. In 20x of total memory reduc-
tion, the expectation-based operation search, combined with the
gradient accumulation [55, 85], contributes the most, i.e., 14x re-
duction, followed by the step-by-step back-propagation (1.4x) and
expectation-based edge pair search (1.1x). It demonstrates that the
real memory reduction closely matches our theoretical analysis
with some implementation overheads increasing memory usage in
practice. For instance, the expectation-based edge pair search in
miniImageNet is expected to reduce the memory usage by up to 4x
as the total number of cells in its architecture is four, i.e., 𝑛=4, and
it actually reduces 1.4x of memory in the experiment, validating
the bound of memory saving achieved by On-NAS.

None α α+β

5168

352 320 243

~20x reduction

561

53 36 26

~20x reduction

+SBSβα+

(MB)
miniImageNet Omniglot

None α α+β +SBSβα+

Figure 9: The efficacy of each memory-saving on-device architecture search
method of few-shot learning on miniImageNet [88] and Omniglot [48]. 𝛼 , 𝛽 ,
and SBS denotes expectation-based operation search, edge pair search, and
step-by-step back-propagation, respectively. By applying them all together,
20x memory saving is achieved.

Expectation-based Search. Tab. 3 summarizes the memory usage,
model performance (test accuracy), and search time when differ-
ent numbers of operations (𝑞) are selected for the update at each
search step during the expectation-based operation search. The

result shows that almost similar accuracy is achieved in all num-
bers of operations, e.g., two operations record even 1.3% higher
accuracy than the entire seven operations on 5-shot learning of
miniImageNet while consuming 54.8% of memory and 16% less time.
Fig. 10 provides statistics of the test accuracy in Tab. 3, showing that
the overall performance of miniImageNet and Omniglot does not
severely degrade even though the number of operations decreases,
implying that the expectation-based search enhances the efficiency
of operation search with a slight impact on the accuracy. Since the
model performance tends to be maintained with small numbers of
operations, while the memory consumption is reduced, On-NAS
enables the user to adjust the number of operations according to
the memory budget of the target device without significant per-
formance drops, making On-NAS a memory-aware and flexible
on-device NAS solution. Fig. 11 shows the final cell architecture
found for few-shot learning of Omniglot [48] on the device.

Number of operations
1 2 3 4 5 6 7

100
90
80
70
60
50
40

A
cc

(%
)

miniImageNet 1-shot

Omniglot 1-shot
miniImageNet 5-shot

Omniglot 5-shot

Figure 10: The plot of test accuracy over the number of operations in Tab. 3,
including the mean and standard deviation, measured with three independent
runs under the identical setting to Tab. 2.

c_{k-1}

2
c_{k-2}

1

0

c_{k}

c_{k-1}

1

c_{k-2}

2

0 c_{k}

(a). reduction cell, Omniglot. (b). normal cell, Omniglot.

skip_connect

conv_3x3

conv_3x3

conv_1x5_5x1

dil_conv_3x3

sep_conv_3x3

avg_pool_3x3

max_pool_3x3

sep_conv_3x3

sep_conv_3x3

conv_3x3
sep_conv_3x3

c_{k-1} 1

c_{k-2}

2

0

c_{k}

c_{k-1}

c_{k-2}
c_{k}

(c). reduction cell, Omniglot. (d). normal cell, Omniglot.

Before search

After search

0

2

1
dil_conv_3x3

skip_connect
conv_1x5_5x1

dil_conv_3x3
dil_conv_3x3

sep_conv_3x3

skip_connect

avg_pool_3x3
max_pool_3x3

conv_1x5_5x1

sep_conv_3x3

sep_conv_3x3

Figure 11: The visualization of the cell architectures (reduction and normal
cell [103]) in the form of a directed acyclic graph for Omniglot [48]. (a) and
(b): The initial architecture before online on-device architecture search. (c)
and (d): The final architecture after online on-device architecture search.

Full-Task Adaptation. Considering the limited computing power
of many embedded devices, On-NAS can be best utilized in practice
for an environment where it finds the optimal model architecture
by learning a relatively small number of data samples, as shown in
the few-shot experiments given above. To assess the potentials and
limits of On-NAS on more serious dataset shift scenarios where
a large amount of data samples needs to be learned, we perform
On-NAS for full-task adaptation required to find the optimal model
architecture from scratch using all the available data samples.

Tab. 4 shows the memory usage, model performance (test accu-
racy), and search time of full-task adaptation to CIFAR-10 [44] and
CIFAR-100 [44] over 391 × 50 and 391 × 100 search steps, which is
much bigger than 10 search steps taken by few-shot learning on

On-NAS: On-Device Neural Architecture Search on Memory-Constrained Intelligent Embedded Systems SenSys ’23, November 12–17, 2023, Istanbul, Turkiye

miniImageNet. We observe that On-NAS executing the expectation-
based operation search with two operations achieves 3.63% higher
accuracy on CIFAR-10 than PC-DARTS [95], one of the state-of-the-
art memory-efficient DARTS-based NAS. When five operations are
updated instead of two, On-NAS achieves comparable performance
to DARTS [59] on CIFAR-100, i.e., 56.58% vs. 55.76%, with 10x less
memory being consumed (3,479MB vs. 325MB).

CIFAR-10
NAS Memory(MB) Acc(%) Time(Device/GPU)

DARTS 3460 87.47 X / 0.27 days
PC-DARTS 1070 77.83 X / 0.10 days

On-NAS (2 Ops) 290 81.46 2.21 / 0.17 days
On-NAS (5 Ops) 397 86.03 2.41 / 0.18 days

CIFAR-100
NAS Memory(MB) Acc(%) Time(Device/GPU)

DARTS 3479 56.58 X / 0.24 days
PC-DARTS 1169 50.73 X / 0.24 days

On-NAS (2 Ops) 238 50.77 4 / 0.31 days
On-NAS (5 Ops) 325 55.76 4.21 / 0.33 days

Table 4: Full-task adaptation performed from scratch on CIFAR-10 [44] and
CIFAR-100 [44]. The performance of On-NAS is compared to the two baselines
(DARTS [23] and PC-DARTS [95]). The search time is measured in GPU days
on Jetson Nano and a server-grade GPU (RTX 3090). ’X’ means the NAS could
not run on the device.

Fig. 12 shows the contribution of each memory-saving method
used in On-NAS on full-task adaptation. Similar to few-shot learn-
ing, 20x of memory is saved at maximum by the expectation-based
operation and edge pair search, and step-by-step back-propagation,
verifying that they also apply to more serious dataset shift prob-
lems that require searching for the optimal model architecture via
full-task adaptation.

3190 (MB)
CIFAR-10

None α α+β +SBSβα+ None α α+β +SBSβα+

CIFAR-100

348 297 187

3180

362 250 160

~17x reduction ~20x reduction

Figure 12: The efficacy of each memory-saving on-device architecture search
method of full-task adaptation on CIFAR-10 [44] and CIFAR-100 [44]. 𝛼 , 𝛽 ,
and SBS denotes expectation-based operation search, edge pair search, and
step-by-step back-propagation, respectively. By applying them all, more than
17x of memory usage is reduced.

Search Time. Full-task adaptation inevitably entails a large num-
ber of search steps (epochs), e.g., 391 × 50 steps (50 epochs) in our
experiment, as it searches for the optimal architecture using the
entire training dataset from scratch. Consequently, the amount of
time spent by On-NAS becomes longer than GPU-running cases as
provided in Tab. 4, e.g., 4 GPU days on CIFAR-100, due to the sig-
nificant gap in computing power between a server-grade GPU and
an embedded device, e.g., 35 TFLOPS (RTX 3090) vs. 472 GFLOPS
(Jetson Nano). However, On-NAS seems to take a relatively short
search time by effectively overcoming scarce resources of the de-
vice, i.e., 12x longer search time given 75x less computing power
and 10x smaller memory when compared to using a GPU. Although
computation (time) complexity is not the main topic of this pa-
per, it indicates that On-NAS is not only memory-efficient but also
compute-efficient. Nevertheless, it needs to be further investigated
how to search model architectures in full-task adaptation with more
reasonable time costs by lowering the search time complexity while
keeping low memory consumption enabled by On-NAS.

7 LIMITATIONS AND FUTUREWORKS
Architecture Search Time. As shown in our experiments, On-
NAS achieves competitive performance in few-shot learning on a
device with limited memory by finding optimal model architectures
over few steps within an acceptable period of time. However, when
it comes to full-task learning that finds an optimal architecture
using the entire training dataset from scratch, On-NAS inevitably
entails a larger number of search steps, e.g., 600 epochs. Conse-
quently, the amount of time spent by On-NAS becomesmuch longer
when compared to using a high-end GPU, 4.21 days, in part pro-
longed by the step-by-step backpropagation. It could primarily be
blamed on the significant gap in computing power between GPUs
and embedded devices. Nevertheless, there exist trade-offs between
the architecture search time and memory consumption in On-NAS,
which should be further investigated to fully apply it to full-task
learning with reasonable time costs. As a future work, a new ap-
proach that can decrease the search time complexity with low peak
memory consumption is to be studied so that On-NAS can become
feasible in both time- and memory-wise perspectives.
Online Meta Cell Learning. The proposed meta cell is generated
from offline meta-learning of multiple datasets (tasks) and then
loaded into the device, which enables fast and effective on-device
architecture search for new real datasets, However, it may need to
be updated (re-learned) on the device as real data distributions keep
changing over time in practice. Yet the current framework requires
server-side transfer to update the meta cell, we look forward to
implementing meta-learning on the target device as a future work,
to update the meta cell continuously. By continuously updating the
meta cell with the real datasets on the device, it becomes able to
better adapt to ever-changing data when compared to using the
static meta cell not updated at all once loaded. One possible way of
updating the meta cell on the device is to apply a continual learning
method, such as EWC [42] or gradient-based sample selection [2],
to prevent catastrophic forgetting [27, 47] of the meta cell. It allows
maintaining the previously-learned data of themeta cell by reducing
the risk of over-fitting to new data while gradually accumulating
new information learned from new datasets. As more real datasets
are aggregated to the meta cell over time, the adaptability of the
meta cell to the continually-changing data gets improved, which is
also expected to accelerate in finding optimal architectures.
Extension to Other NAS Algorithms. Based on the fact that we
employ the Reptile [66] meta-learning algorithm, and cell-based
architecture, utilized in previous works [53, 59, 100] which are
currently regarded as state-of-the-art approaches achieving the
best performance within a reasonable time on many NAS prob-
lems [14, 77], it is natural to extend On-NAS to other gradient-
based meta-learning algorithms [26, 75, 80] and various other NAS
techniques [18, 21, 50]. As meta-learning itself is less influential for
the reduction of peak memory required, most of the gradient-based
meta-learning algorithms can be seamlessly applied to current On-
NAS. Nonetheless, there are NAS algorithms that are not based on
cell-based structures or repeated motifs, which focus on the diver-
sity of a module while compensating search time with performance
that provides comparable results to the cell-based differentiable
NAS. As the backbone of On-NAS is the cell-based differentiable
NAS, it seems not obvious how to extend it to such NAS algorithms

SenSys ’23, November 12–17, 2023, Istanbul, Turkiye Bosung Kim and Seulki Lee

with alternative structures. Considering the continuous improve-
ment and development of NAS methods, the approaches that de-
crease the peak memory usage of NAS proposed in this paper need
to apply to non-cell-based and non-differential NAS. Finding some
common search procedures among NAS methods and analyzing
their memory consumption patterns would help generalize On-NAS
to a NAS-agnostic memory-efficient on-device NAS solution.

8 RELATEDWORK
On-Device NAS. To the best of our knowledge, no existing works
fully support neural architecture search (NAS) on the device. In-
stead, many on-device NAS [56, 62, 84] perform architecture search
in a hybrid form with the collaboration of a cloud server by dele-
gating the memory-consuming and compute-intensive architecture
search process to the cloud and only evaluate the performance
of the resulting architectures on the device. Hence, the network
connectivity should be retained between the device and server dur-
ing the search procedure, which can hardly address the dataset
shift problem by the device itself when the network connection be-
comes unavailable. Unlike those so-called on-device NAS, On-NAS
searches for the best architecture and weight parameter entirely on
the device without the burden of connectivity, privacy issues, and
data transfer bottlenecks, enabling a genuine architecture search
on the device for the first time.
Efficient NAS. To lower the inefficiency of neural architecture
search [22], the research domain of efficient NAS [61] has been fa-
cilitated in recent years [8, 58, 69, 103]. In particular, PC-DARTS [95]
suggests partial connections of convolution channels to reduce the
memory consumption of DARTS [59]. However, the scope of its
partial search is limited only to the convolution where the channels
are randomly sampled without any principle, unlike On-NAS that
allows partial search on all types of operations as well as edge pairs
based on the expectation estimation, saving much more memory ,
i.e., up to 4% (On-NAS) vs. 33% (PC-DARTS). FP-DARTS [90] utilizes
two over-parameterized networks, each consisting of half of the
candidate operations, and selectively controls the search path using
a binary gate to reduce memory consumption. Similarly, Proxy-
lessNAS [10] decreases the memory usage of NAS by binarizing
possible paths. Although they can simplify the search path similar
to On-NAS, they utilize only the selected paths in the forward exe-
cution, resulting in unstable model output, negatively affecting the
search performance. On the contrary, On-NAS executes all forward
paths only once, which enables fast and stable architecture search
while reducing memory consumption in multiple facets, i.e., selec-
tively determining a few operations and edge pairs on top of the
step-by-step back-propagation. Moreover, all of the existing works
are not designed for resource-constrained embedded devices, un-
like On-NAS that enables systematic and flexible memory-efficient
architecture search on embedded devices in accordance with their
tight memory budgets.
Meta-Learning-applied NAS. To compensate for the generaliza-
tion issue of deep models, gradient-based meta-learning has been
proposed [25, 66, 75]. On that basis, On-NAS integrates gradient-
based meta-learning into differential architecture search by combin-
ing Reptile [66] and DARTS [59] in a similar way to MetaNAS [23].
By doing so, it can set up the initial meta architecture from various

task-specific architectures, enabling agile and better architecture
adaptation to new data while lessening the burden of architecture
search on the device. Unlike MetaNAS [23], On-NAS effectively
condenses 𝑛 cells into a single meta cell without significant perfor-
mance compensation through two-fold meta-learning with the task
and cell coefficients. Thus, the device storage required to employ
the initial meta architecture of 𝑛 cells decreases into 1/𝑛 so that the
meta cell becomes fit to the tiny storage of the device. Alternatively,
𝑛 meta cells trained with different domains would be deployed on
the device to be accordingly utilized depending on the domain of
new datasets (tasks), when given the same storage capacity.
On-Device Training. Recently, many approaches [19] have been
proposed to train deep models on resource-constrained devices [49].
TinyTL [9] introduces on-device transfer learning by exploiting
only the bias with the unique module while freezing the weight
parameters. Another study [30] tries to enable memory-efficient
training on the device by combining various memory-saving train-
ing techniques. Since on-device NAS can be seen as a repeated
process of training multiple candidate architectures, one might
wonder if it is possible to use existing on-device training meth-
ods as an alternative solution for on-device NAS. However, those
on-device training techniques [9, 19, 30, 49, 73] only update the
weight parameters of a fixed architecture, which cannot fully adapt
to a new dataset as demonstrated in previous works [29, 43, 76].
For example, p-Meta [73] employed meta-learning and memory-
efficient methodologies for on-device learning, similar to On-NAS.
However, p-Meta focuses on choosing adaptation-critical layers
and channels for memory efficiency, in contrast to On-NAS which
focuses on memory efficiency over repeated motifs based on estima-
tion of parameter optimization. Furthermore, it is noteworthy that
p-Meta [73] is dedicated to adjusting model weights for new distri-
bution, in contrast to our method which optimizes its architecture
and weight parameters, with the utilization of neural architecture
search algorithms. Also, neural architecture search is not a mere
sum of model training, as it jointly optimizes the model architec-
ture and weight parameter simultaneously, which is not only more
challenging but also more resource-demanding. In this paper, we
show that On-NAS would be a flexible and capable NAS solution
for continuously-shifting field data by adapting both weight param-
eters and model architecture.

9 CONCLUSION
This paper proposes a memory-efficient on-device neural architec-
ture search (NAS), which we call On-NAS, which drastically reduces
the massive memory requirement of NAS on the device. Starting
from the meta cell pre-trained through two-fold meta-learning pro-
posed to condense multiple cells into one, On-NAS finds the optimal
architecture for the target dataset on a resource-constrained em-
bedded device with the expectation-based operation and edge pair
search, and the step-by-step back-propagation. They collectively
enable a memory-efficient standalone on-device NAS for the first
time by solely performing NAS on the device without help from
external systems. The evaluations demonstrate that On-NAS com-
poses optimal model architectures competitive to GPU-based NAS
while consuming 20x less memory and 4x less storage space for
various dataset shifts on the device.

On-NAS: On-Device Neural Architecture Search on Memory-Constrained Intelligent Embedded Systems SenSys ’23, November 12–17, 2023, Istanbul, Turkiye

ACKNOWLEDGMENTS
This work was supported by the National Research Foundation
of Korea(NRF) grant funded by the Korea government(MSIT) (RS-
2023-00277383), Institute of Information & communications Tech-
nology Planning & Evaluation(IITP) grant funded by the Korea
government(MSIT) (No.2020-0-01336, Artificial Intelligence grad-
uate school support(UNIST)), and the Settlement Research Fund
(1.210142.01) of UNIST (Ulsan National Institute of Science & Tech-
nology).

REFERENCES
[1] Rocío Alaiz-Rodríguez and Nathalie Japkowicz. 2008. Assessing the impact

of changing environments on classifier performance. In Advances in Artificial
Intelligence: 21st Conference of the Canadian Society for Computational Studies of
Intelligence, Canadian AI 2008 Windsor, Canada, May 28-30, 2008 Proceedings 21.
Springer, 13–24.

[2] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. 2019. Gradi-
ent based sample selection for online continual learning. Advances in neural
information processing systems 32 (2019).

[3] Hadjer Benmeziane, Kaoutar ElMaghraoui, HamzaOuarnoughi, Smail Niar, Mar-
tin Wistuba, and Naigang Wang. 2021. A comprehensive survey on hardware-
aware neural architecture search. arXiv preprint arXiv:2101.09336 (2021).

[4] John Bridle. 1989. Training stochastic model recognition algorithms as networks
can lead to maximum mutual information estimation of parameters. Advances
in neural information processing systems 2 (1989).

[5] Geoffrey Brown. 2012. Discovering the STM32 microcontroller. Cortex 3, 34
(2012), 64.

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[7] Vinula Uthsara Buthgamumudalige and Torin Wirasingha. 2021. Neural ar-
chitecture search for generative adversarial networks: A review. In 2021 10th
International Conference on Information and Automation for Sustainability (ICI-
AfS). IEEE, 246–251.

[8] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. 2019.
Once-for-all: Train one network and specialize it for efficient deployment. arXiv
preprint arXiv:1908.09791 (2019).

[9] Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. 2020. Tinytl: Reduce memory,
not parameters for efficient on-device learning. Advances in Neural Information
Processing Systems 33 (2020), 11285–11297.

[10] Han Cai, Ligeng Zhu, and Song Han. 2018. Proxylessnas: Direct neural archi-
tecture search on target task and hardware. arXiv preprint arXiv:1812.00332
(2018).

[11] Stephen Cass. 2020. Nvidia makes it easy to embed AI: The Jetson nano packs a
lot of machine-learning power into DIY projects-[Hands on]. IEEE Spectrum 57,
7 (2020), 14–16.

[12] Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin Ling. 2021. Autoformer:
Searching transformers for visual recognition. In Proceedings of the IEEE/CVF
international conference on computer vision. 12270–12280.

[13] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016. Training
deep nets with sublinear memory cost. arXiv preprint arXiv:1604.06174 (2016).

[14] Krishna Teja Chitty-Venkata, Murali Emani, VenkatramVishwanath, and Arun K
Somani. 2022. Neural architecture search for transformers: A survey. IEEE Access
10 (2022), 108374–108412.

[15] Melanie Coggan. 2004. Exploration and exploitation in reinforcement learn-
ing. Research supervised by Prof. Doina Precup, CRA-W DMP Project at McGill
University (2004).

[16] Gerald Coley. 2013. Beaglebone black system reference manual. Texas Instru-
ments, Dallas 5 (2013), 2013.

[17] Jasmine Collins, Jascha Sohl-Dickstein, and David Sussillo. 2016. Capacity and
trainability in recurrent neural networks. arXiv preprint arXiv:1611.09913 (2016).

[18] Jiequan Cui, Pengguang Chen, Ruiyu Li, Shu Liu, Xiaoyong Shen, and Jiaya
Jia. 2019. Fast and Practical Neural Architecture Search. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV).

[19] Sauptik Dhar, Junyao Guo, Jiayi Liu, Samarth Tripathi, Unmesh Kurup, and
Mohak Shah. 2021. A survey of on-device machine learning: An algorithms and
learning theory perspective. ACM Transactions on Internet of Things 2, 3 (2021),
1–49.

[20] Yadong Ding, Yu Wu, Chengyue Huang, Siliang Tang, Yi Yang, Longhui Wei,
Yueting Zhuang, and Qi Tian. 2022. Learning to learn by jointly optimizing
neural architecture and weights. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition. 129–138.
[21] Xuanyi Dong and Yi Yang. 2019. Searching for a Robust Neural Architecture in

Four GPU Hours. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR).

[22] Thomas Elsken, JanHendrikMetzen, and FrankHutter. 2019. Neural architecture
search: A survey. The Journal of Machine Learning Research 20, 1 (2019), 1997–
2017.

[23] Thomas Elsken, Benedikt Staffler, Jan Hendrik Metzen, and Frank Hutter. 2020.
Meta-learning of neural architectures for few-shot learning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 12365–12375.

[24] Yang Fan, Fei Tian, Yingce Xia, Tao Qin, Xiang-Yang Li, and Tie-Yan Liu. 2020.
Searching better architectures for neural machine translation. IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing 28 (2020), 1574–1585.

[25] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. In International conference on
machine learning. PMLR, 1126–1135.

[26] Chelsea Finn, Kelvin Xu, and Sergey Levine. 2018. Probabilistic model-agnostic
meta-learning. Advances in neural information processing systems 31 (2018).

[27] Robert M French. 1999. Catastrophic forgetting in connectionist networks.
Trends in cognitive sciences 3, 4 (1999), 128–135.

[28] Wei Gao. 2018. Integrated intelligent method for displacement prediction in
underground engineering. Neural Processing Letters 47 (2018), 1055–1075.

[29] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. 2019. Nas-fpn: Learning scalable
feature pyramid architecture for object detection. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 7036–7045.

[30] In Gim and JeongGil Ko. 2022. Memory-efficient DNN training on mobile
devices. In Proceedings of the 20th Annual International Conference on Mobile
Systems, Applications and Services. 464–476.

[31] Andreas Griewank and Andrea Walther. 2000. Algorithm 799: revolve: an imple-
mentation of checkpointing for the reverse or adjoint mode of computational
differentiation. ACM Transactions on Mathematical Software (TOMS) 26, 1 (2000),
19–45.

[32] Audrunas Gruslys, Rémi Munos, Ivo Danihelka, Marc Lanctot, and Alex Graves.
2016. Memory-efficient backpropagation through time. Advances in neural
information processing systems 29 (2016).

[33] Jianjun Gu, Liuchuang Wu, Jie Chen, Renli Cai, Hao Wan, Weimeng Shi, and
Xiaoxiang Lv. 2022. Intelligent monitoring of subsidence cracks in underground
power utility tunnel. In Seventh Asia Pacific Conference on Optics Manufacture
and 2021 International Forum of Young Scientists on Advanced Optical Manufac-
turing (APCOM and YSAOM 2021), Vol. 12166. SPIE, 848–852.

[34] Hirotaka Hachiya, Takayuki Akiyama, Masashi Sugiayma, and Jan Peters. 2009.
Adaptive importance sampling for value function approximation in off-policy
reinforcement learning. Neural Networks 22, 10 (2009), 1399–1410.

[35] Chaoyang He, Haishan Ye, Li Shen, and Tong Zhang. 2020. Milenas: Efficient
neural architecture search via mixed-level reformulation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 11993–12002.

[36] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[37] Xin He, Kaiyong Zhao, and Xiaowen Chu. 2021. AutoML: A survey of the
state-of-the-art. Knowledge-Based Systems 212 (2021), 106622.

[38] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. 2018.
Amc: Automl for model compression and acceleration on mobile devices. In
Proceedings of the European conference on computer vision (ECCV). 784–800.

[39] Jing Jiang andChengXiang Zhai. 2007. Instanceweighting for domain adaptation
in NLP. ACL.

[40] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv preprint arXiv:2001.08361 (2020).

[41] Jaehong Kim, Sangyeul Lee, Sungwan Kim, Moonsu Cha, Jung Kwon Lee, Young-
duck Choi, Yongseok Choi, Dong-Yeon Cho, and Jiwon Kim. 2018. Auto-meta:
Automated gradient based meta learner search. arXiv preprint arXiv:1806.06927
(2018).

[42] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, et al. 2017. Overcoming catastrophic forgetting in neural
networks. Proceedings of the national academy of sciences 114, 13 (2017), 3521–
3526.

[43] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin
Zhang, Akshay Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas
Phillips, Irena Gao, et al. 2021. Wilds: A benchmark of in-the-wild distribution
shifts. In International Conference on Machine Learning. PMLR, 5637–5664.

[44] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of
features from tiny images. (2009).

[45] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2017. Imagenet classifi-
cation with deep convolutional neural networks. Commun. ACM 60, 6 (2017),
84–90.

SenSys ’23, November 12–17, 2023, Istanbul, Turkiye Bosung Kim and Seulki Lee

[46] David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan
Binas, Dinghuai Zhang, Remi Le Priol, and Aaron Courville. 2021. Out-of-
distribution generalization via risk extrapolation (rex). In International Confer-
ence on Machine Learning. PMLR, 5815–5826.

[47] Dharshan Kumaran, Demis Hassabis, and James L McClelland. 2016. What
learning systems do intelligent agents need? Complementary learning systems
theory updated. Trends in cognitive sciences 20, 7 (2016), 512–534.

[48] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. 2019. The
Omniglot challenge: a 3-year progress report. Current Opinion in Behavioral
Sciences 29 (2019), 97–104.

[49] Seulki Lee and Shahriar Nirjon. 2020. Learning in the wild:When, how, and what
to learn for on-device dataset adaptation. In Proceedings of the 2nd International
Workshop on Challenges in Artificial Intelligence andMachine Learning for Internet
of Things. 34–40.

[50] Guohao Li, Guocheng Qian, Itzel C Delgadillo, Matthias Muller, Ali Thabet, and
Bernard Ghanem. 2020. Sgas: Sequential greedy architecture search. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
1620–1630.

[51] He Li, Kaoru Ota, and Mianxiong Dong. 2018. Learning IoT in edge: Deep
learning for the Internet of Things with edge computing. IEEE network 32, 1
(2018), 96–101.

[52] Ning Li, Hoang Nguyen, Jamal Rostami, Wengang Zhang, Xuan-Nam Bui, and
Biswajeet Pradhan. 2022. Predicting rock displacement in undergroundmines us-
ing improved machine learning-based models. Measurement 188 (2022), 110552.

[53] Hanwen Liang, Shifeng Zhang, Jiacheng Sun, Xingqiu He, Weiran Huang,
Kechen Zhuang, and Zhenguo Li. 2019. Darts+: Improved differentiable ar-
chitecture search with early stopping. arXiv preprint arXiv:1909.06035 (2019).

[54] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13. Springer, 740–
755.

[55] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. 2017. Deep
gradient compression: Reducing the communication bandwidth for distributed
training. arXiv preprint arXiv:1712.01887 (2017).

[56] Chia-Hsiang Liu, Yu-Shin Han, Yuan-Yao Sung, Yi Lee, Hung-Yueh Chiang,
and Kai-Chiang Wu. 2021. FOX-NAS: Fast, On-Device and Explainable Neural
Architecture Search. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV) Workshops. 789–797.

[57] Dongkai Liu, Jiaxing Li, Honglong Chen, Baodi Liu, Xiaoping Lu, and Weifeng
Liu. 2022. EMAS: Efficient Meta Architecture Search for Few-Shot Learning.
In 2022 IEEE 34th International Conference on Tools with Artificial Intelligence
(ICTAI). IEEE, 638–643.

[58] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray
Kavukcuoglu. 2017. Hierarchical representations for efficient architecture search.
arXiv preprint arXiv:1711.00436 (2017).

[59] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055 (2018).

[60] Jinlu Liu, Liang Song, and Yongqiang Qin. 2020. Prototype rectification for
few-shot learning. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16. Springer, 741–756.

[61] Shiqing Liu, Haoyu Zhang, and Yaochu Jin. 2022. A survey on computationally
efficient neural architecture search. Journal of Automation and Intelligence 1, 1
(2022), 100002.

[62] Bo Lyu, Hang Yuan, Longfei Lu, and Yunye Zhang. 2021. Resource-constrained
neural architecture search on edge devices. IEEE Transactions on Network Science
and Engineering 9, 1 (2021), 134–142.

[63] Navid Malekghaini, Elham Akbari, Mohammad A Salahuddin, Noura Limam,
Raouf Boutaba, Bertrand Mathieu, Stephanie Moteau, and Stephane Tuffin. 2023.
AutoML4ETC: Automated Neural Architecture Search for Real-World Encrypted
Traffic Classification. arXiv preprint arXiv:2308.02182 (2023).

[64] Jose G Moreno-Torres, Troy Raeder, Rocío Alaiz-Rodríguez, Nitesh V Chawla,
and Francisco Herrera. 2012. A unifying view on dataset shift in classification.
Pattern recognition 45, 1 (2012), 521–530.

[65] Alex Nichol, Joshua Achiam, and John Schulman. 2018. On first-order meta-
learning algorithms. arXiv preprint arXiv:1803.02999 (2018).

[66] Alex Nichol and John Schulman. 2018. Reptile: a scalable metalearning algorithm.
arXiv preprint arXiv:1803.02999 2, 3 (2018), 4.

[67] Archit Parnami andMinwoo Lee. 2022. Learning from few examples: A summary
of approaches to few-shot learning. arXiv preprint arXiv:2203.04291 (2022).

[68] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
2019. Pytorch: An imperative style, high-performance deep learning library.
Advances in neural information processing systems 32 (2019).

[69] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. 2018. Efficient
neural architecture search via parameters sharing. In International conference
on machine learning. PMLR, 4095–4104.

[70] Raspberry Pi. 2015. Raspberry pi 3 model b. online].(https://www. raspberrypi.
org (2015).

[71] Myeongjang Pyeon, Jihwan Moon, Taeyoung Hahn, and Gunhee Kim. 2021. Se-
dona: Search for decoupled neural networks toward greedy block-wise learning.
In International Conference on Learning Representations.

[72] Ning Qian. 1999. On the momentum term in gradient descent learning algo-
rithms. Neural networks 12, 1 (1999), 145–151.

[73] Zhongnan Qu, Zimu Zhou, Yongxin Tong, and Lothar Thiele. 2022. p-meta:
Towards on-device deep model adaptation. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 1441–1451.

[74] Joaquin Quinonero-Candela, Masashi Sugiyama, Anton Schwaighofer, and
Neil D Lawrence. 2008. Dataset shift in machine learning. Mit Press.

[75] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. 2019.
Meta-learning with implicit gradients. Advances in neural information processing
systems 32 (2019).

[76] Joseph Redmon and Ali Farhadi. 2018. Yolov3: An incremental improvement.
arXiv preprint arXiv:1804.02767 (2018).

[77] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang
Chen, and Xin Wang. 2021. A comprehensive survey of neural architecture
search: Challenges and solutions. ACM Computing Surveys (CSUR) 54, 4 (2021),
1–34.

[78] Raul Rojas and Raúl Rojas. 1996. The backpropagation algorithm. Neural
networks: a systematic introduction (1996), 149–182.

[79] Sebastian Ruder. 2016. An overview of gradient descent optimization algorithms.
arXiv preprint arXiv:1609.04747 (2016).

[80] Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu,
Simon Osindero, and Raia Hadsell. 2018. Meta-learning with latent embedding
optimization. arXiv preprint arXiv:1807.05960 (2018).

[81] Richard Shin, Charles Packer, and Dawn Song. 2018. Differentiable neural
network architecture search. (2018).

[82] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al. 2017. Mastering the game of go without human knowledge. nature 550,
7676 (2017), 354–359.

[83] Yisheng Song, Ting Wang, Subrota K Mondal, and Jyoti Prakash Sahoo. 2022. A
comprehensive survey of few-shot learning: Evolution, applications, challenges,
and opportunities. arXiv preprint arXiv:2205.06743 (2022).

[84] Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios Lymberopoulos, Bodhi
Priyantha, Jie Liu, and Diana Marculescu. 2019. Single-path nas: Device-aware
efficient convnet design. arXiv preprint arXiv:1905.04159 (2019).

[85] Charles M Stein, Dinei A Rockenbach, Dalvan Griebler, Massimo Torquati,
Gabriele Mencagli, Marco Danelutto, and Luiz G Fernandes. 2021. Latency-
aware adaptive micro-batching techniques for streamed data compression on
graphics processing units. Concurrency and Computation: Practice and Experience
33, 11 (2021), e5786.

[86] James Victor Uspensky et al. 1937. Introduction to mathematical probability.
(1937).

[87] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. Advances in neural information processing systems 30 (2017).

[88] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. 2016.
Matching networks for one shot learning. Advances in neural information
processing systems 29 (2016).

[89] Hanhong Wang, Lin Qi, Yu Han, and Yun Lin. 2022. Prototypical Network for
Few-Shot Signal Recognition. In 2022 9th International Conference on Dependable
Systems and Their Applications (DSA). IEEE, 980–985.

[90] Wenna Wang, Xiuwei Zhang, Hengfei Cui, Hanlin Yin, and Yannnig Zhang.
2023. FP-DARTS: Fast parallel differentiable neural architecture search for image
classification. Pattern Recognition 136 (2023), 109193.

[91] Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. 2020. Gener-
alizing from a few examples: A survey on few-shot learning. ACM computing
surveys (csur) 53, 3 (2020), 1–34.

[92] Yu Weng, Zehua Chen, and Tianbao Zhou. 2021. Improved differentiable neural
architecture search for single image super-resolution. Peer-to-Peer Networking
and Applications 14 (2021), 1806–1815.

[93] Paul J Werbos. 1990. Backpropagation through time: what it does and how to
do it. Proc. IEEE 78, 10 (1990), 1550–1560.

[94] YawenWu, ZhepengWang, Yiyu Shi, and Jingtong Hu. 2020. Enabling on-device
cnn training by self-supervised instance filtering and error map pruning. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 39, 11
(2020), 3445–3457.

[95] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and
Hongkai Xiong. 2019. Pc-darts: Partial channel connections formemory-efficient
architecture search. arXiv preprint arXiv:1907.05737 (2019).

[96] Makoto Yamada, Leonid Sigal, and Michalis Raptis. 2013. Covariate shift adapta-
tion for discriminative 3D pose estimation. IEEE transactions on pattern analysis
and machine intelligence 36, 2 (2013), 235–247.

[97] Shuochao Yao, Yiran Zhao, Aston Zhang, Lu Su, and Tarek Abdelzaher. 2017.
Deepiot: Compressing deep neural network structures for sensing systems with

On-NAS: On-Device Neural Architecture Search on Memory-Constrained Intelligent Embedded Systems SenSys ’23, November 12–17, 2023, Istanbul, Turkiye

a compressor-critic framework. In Proceedings of the 15th ACM Conference on
Embedded Network Sensor Systems. 1–14.

[98] Hongyuan Yu, Houwen Peng, Yan Huang, Jianlong Fu, Hao Du, LiangWang, and
Haibin Ling. 2022. Cyclic differentiable architecture search. IEEE Transactions
on Pattern Analysis and Machine Intelligence 45, 1 (2022), 211–228.

[99] Haokui Zhang, Ying Li, Hao Chen, and Chunhua Shen. 2020. Memory-efficient
hierarchical neural architecture search for image denoising. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. 3657–3666.

[100] Miao Zhang, Steven W Su, Shirui Pan, Xiaojun Chang, Ehsan M Abbasnejad,
and Reza Haffari. 2021. idarts: Differentiable architecture search with stochastic
implicit gradients. In International Conference on Machine Learning. PMLR,

12557–12566.
[101] Pengyu Zhao, Kecheng Xiao, Yuanxing Zhang, Kaigui Bian, and Wei Yan. 2020.

Amer: Automatic behavior modeling and interaction exploration in recom-
mender system. arXiv preprint arXiv:2006.05933 (2020).

[102] Yuekai Zhao, Li Dong, Yelong Shen, Zhihua Zhang, Furu Wei, and Weizhu Chen.
2021. Memory-efficient differentiable transformer architecture search. arXiv
preprint arXiv:2105.14669 (2021).

[103] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018. Learning
transferable architectures for scalable image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 8697–8710.

	Abstract
	1 Introduction
	2 Background
	2.1 Differentiable Architecture Search
	2.2 Meta-Learning Architecture Search
	2.3 Memory Burden of Architecture Search
	2.4 Search Space for Few-Shot Tasks

	3 Overview
	3.1 Two-Fold Meta-Learning
	3.2 On-Device Architecture Search

	4 Two-Fold Meta-Learning
	4.1 Task and Cell Coefficients
	4.2 Two-fold Meta-Learning

	5 On-Device Architecture Search
	5.1 Expectation-based Architecture Search
	5.2 Step-By-Step Back-Propagation

	6 Experiments
	6.1 Two-fold Meta-Learning
	6.2 On-Device Architecture Search

	7 Limitations and Future Works
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

