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ABSTRACT ARTICLE HISTORY
An acceptance sampling plan is an essential technique for quality Received 16 July 2020
assurance in manufacturing industries to help producers and buyers Accepted 11 July 2021
make appropriate decisions regarding many products. By providing
the required sample sizes and critical value, the plan streamlines the
quality standards process. The recent attention paid to acceptance fracti -

4 X - raction of defectives;
;ampllng 'plans has. tended to emphasize the process capabl!lty process capability index;
index while neglecting gauge measurement errors (GMEs), which gauge measurement errors
have a direct impact on the fraction of defectives and decision-mak-
ing processes to be the detriment of stakeholders. Thus, we provide
the required sample size and the critical acceptance value consider-
ing GMEs. To demonstrate the impact of GMEs on the assessment of
a product’s lot, we present a real case study on a bilateral switch.

Information on the required number of samples for the inspection
and the acceptance critical value will help lead to a reliable decision.

KEYWORDS
Acceptance sampling plan;

1. Introduction

Producer and buyer satisfaction is closely related to product quality, and there are sev-
eral methods to ensure that the product meets prescribed standards. One of them is to
use an acceptance sampling plan that indicates the number of samples needed for
inspection and the critical acceptance of values to make reliable decisions. To obtain
these values, four parameters are required and each of them represents the interest of
the producer and the buyer. The acceptable quality level (AQL), lot tolerance percent
defectives (LPTD), producer’s and buyer’s risks, respectively. As Balamurali et al. (2020)
point out, the combination of process capability indices (PCIs) in an acceptance sam-
pling plan may reduce cost and offer more information about the product inspection
for both parties (i.e. producers and buyers), and various sampling strategies for variable
inspections have been developed. Pearn and Wu (2007) determined an effective deci-
sion-making method for product acceptance based on Cp index, and they developed

acceptance sampling determination for multiple characteristics based on Cgk index.

Liu and Wu (2016) proposed a quick switching sampling system based on Sy index.
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Aslam, Azam, and Jun (2013) proposed a mixed repetitive sampling plan based on Cy
index, and Aslam et al. (2013) considered multi-state repetitive group sampling plans
for L, index. More recently, Aslam, Balamurali, and Jun (2021) introduced a new mul-
tiple-dependent state sampling plan for C,; index. These studies are representative of
the acceptance sampling field using PCIs but do not consider gauge measurement errors
(GMEs). GME is quantifying the measurement of a gauge repeatability and reproduci-
bility. For example, Houf and Berman (1988) investigated thermal impedance perform-
ance measurement. A thermal impedance evaluator was used by three operators to
measure the same samples three times. They showed that each operator has different
measurement results, even when they did it in repetition. Thus, GME can occur due to
instrument tests and influence by the operator. GMEs play an important role in the
decision-making process. The reliability of this process depends on whether the GMEs
are considered or not. Many authors showed that PCIs will be severely underestimated
if we ignored the GMEs. For symmetric tolerances cases, Pearn and Liao (2005) eval-
uated C,; index factoring for GMEs, and the results indicated that their omission ren-
ders power testing imperceptible. Wu (2011) applied the generalized confidence interval
to investigate the impact of GMEs on the same index. For asymmetric tolerances cases
Rakhmawati, Yang, and Wu (2016), Rakhmawati, Wu, and Yang (2016), Rakhmawati,
Kim, and Sumiati (2020), and Grau (2011) showed the impact of GMEs on assessing
PCIs. For one-sided tolerances, Grau (2013) showed the significant impact of GMEs to
estimate the PCIs. Even for an incapability index, measurement errors might have a sig-
nificant impact on detecting the process performance (Gildeh and Ganji, 2019). Most
recently, Brik et al. (2019) assessed Cj, using a sampling plan in the presence of meas-
urement system errors. Per our literature review, there is no available work on an
acceptance sampling plan based on C,; index accounts for GMEs even though Cp is
the most widely used index in manufacturing industries. To compensate for information
needs regarding an acceptance sampling plan that accounts for GMEs, this paper inves-
tigates a C,; index-based acceptance sampling plan in which the quality characteristics
of the products follow a normal distribution.

2. Methods
2.1. Sampling distribution of Cp index and its acceptance sampling plans

PCIs are extensively used in manufacturing industries to assess process capability. Each
index with unique characteristics has been developed to represent the actual conditions
in real-world applications. The C, index proposed by Kane (1986) and known for its
simplicity, is defined as

USL — LSL
Cp =

60

where USL and LSL represent an upper and lower specification limit, respectively, and
o is the standard deviation of a process. The same author proposed the second index by

taking into account for process departure from the midpoint of the specification limits
M. 1t is defined as

(1)
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d—|u—M|
k=%
where d = (USL — LSL)/2, M = (USL+ LSL)/2, and p is the process mean. To esti-
mate the natural estimator of C,; index, Kane suggests using the following equation
. d—|X — M|
Cp="735

(2)

(3)

where X = >"" | X;/n is the sample mean and S = \/Z:’:l (X; —X)*/(n—1) is the
sample standard deviation. Note that the above estimator is considered to be from a

process with normal distribution and under statistical control. Pearn and Wu (2013)
obtained an exact form of the cumulative distribution function (CDF) of the natural

estimator Cpk using the integration techniques as follows:
by/n
Fe (0b,) = 1- J c(

0

(n—1)(by/n—t)

Inx?

)« (ole+ evil 4 ol — v @

for x>0 and given Cyx =C, b=d/o can be expressed as b=3C+ [&|, [{]=
3(C, — Cp), &= (u—M)/o, ¢(-) is the probability density function (PDF) of the
standard normal distribution and G(-) is the CDF of the chi-square distribution y,_,.
Thus, Equation (4) may be rewritten as

byn )
1—Fe, (6b,¢) = J G<(”‘”( W‘”) x ([t +evn] + o[t —evm))de  (5)

Inx?

0

To control the lot or process fraction defectives, a sampling plan is considered. Since
the quality characteristic is variable, the acceptable values are defined according to its
LSL and USL. Two points of the specified OC curve are used to design a sampling plan,
(AQL,1 — &) and (LPTD, 8).AQL and LPTD can be described as levels of the product
fraction of defectives corresponding to acceptable and unacceptable quality levels,
respectively. The producer’s risk, o and the consumer’s risk, f values are commonly
ranging from 0.01 to 0.10.

The testing hypothesis to determine whether a given process is capable or not is as
follows

Hy : p = AQL (process is capable)
Hy : p = LTPD (process is not capable)

Hence, Hy : p = AQL is equivalent to Hy : Cyx = Caqr which is to test process cap-
ability and is considered as the level of acceptable quality for Cy; index, corresponding
to process a fraction of defectives AQL (in PPM).

Pearn and Wu (2013) explain the relationship between the index value and fraction
defectives. Therefore, the required inspection sample size n and acceptance critical value
co for the sampling plan can be derived by finding the solutions of the following two
nonlinear equations simultaneously:
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Pr{Accepting the product|fraction of defectives p=AQL } >1—« (6)
Pr{Accepting the product|fraction of defectives p = LPTD } < 8 (7)

Given Cyx = C, b can be expressed as b = 3C + |&|. Thus, the probability of accepting
the product can be expressed as

Tase(Cpr) = P(Cpic > eolC
= 1 s Fépk<C0, b, é)

(8)

where Fg (co,b,&) =1 - Jobﬁ G(%) x (p[t + &v/n] + @[t — Ey/n])dt, simply

changed parameter x on Equation (4) by ¢;. Accordingly, those nonlinear equations can
be rewritten as

I—OCS I_Fépk(c())bl)é) (9)

B>1—Fg (co b2 &) (10)

Pk
where by = 3Caqr + |€| andb, = 3Crrpp + |£]. Pearn and Wu (2013) noted that the
smallest possible value of n which is satisfied Equations (9) and (10) will be the required
sample size n. They also suggested using £ =1 to obtain reliable #n and ¢, without hav-
ing to estimate the parameter . Pearn and Liao (2005) also suggest the same value of &
since the minimum lower bound obtains its minimum on that value for all cases. To
solve Equations (9) and (10), they proposed the following equations:

Si(n, o) < (1 — Fe, (o, by, 5)) —(1-a) (11)

$2(n, ¢o) < (1 - Fépk(co,b2,5)> - B (12)

From Equations (11) and (12) they got the surface and contour plots for each equation
and then plot them together to see the interaction. The solution to nonlinear simultan-
eous Equations (9) and (10) is the interaction of S;(n,¢y) and S,(n,¢) in contour plots
at level 0.

2.2. Sampling distribution of C, considering GMEs

The above section briefly discusses the sampling distribution of C,; without considering
GMEs. As we know, PCIs are unknown and estimated from the sample data. A certain
amount of uncertainty can be present in the evaluation of the process performance and
might lead to unreliable decisions. Therefore, providing accurate required sample size
and decision-making rule for product sentencing in the presence of measurement errors
is indeed necessary. Suppose that the relevant characteristic expressed as X ~ N(u, ),
Cyr provides a measure of true capability. In practice, unfortunately, the observed vari-
able Y =X+ G is examined rather than variableX and G is measurement errors
described as a random variable G ~ N(0,0%). It can thus be assumed thatX andG are
stochastically independent so that Y &~ N(uy = p, 0% = 6 + 6¢). The PCI with conta-
minated data can be described as follows



2650 D. Y. RAKHMAWATI AND J. LEE

cY _d_|/v‘Y_M‘

= 13

For assessing process capability with contaminated data, Pearn and Liao (2005) defined
the estimator of Cpy as

.y d—|Y-M
Cor = % (14)
_ _ 1/2

where Y =3",Y;/n and Sy = [Zle (Y;— Y)*/(n— 1)} are the estimators of
mean and standard deviation for the empirical process, respectively. Pearn and Liao
(2005) considered the sample data as the empirical data that contaminated with error,
Y;,i=1,2,...n. To consider the GMEs on process capability assessment, the use of the
gauge capability is needed. Montgomery and Runger (1993) defined it as

o 66(;
~ USL — LSL

Based on the preceding definitions, the relationship between the true and the empirical
process capability can be defined as follows:

J x 100%. (15)

= (16)
Gk 1422
The CDF of C;k can thus be defined as follows:
b/ G((l’l—l)(by\/ﬁ—t)>
For(x) =1~ Inx2 (17)
Pk

o x(op[t+ " vn] + @[t — & y/n))dt

where b" = 3C), & = 3(Cy = Cp)y G =G/ 41+ 22, Coe = Cor/ /1 + XZC}Z, (see

Pearn and Liao, 2005).

2.3. Process yield of é:kconsidering GMEs

According to Chang and Wu (2008), process yield is a part of measuring process per-
formance, it is represented by the percentage of units passing the inspection. Under the
normality assumption, Boyles (1991) provided the upper and the lower bounds on yield
associated with Cy as 20(3Cy) — 1 < yield < ®(3Cy), where ®(x) is the CDF of the
standard normal distribution. Furthermore, in terms of non-conforming PPM (part per
million), we can calculate the process yield as follows

10° x ®(—3Cp) < PPM < 10° X 2 x ®(—3Cy). (18)

To investigate the behavior of PPM in consideration of GMEs, we substitute Cy with
Cyy. as follows

106 x @(—3c§k) < PPM < 10° x 2 x cb(—sc;”k). (19)
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Table 1. Index values and the corresponding nonconforming units (PPM) for A = 0.00,0.05,0.10,
0.15.

A
0.00 0.05 0.10 0.15

Lower Upper Lower Upper Lower Upper Lower Upper
Cok bound bound bound bound bound bound bound bound
0.60 35930 71861 36084 72168 36545 73090 37315 74629
0.65 25588 51176 25728 51455 26147 52294 26849 53698
0.70 17864 35729 17987 35974 18356 36712 18976 37952
0.75 12224 24449 12329 24658 12643 25287 13174 26348
0.80 8198 16395 8284 16567 8544 17087 8985 17969
0.85 5386 10772 5455 10910 5664 11327 6020 12040
0.90 3467 6934 3520 7041 3683 7367 3963 7926
0.95 2186 4372 2226 4453 2350 4700 2564 5128
1.00 1350 2700 1379 2759 1471 2941 1630 3261
1.05 816 1633 837 1675 903 1806 1019 2038
1.10 483 967 498 996 544 1088 626 1253
1.15 280 561 290 580 321 643 379 757
1.20 159 318 166 331 186 373 225 450
1.25 88 177 93 185 106 212 132 263
1.30 48 96 51 101 59 119 76 152
133 33 66 35 70 41 83 54 108
1.35 26 51 27 54 32 65 43 86
1.40 13 27 14 29 17 35 24 48
1.45 7 14 7 15 9 18 13 26
1.50 3 7 4 7 5 10 7 14
1.55 2 3 2 4 2 5 4 8
1.60 1 2 1 2 1 2 2 4
1.65 0 1 0 1 1 1 1 2
1.67 0 1 0 1 0 1 1 2
1.70 0 0 0 0 0 1 1 1
1.75 0 0 0 0 0 0 0 1
1.80 0 0 0 0 0 0 0 0
1.85 0 0 0 0 0 0 0 0
1.90 0 0 0 0 0 0 0 0
1.95 0 0 0 0 0 0 0 0
2.00 0 0 0 0 0 0 0 0

Tables 1 and 2 display various values of Cy; with a step of 0.05 between 1.00 and 2.00,
and the corresponding possible lower and upper bounds of nonconforming units in
PPM for different 4 = 0.00,0.05,0.10,0.15,0.20,0.25,0.30. We also set the index value
of 1.33 and 1.67, which according to Pearn and Wu (2007) are important as minimum
capability requirements in manufacturing industries.

Figures 1 and 2 demonstrate that the nonconforming units increase as A increases.
This phenomenon aligns with the theory that the true process capability would be
underestimated if we calculate the process capability based on the contaminated data.
Note that the chosen indices values in these are based on the commonly used parameter
in manufacturing industries.

3. Results
3.1. Designing Cp acceptance sampling plans considering GMEs

Most research works related to an acceptance sampling plan are carried out under the
assumption of no GMEs. Unfortunately, such an assumption does not reflect the
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Table 2. Index values and the corresponding nonconforming units (PPM) for 1 = 0.20,0.25,0.30.

A

0.20 0.25 0.30

Lower Upper Lower Upper Lower Upper
Cok bound bound bound bound bound bound
0.60 38393 76786 39781 79561 41478 82956
0.65 27836 55673 29113 58227 30685 61370
0.70 19852 39704 20993 41986 22407 44814
0.75 13929 27858 14920 29839 16159 32318
0.80 9617 19234 10455 20910 11515 23029
0.85 6536 13071 7227 14453 8112 16225
0.90 4373 8746 4929 9859 5654 11307
0.95 2882 5763 3320 6639 3900 7801
1.00 1871 3741 2208 4417 2665 5330
1.05 1197 2394 1452 2904 1805 3609
1.10 755 1510 944 1887 1212 2424
1.15 470 939 607 1214 808 1615
1.20 288 576 386 773 534 1069
1.25 175 349 244 487 351 702
1.30 104 209 152 304 230 459
133 76 153 114 228 177 355
1.35 62 123 94 188 149 298
1.40 36 72 58 116 97 193
1.45 21 42 35 71 62 124
1.50 12 24 21 43 40 80
1.55 7 13 13 26 26 51
1.60 4 8 8 15 16 33
1.65 2 3 4 7 9 17
1.67 2 4 5 9 10 21
1.70 1 2 3 5 7 13
1.75 1 1 1 3 4 8
1.80 0 1 1 2 3 5
1.85 0 0 1 1 2 3
1.90 0 0 0 1 1 2
1.95 0 0 0 0 1 1
2.00 0 0 0 0 0 1

practical situations when GMEs are inevitable. Thus, in this paper, we consider a sam-
pling plan variable to control the process fraction of defectives by accounting for GMEs.
The acceptance sampling plan for C, without considering GMEs can be applied by

replacing some parameters for considering GMEs. By substituting b by b¥, b; by b} =

<3 (CAQL/ 1+12C12,> + |fy|>, b, by by = <3 <CLTPD/ 1+/12C§> + |5y|),f by ¢
to Equations (8)-(12), we can get Equations (20)-(22) as follows:

Tysp (Cﬁ) =1- FéPYk (co, 0", Ey) (20)
1—a<1—Fu (co,b],¢y) (21)
Pk
B>1—F.(co,by,Ey) (22)
pk

Sf(n, ) < (1 — FC:k (co,bf,éy)) —(1—a) (21)
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Figure 1. Lower bounds on nonconforming units in PPM versus A for Cy = 1.33, 1.15, 1.67, 2.00
(from top to bottom in plot).
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Figure 2. Upper bounds on nonconforming units in PPM versus 4 for Cy = 1.33, 1.15, 1.67, 2.00
(from top to bottom in plot).

Sg(”’ c) < (1 - FC:k (Co)b§>éy)) - (22)

For Caqr = 1.33 and Cprpp = 1.00, Figures 3 and 4 display the surfaces and contour
plots of Equations (21) and (22) simultaneously for 4 = 0.10, with o = 0.025, and f§ =
0.01, respectively. Figures 9 and 10 demonstrate that the interaction between S (n,¢))
and SY(n,¢y) occurs in contour curves at level 0 and (n,¢)) = (137,1.1630) for /=
0.10, which is the solution of nonlinear Equations (21) and (22). In other words, the
minimum required sample size n = 137 and critical acceptance value ¢y = 1.1630 of the
sampling plan are based on the capability indexCIfk. On the other hand, forZ = 0.00,

(n,co) is equal to (136,1.1790) based on the capability index Cpi (please see Table 3).
Thus, if the measurement is contaminated with errors and we compare it with a rele-
vant acceptance of critical value, the product lots may be erroneously rejected.

For practical applications, we calculate and tabulate the required sample sizes (n) and
the critical acceptance values (co) for the sampling plans considering GMEs. Those
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1

0.5

SY(n,c0)

n 0 08 c0

Figure 3. Surface Plot of S and S} for Caqr = 1.33, Crrpp = 1.00, o = 0.025, = 0.01, 4 = 0.10..

0.8

20 40 60 80 100 120 140 160 180 200
n

Figure 4. Contour Plot of S} andS} for Caqr = 1.33, Crrpp = 1.00, o = 0.025, = 0.01, 2 =0.10..

values for different combinations of producer’s-risk and buyer’s-risk with various bench-
marking quality levels of (Caqr, Crprp) and A can be see on the Appendix. Several value
of a =0.010,0.025,0.050,0.075,0.100 and /5 = 0.010,0.025,0.050,0.075,0.100 represent-
ing commonly used producer’s and consumer’s risk, respectively. Various commonly used
benchmarking quality levels, (Caqr, Crprp) = (1.33, 1.00), (1.50, 1.33), (1.67, 1.33)
and (2.00, 1.67) are representing the level of acceptability correspond to the lot or process
fraction defectives AQL and LPTD, respectively. Several degrees of contamination of GME
A = {0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30} representing small to large errors contamination
are considered. Note that in practice, 4 value can be obtained by conducting a gauge
Repeatability and Reproducibility (R&R) study. It is used to define the amount of variation
in the measurement data (i.e., equipment variation and operator variation) due to the meas-
urement system. It then compares measurement variation to the total variability observed,
thus the capability of the measurement system can be obtained. The user can calculate a
sampling plan value that is not tabulated by solving Equations (21) and (22), then using



COMMUNICATIONS IN STATISTICS—THEORY AND METHODS ‘ 2655

Table 3. Required sample sizes (n) and critical values (co) for various o and f with selected Caqr =
1.33, Cyrpp = 1.00 and 4 = 0.00,0.05,0.10,0.15,0.20.

A
0.00 0.05 0.10 0.15 0.20
o p n Co n C n Co n Co n C
0.01 0.01 158 1.1645 158 1.1605 159 1.1487 159 1.1299 160 1.1050
0.025 132 1.1510 132 1.1470 133 1.1354 133 1.1167 134 1.0921
0.05 112 1.1372 112 1.1333 13 1.1218 113 1.1034 114 1.0791
0.075 100 1.1271 100 1.1233 100 1.1119 101 1.0936 101 1.0695
0.10 91 1.1186 91 1.1148 91 1.1035 92 1.0854 92 1.0614
0.025 0.01 136 1.1790 136 1.1750 137 1.1630 137 1.1440 138 1.1188
0.025 113 1.1655 113 1.1615 113 1.1497 114 1.1308 114 1.1059
0.05 94 1.1517 94 1.1477 94 1.1361 95 1.1175 96 1.0928
0.075 83 1.1414 83 1.1375 83 1.1260 84 1.1075 84 1.0831
0.10 75 1.1327 75 1.1288 75 1.1173 75 1.0990 76 1.0748
0.05 0.01 119 1.1937 119 1.1896 119 1.1776 120 1.1582 121 1.1327
0.025 97 1.1805 97 1.1764 97 1.1645 98 1.1454 98 1.1202
0.05 80 1.1669 80 1.1629 80 1.1511 81 1.1322 81 1.1072
0.075 70 1.1566 70 1.1526 70 1.1409 70 1.1222 71 1.0974
0.10 62 1.1477 62 1.1438 62 1.1322 63 1.1136 63 1.0890
0.075 0.01 108 1.2047 108 1.2006 109 1.1884 109 1.1689 110 1.1431
0.025 87 1.1919 87 1.1878 88 1.1757 88 1.1564 89 1.1309
0.05 71 1.1785 71 1.1745 71 1.1625 72 1.1435 72 1.1182
0.075 62 1.1683 62 1.1643 62 1.1525 62 1.1336 62 1.1086
0.10 55 1.1595 55 1.1555 55 1.1438 55 1.1250 55 1.1002
0.10 0.01 100 1.2140 101 1.2098 101 1.1976 101 1.1779 102 1.1520
0.025 80 1.2016 80 1.1975 81 1.1853 81 1.1659 82 1.1402
0.05 65 1.1886 65 1.1845 65 1.1725 65 1.1533 66 1.1278
0.075 56 1.1787 56 1.1746 56 1.1627 56 1.1436 57 1.1184
0.10 49 1.1700 49 1.1659 49 1.1541 50 1.1351 50 1.1101

the solving system of nonlinear equations in Matlab software. In this case, we used the
“fsolve” command to solve the problem.

If the benchmarking quality level (Caqr, Crprp) is set to(1.33,1.00) with o« = 0.01,
p =0.05, and 4 = 0.1, then the corresponding sample size and critical acceptance value
would be obtained as (n,¢p) = (113,1.1167). The lot will be accepted if the 113

inspected product items yield measurements with C’;]k > 1.1167. Figures 5-12 demon-

strate that n increases as A increases (with an accuracy up to 107°) and ¢, decreases as
/ increases. This means disregarding GMEs results in an underestimation of true pro-
cess capability. To obtain a reliable decision we should thus use the adjusted required
sample size and acceptance critical value.

Besides, the greater o, f, the smaller the sample size required for inspection, which
can cause the customer to suffer from accepting a bad lot. Therefore, a larger sample
size is required to reduce the number of defective products considered good.
Furthermore, for fixed «, f, andCprpp, the required sample size decrease in inverse
proportion to Cuqr.

On Tables 3-10, n and ¢, are obtained based on given values of o, , AQL, and
LPTD. If the estimated Cgk value is greater than ¢y, then the consumer accepts the
product. Otherwise, we lack sufficient information to conclude that the process meets
the present capability requirement, hence the consumer will reject the product lot. The
procedure for the proposed sampling plan is as follows:
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Figure 5. A plot of n with 4 for Caqr = 1.33, Coprp = 1.00, o = 0.025, f = 0.010, 0.025, 0.050,
0.075, 0.100 (from top to bottom).

750

700+

6504

600

550

500

450

Required sample size considering GME

400

0.00 0.05 0.10 015 0.20 0.25 0.30
Lambda

Figure 6. A plot of n with 4 for Cyq, = 1.55, Cprp = 1.00, o= 0.025, § = 0.010, 0.025, 0.050,
0.075, 0.100 (from top to bottom).

oy —

180

160

“o4 0000000000000 |

1204

Required sample size considering GME

1004

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Lambda

Figure 7. A plot of n with A for Cyor = 1.67, Crprp = 1.33, a= 0.025, f = 0.010, 0.025, 0.050,
0.075, 0.100 (from top to bottom).



COMMUNICATIONS IN STATISTICS—THEORY AND METHODS . 2657

325

3004

2754

250

2254

200+

Required sample size considering GME

1754

150+ T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.
Lambda

W

0

Figure 8. A plot of n with 4 for C4q= 2.00, Ciprp = 1.67, o= 0.025, f = 0.010, 0.025, 0.050, 0.075,
0.100 (from top to bottom).

1.20
w
8 115
o
i
()
b
3
c
8 1.10-
[
3
J
>
T
£ 1.054
S
1.004 . : : ; T
0.00 0.05 0.10 0.15 0.20 0.25 0.30
Lambda

Figure 9. A plot of ¢o with A for C4qr = 1.33, Crprp = 1.00, o= 0.025, f = 0.010, 0.025, 0.050,
0.075, 0.100 (from top to bottom).

1.45

1.40

1.35

1.30

Critical Value Considering GME

/

1.25+

1.204 . . i
0.00 0.05 0.10 0.15 0.20 0.25 0.
Lambda

w

0

Figure 10. A plot of ¢; with 4 for C4qr = 1.55, Coprp = 1.00, & = 0.025, f = 0.010, 0.025, 0.050,
0.075, 0.100 (from top to bottom).



2658 D. Y. RAKHMAWATI AND J. LEE

1.554

1.50

1.45

1.40

1.35

Critical Value Considering GME

/

1.30

1.25

0.00 0.05 0.10 0.15 0.20 0.25 0.
Lambda

W

0

Figure 11. A plot of ¢o with A for Cuqr, = 1.67, Ciprp = 1.33, = 0.025, f = 0.010, 0.025, 0.050,
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Step 1: Determine the process capability requirements (i.e. Caqr, Crrep), @ f and 4.

Step 2: Check Tables 3-10 to find the required sample size and the corresponding crit-
ical acceptance value, (n ¢o) based on the given values of Step 1.

Step 3: Calculate the estimate Cp from the n sampled data for 1nspect10n

Step 4: Decide to either accept theyennre lot if the estimated C., ok value is greater than
the critical value ¢y, (i.e., C « > Co) or to otherwise, reject the entire lot.

3.2. Case study

A bilateral switch, widely used for electronic devices, is designed to conduct or isolate
analog or digital signals (both voltage and current) to support analog applications (i.e.
audio and video data transmission). One of the main parameters of a bilateral switch is
its signal range; voltages values should be within specification limits. If these are below
or above the limits, the component will be damaged. A particular bilateral switch is a
high-speed Si-gate complementary metal-oxide-semiconductor (CMOS). Its features
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Table 4. Required sample sizes (n) and critical values (co) for various o and f with selected Caqr =
1.33, Crrpp = 1.00, and 4 = 0.25,0.30.

A
0.25 0.3
o p n Co n C
0.01 0.01 162 1.0753 163 1.0421
0.025 135 1.0627 137 1.0298
0.05 115 1.0501 116 1.0176
0.075 102 1.0408 103 1.0086
0.10 93 1.0329 94 1.0009
0.025 0.01 140 1.0887 141 1.0550
0.025 115 1.0762 116 1.0429
0.05 96 1.0634 97 1.0306
0.075 85 1.0539 86 1.0213
0.10 77 1.0459 77 1.0135
0.05 0.01 122 1.1023 123 1.0682
0.025 29 1.0900 100 1.0563
0.05 82 1.0774 83 1.0441
0.075 71 1.0679 72 1.0349
0.10 64 1.0597 64 1.0269
0.075 0.01 LN 1.1124 112 1.0780
0.025 89 1.1005 90 1.0665
0.05 73 1.0882 74 1.0545
0.075 63 1.0787 64 1.0454
0.10 56 1.0706 56 1.0375
0.10 0.01 103 1.1210 104 1.0863
0.025 82 1.1095 83 1.0752
0.05 66 1.0975 67 1.0635
0.075 57 1.0883 58 1.0546
0.10 50 1.0802 51 1.0468

Table 5. Required sample sizes (n) and critical values (co) for various o and f with selected Caqr =
1.50, Crrpp = 1.33 and 4 = 0.00,0.05,0.10,0.15,0.20.

A
0.00 0.05 0.10 0.15 0.20

0.01 0.01 775 1.4148 775 1.4089 775 1.3916 840 1.3642 845 1.3284
0.025 704 1.4077 704 1.4018 705 1.3847 708 1.3573 712 13217
0.05 600 1.4005 601 1.3947 602 1.3775 605 1.3504 608 1.3149
0.075 537 1.3952 538 1.3894 539 13723 541 1.3452 545 1.3099
0.10 491 1.3907 492 1.3849 493 1.3679 495 1.3409 498 1.3057
0.025 0.01 713 1.4222 713 1.4163 715 1.3989 718 13713 722 13353
0.025 593 1.4151 593 1.4092 595 1.3919 597 1.3644 600 1.3286
0.05 498 1.4078 498 1.4019 500 1.3847 502 13574 505 13218
0.075 441 1.4024 441 1.3965 442 13794 444 1.3522 447 1.3166
0.10 399 13977 400 13919 401 13748 402 1.3477 405 13123
0.05 0.01 616 1.4297 616 1.4237 618 1.4062 621 1.3785 624 1.3423
0.025 505 1.4227 505 1.4167 506 13993 508 13717 511 13357
0.05 418 1.4154 418 1.4095 419 1.3922 421 1.3647 423 1.3289
0.075 366 1.4099 366 1.4040 367 1.3868 368 1.3594 371 13237
0.10 328 1.4052 328 1.3993 329 1.3821 330 1.3549 332 1.3193
0.075 0.01 557 1.4352 557 1.4292 559 14117 561 1.3838 564 1.3475
0.025 451 1.4284 452 1.4224 453 1.4050 455 13772 457 1.3411
0.05 369 1.4212 370 1.4153 371 13979 372 1.3704 374 13344
0.075 321 1.4158 321 1.4098 322 1.3925 323 1.3651 325 1.3292
0.10 285 14110 285 1.4051 286 13879 287 1.3605 289 1.3247
0.10 0.01 513 1.4399 514 1.4339 515 1.4163 517 1.3884 520 1.3519
0.025 412 1.4333 413 1.4273 414 1.4098 415 1.3820 418 1.3457
0.05 334 1.4263 334 1.4203 335 1.4029 337 1.3752 339 1.3391
0.075 288 1.4209 288 1.4149 289 13976 290 1.3700 292 1.3340
0.10 254 1.4161 255 1.4102 255 1.3929 256 1.3654 258 1.3296




2660 D. Y. RAKHMAWATI AND J. LEE

Table 6. Required sample sizes (n) and critical values (co) for various o and f with selected Caqr =
1.50, Cyrpp = 1.33 and 4 = 0.25,0.30.

A
0.25 0.3
o p n Co n C
0.01 0.01 851 1.2862 859 1.2397
0.025 718 1.2797 725 1.2335
0.05 613 1.2732 618 1.2272
0.075 549 1.2683 554 1.2225
0.10 502 1.2642 506 1.2185
0.025 0.01 728 1.2929 734 1.2462
0.025 605 1.2864 610 1.2399
0.05 509 1.2798 513 1.2335
0.075 450 1.2748 454 1.2288
0.10 408 1.2706 412 1.2247
0.05 0.01 629 1.2997 634 1.2527
0.025 515 1.2933 520 1.2466
0.05 427 1.2867 430 1.2402
0.075 373 1.2817 377 1.2354
0.10 335 1.2774 338 1.2312
0.075 0.01 568 1.3047 573 1.2576
0.025 461 1.2985 465 1.2516
0.05 377 1.2920 380 1.2453
0.075 327 1.2870 330 1.2405
0.10 291 1.2827 294 1.2363
0.10 0.01 524 1.3090 529 1.2617
0.025 421 1.3029 424 1.2558
0.05 341 1.2966 344 1.2497
0.075 294 1.2916 296 1.2450
0.10 260 1.2873 262 1.2408

Table 7. Required sample sizes (n) and critical values (co) for various o and f with selected Caqr =
1.67, Crrpp = 1.33 and A = 0.00,0.05,0.10,0.15,0.20.

A
0.00 0.05 0.10 0.15 0.20
o p n Co n Co n Co n C n C
0.01 0.01 232 1.4994 232 1.4920 233 1.4702 234 1.4360 236 1.3919
0.025 195 1.4853 195 1.4779 196 1.4564 197 1.4225 198 1.3789
0.05 166 1.4712 166 1.4638 166 1.4425 167 1.4089 168 1.3657

0.075 148 1.4607 148 1.4534 148 1.4323 149 1.3989 150 13559
0.10 135 1.4519 135 1.4447 135 1.4236 136 1.3905 137 1.3478

0.025 0.01 200 15144 200 1.5068 201 1.4849 201 1.4503 203 1.4057
0.025 165 1.5003 166 1.4928 166 14711 167 1.4368 168 1.3927
0.05 139 1.4860 139 1.4786 139 1.4571 140 1.4232 140 13794

0.075 122 1.4754 122 1.4680 123 1.4466 123 1.4129 124 1.3695
0.10 110 1.4663 m 1.4590 m 1.4377 m 1.4042 112 13611

0.05 0.01 174 1.5294 174 15218 175 1.4997 175 1.4648 176 1.4197
0.025 142 15157 142 1.5081 142 1.4862 143 1.4516 144 1.4070
0.05 17 15016 17 1.4941 118 1.4723 118 1.4380 119 1.3938
0.075 102 1.4908 102 1.4834 103 1.4618 103 1.4278 104 1.3839
0.10 91 1.4816 92 1.4743 92 1.4528 92 1.4189 93 1.3753
0.075 0.01 158 1.5407 158 1.5330 159 15107 159 1.4755 160 1.4302
0.025 128 15273 128 15197 128 1.4976 129 1.4627 129 1.4178
0.05 104 15134 104 1.5059 105 1.4840 105 1.4494 106 1.4049
0.075 90 1.5028 90 1.4954 90 1.4736 91 1.4393 91 1.3950
0.10 80 1.4937 80 1.4862 80 1.4646 81 1.4305 81 1.3865
0.10 0.01 146 1.5502 146 1.5425 147 1.5200 147 1.4847 148 1.4390
0.025 17 15373 117 1.5297 118 15074 118 1.4723 119 1.4270
0.05 95 1.5238 95 15162 95 1.4941 95 1.4593 96 1.4145

0.075 81 15134 81 1.5058 82 1.4839 82 1.4493 83 1.4048
0.10 72 1.5043 72 1.4968 72 1.4750 72 1.4406 73 1.3963
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Table 8. Required sample sizes (n) and critical values (co) for various o and f with selected Caqr =
1.67, CLTPD =1.33and 1 = 0.25,0.30.

A
0.25 0.3
o p n Co n C
0.01 0.01 238 1.3407 240 1.2853
0.025 199 1.3281 201 1.2732
0.05 169 1.3154 171 1.2610
0.075 151 1.3061 153 1.2520
0.10 138 1.2982 139 1.2445
0.025 0.01 204 1.3541 206 1.2980
0.025 169 1.3415 171 1.2860
0.05 142 1.3287 143 1.2737
0.075 125 1.3192 126 1.2646
0.10 113 1.3110 114 1.2568
0.05 0.01 178 1.3676 179 1.3110
0.025 145 1.3553 146 1.2992
0.05 120 1.3426 121 1.2870
0.075 104 1.3330 105 1.2778
0.10 93 1.3247 94 1.2699
0.075 0.01 161 1.3776 163 1.3206
0.025 130 1.3656 132 1.3091
0.05 106 1.3532 107 1.2972
0.075 92 1.3437 93 1.2881
0.10 82 1.3355 83 1.2802
0.10 0.01 149 1.3861 151 1.3287
0.025 120 1.3746 121 1.3177
0.05 97 1.3624 98 1.3060
0.075 83 1.3531 84 1.2971
0.10 73 1.3450 74 1.2893

Table 9. Required sample sizes (n) and critical values (co) for various o and f§ with selected Cpqr =
2.00, C ypp = 1.67 and / = 0.00,0.05,0.10,0.15,0.20.

A

0.00 0.05 0.10 0.15 0.20

0.01 0.01 357 1.8345 358 1.8221 359 1.7865 360 1.7315 362 1.6624
0.025 301 1.8207 301 1.8085 302 1.7731 303 1.7185 305 1.6499
0.05 256 1.8069 256 1.7947 257 1.7596 258 1.7055 259 1.6374
0.075 229 1.7967 229 1.7846 229 1.7497 230 1.6958 232 1.6281
0.10 209 1.7881 209 1.7760 209 1.7413 210 1.6877 212 1.6203
0.025 0.01 307 1.8489 307 1.8364 308 1.8005 309 1.7451 3N 1.6755
0.025 254 1.8352 255 1.8228 255 1.7872 256 1.7322 258 1.6630
0.05 213 1.8212 213 1.8090 214 1.7736 215 1.7190 216 1.6504
0.075 188 1.8108 189 1.7986 189 1.7634 190 1.7091 191 1.6409
0.10 170 1.8019 171 1.7898 171 1.7548 172 1.7007 173 1.6328

0.05 0.01 266 1.8635 266 1.8509 267 1.8148 268 1.7589 270 1.6887
0.025 218 1.8501 218 1.8376 218 1.8017 219 1.7462 221 1.6765
0.05 180 1.8362 180 1.8238 180 1.7882 181 1.7331 182 1.6639

0.075 157 1.8257 157 1.8134 158 17779 158 1.7232 159 1.6544
0.10 141 1.8167 141 1.8044 141 1.7691 142 1.7147 143 1.6462

0.075 0.01 241 1.8743 242 1.8617 242 1.8253 243 1.7691 245 1.6985
0.025 195 1.8613 195 1.8487 196 1.8126 197 1.7568 198 1.6867
0.05 159 1.8476 160 1.8352 160 1.7993 161 1.7439 162 1.6743

0.075 138 1.8372 138 1.8248 139 1.7892 139 1.7341 140 1.6649
0.10 123 1.8282 123 1.8159 123 1.7804 124 1.7255 124 1.6567

0.10 0.01 223 1.8836 223 1.8709 224 1.8343 225 1.7778 226 1.7068
0.025 179 1.8709 179 1.8583 179 1.8220 180 1.7659 181 1.6954
0.05 145 1.8576 145 1.8451 145 1.8090 146 1.7533 147 1.6833

0.075 124 1.8473 125 1.8349 125 1.7990 125 1.7436 126 1.6740
0.10 110 1.8384 110 1.8260 110 1.7903 m 1.7352 m 1.6659
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Table 10. Required sample sizes (n) and critical values (cp) for various o and f with selected
CAQL = 2.00, CLTpD =1.67and 1 = 0.25,0.30.

A
0.25 0.3
o p n Co n C
0.01 0.01 365 1.5846 368 1.5029
0.025 307 1.5727 310 1.4916
0.05 261 1.5608 264 1.4803
0.075 233 1.5520 236 1.4719
0.10 213 1.5445 215 1.4649
0.025 0.01 313 1.5971 316 1.5147
0.025 260 1.5852 262 1.5035
0.05 218 1.5732 220 1.4920
0.075 192 1.5641 194 1.4835
0.10 174 1.5564 176 1.4762
0.05 0.01 272 1.6097 274 1.5267
0.025 222 1.5981 224 1.5156
0.05 184 1.5861 185 1.5043
0.075 160 1.5770 162 1.4957
0.10 144 1.5692 145 1.4882
0.075 0.01 246 1.6190 249 1.5355
0.025 199 1.6077 201 1.5248
0.05 163 1.5959 164 1.5136
0.075 141 1.5869 142 1.5051
0.10 125 1.5791 126 1.4977
0.10 0.01 228 1.6270 230 1.5431
0.025 182 1.6160 184 1.5327
0.05 148 1.6045 149 1.5218
0.075 127 1.5957 128 1.5133
0.10 112 1.5879 113 1.5060

Mean 5.091
StDev 0.1174
N 80
AD 0.478
P-Value  0.230

Percent
8

0.1- T T T T T T T T
Y/ 4.8 419 5.0 Sl 5.2 5:3 54 54

Observation

Figure 13. Normal probability plot of data.

include high noise immunity, low power dissipation, and balanced propagation delays.
The electrical characteristic of the bilateral switch is Supply Voltage(V,.) and the specifi-
cation limits are set to USL =55V, T =50V, LSL =4.5 V. This specification can
be found in 74V2T66 datasheet, built by STmicroelectronics. The C4qr and Cprprp are
set to 1.33 and 1.00 with o = 0.05 and f# = 0.05. Based on Table 3, the required sample
size and the acceptance critical value are 80 and 1.1669, respectively. Data randomly
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Figure 14. Data histogram.
Table 11. Sample data; 80 observations.
5.264 5.028 4.806 5.090 5.052 5.093 5.110 5.120
5.051 5.089 5.237 4.999 5315 5.084 5.088 5.043
5.134 5.260 4.830 5.279 5112 5.118 5.135 4.866
5123 5.078 4.994 5355 4.847 5218 4.991 4.988
5.146 5363 5.031 5.033 5199 5.000 5359 5.104
4.971 5212 4.954 5.077 5.047 5.056 5.129 4938
5.074 5.092 5.154 5.145 5.088 5.105 4.990 5.080
4.984 5.101 5.107 5.001 4.962 5.155 5.157 5.206
5.063 5.035 5178 5.029 5.032 4.999 4.964 5.071
5.157 5.180 4.822 5.150 5.237 5.224 5.246 5.068
generated from a normal distribution with mean p = 5.00 and standard deviation

0 =0.10, is displayed in Table 11. Figures 13 and 14 show that the data follows a nor-
mal distribution and in control.

Based on the data, we calculate y, sy, and C;k as follows:
y = 5.091
sy = 0.1174

o _d—ly—M|_ 0500910

= = 1.1613.
Pk 3sy 3(0.1174)

The consumer will reject the whole lot since the estimate from the inspection is 1.613
which falls short of the critical acceptance value 1.1669. However, not many factories
conducting the gauge R&R study for their processes. Thus, in this case, if the producer
assumed that their gauge capability is A = 0.1, then the consumer might accept the
entire lot since the critical acceptance value factoring GMEs is 1.1511, greater than the
sample estimator. Comparison of the acceptance/rejection decision of the lot based on
the different value of 4 is as follows:

From Table 12 we can see that different A value results in different required sample
size and critical value of acceptance which lead to accept or reject the lot. Thus, over-
looking GMEs can lead both parties to a wrong decision.
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Table 12. The decision of the lot based on a«=0.05, f=0.05 Csq.=1.33, Crrpp =1.00
and /4 = 0.00,0.05,0.10,0.15,0.20.

0.00 0.05 0.10 0.15 0.20
n Co n Co n Co n Co n Co
80 1.1669 80 1.1629 80 1.1511 81 1.1322 81 1.1072
Decision Reject Accept Accept Accept Accept

4. Summary and discussion

Assessing lot acceptance based on the sampling plan for particular PCIs is widely used
in manufacturing. As one of the important instruments in management, PCIs provide
quantitative measures of manufacturing capability according to specification limits. On
the other hand, an acceptance sampling plan is practical for the assignment of the prod-
uct’s lot. The combination of both tools is useful to confirm that the products meet
high-quality standards. A reliable decision rule for product sentencing is provided for
both producers and buyers. In this paper, we provided the sampling plan considering
GMEs based on the process capability index Cy, one of the popular indices in this
field. The acceptance sampling plan factoring GMEs provides buyers and producers
with reliable decision rules for product sentencing without underestimating process cap-
ability. To make a trustworthy decision, practitioners might use the required sample
size and the critical acceptance value accounted for GMEs.
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