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Adaptive Cost Volume Fusion Network for
Multi-Modal Depth Estimation in Changing

Environments
Jinsun Park , Yongseop Jeong , Kyungdon Joo , Donghyeon Cho , and In So Kweon

Abstract—In this letter, we propose an adaptive cost volume
fusion algorithm for multi-modal depth estimation in changing
environments. Our method takes measurements from multi-modal
sensors to exploit their complementary characteristics and gener-
ates depth cues from each modality in the form of adaptive cost
volumes using deep neural networks. The proposed adaptive cost
volume considers sensor configurations and computational costs to
resolve an imbalanced and redundant depth bases problem of con-
ventional cost volumes. We further extend its role to a generalized
depth representation and propose a geometry-aware cost fusion
algorithm. Our unified and geometrically consistent depth rep-
resentation leads to an accurate and efficient multi-modal sensor
fusion, which is crucial for robustness to changing environments. To
validate the proposed framework, we introduce a new multi-modal
depth in changing environments (MMDCE) dataset. The dataset
was collected by our own vehicular system with RGB, NIR, and
LiDAR sensors in changing environments. Experimental results
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demonstrate that our method is robust, accurate, and reliable in
changing environments. Our codes and dataset are available at our
project page.1

Index Terms—AI-Based methods, data sets for robotic vision,
deep learning for visual perception.

I. INTRODUCTION

R ECENT advances in computer vision and deep learning
research have led to various real-world applications, in-

cluding autonomous driving and unmanned robots for disasters.
In these systems, an accurate depth perception capability is one
of the most important factors to ensure safety and reliability.
Depth information can be obtained using various sensors such
as RGB cameras [1] and LiDARs [2]. However, the depth infor-
mation from individual sensors is usually incomplete and noisy.
Consequently, recent studies [3]–[6] have utilized multi-modal
sensors and fuse depth cues to estimate accurate depth informa-
tion. These methods tend to use existing familiar representations
such as cost volumes [1], [6], [7], 2D depth maps [2]–[4], and
3D point clouds [8].

However, several issues pose as challenges to the multi-modal
depth estimation in a practical setting. Firstly, there is no uni-
versal depth representation that can express the depth cues of
various sensors in a unified manner. For example, conventional
cost volumes are constructed with stereo images and are not
directly applicable to represent depth cues from point clouds.
Secondly, the existing algorithms prioritize specific configu-
rations, such as a stereo RGB [1], [7] and RGB-LiDAR [9],
[10] systems. Consequently, their frameworks are not directly
scalable to different configurations. Moreover, the geometric
configurations between sensors are not thoroughly considered
during sensor fusion [9]. Lastly, real-world applications often
operate under different weather conditions, times, and locations
(i.e., changing environments). However, public depth estimation
datasets [5], [11]–[13] do not provide large-scale data captured
in changing environments.

To overcome these problems, we propose an adaptive cost
volume and extend its role to a generalized and unified depth
representation for various sensors. It resolves redundant [14]
and imbalanced depth bases problems and makes it possible
to represent depth cues from passive and active depth sensors
in a unified manner. Moreover, an efficient geometry-aware
multi-modal cost volume fusion algorithm is proposed. Our
method handles an arbitrary number of sensors for accurate

1https://github.com/zzangjinsun/MMDCE_RAL22
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Fig. 1. Example result of the proposed depth estimation method in a
challenging environment. Note that the depth of a person is correctly estimated
owing to sparse LiDAR points although the person is hardly visible in RGB and
NIR images (yellow boxes).

sensor fusion. We also introduce a new multi-modal depth in
changing environments (MMDCE) dataset that includes various
environmental changes. Our dataset was captured using stereo
RGB, stereo NIR, and LiDAR sensors installed in a vehicular
system to obtain complementary sensor data simultaneously.
Our algorithm was evaluated on public outdoor [12] and our
datasets to demonstrate its robustness, accuracy, and reliability in
changing environments. A real-world depth estimation example
in extreme light conditions is shown in Fig. 1.

II. RELATED WORK

In this section, we introduce recent studies on deep learning-
based depth estimation methods and multi-modal sensor systems
and datasets.

Depth Estimation: Conventional depth estimation methods
have utilized diverse input modalities for dense depth estimation.
First of all, depth estimation can use either a single image [11]
or stereo images [1], [7]. Chang and Chen [1] have constructed a
cost volume that is iteratively refined by stacked hourglass net-
works using stereo images. MVSNet [15] and R-MVSNet [16]
estimated a depth map from multi-view images by warping
features from multi-view images to the reference frame. Fur-
thermore, multi-modal information is proven to be effective for
depth estimation. Liang et al. [17] estimated the depth from RGB
and NIR images via spectral translation. Pseudo-LiDAR [18],
[19] and PLUMENet [20] utilized cost volumes for the depth
estimation and generated pseudo-LiDAR features for 3D object
detection. Cheng et al. [4] proposed a noise-aware LiDAR and
stereo RGB fusion network. However, these studies constructed
cost volumes using a fixed disparity (or depth) range. Therefore,
matching cost values should be calculated for each disparity
basis regardless of the actual depth of a pixel. In other words,
the redundant depth bases problem exists. DeepPruner [14]
proposed a confidence range prediction to estimate the lower
and upper bounds of the disparity range. However, this method
still utilizes a fixed disparity interval between adjacent cost slices
and does not consider sensor configurations (e.g., intrinsic and
extrinsic parameters).

Unlike previous methods, we utilize an adaptive cost volume
as a generalized and unified depth representation for various
types of sensors. The algorithm considers the overall geometric
configuration of the system (i.e., intrinsic and extrinsic param-
eters) together with the trade-off between accuracy and com-
putational efficiency. To be specific, it adopts adaptive disparity
and depth intervals between adjacent cost slices. This strategy in-
creases the efficiency and maintains accuracy simultaneously by
removing tiny disparity and depth spacing between adjacent cost
slices while preserving distinctive depth bases. Furthermore,

the cost volumes from multiple sensors are constructed to be
geometrically consistent, ensuring the accuracy and efficiency
in our sensor fusion process.

Multi-Sensor System and Dataset: Varieties of multi-sensor
systems have recently been developed and used not only for
academic purposes but also practical applications [21]–[24].
Geiger et al. [12] developed a vehicular system equipped with
multiple cameras, a GNSS sensor, and a high-definition Li-
DAR for autonomous driving. Choi et al. [13] introduced a
multi-spectral dataset containing RGB and thermal images. This
dataset was captured at various times throughout the 24-hour
cycle to ensure robust perception algorithm development. Bi-
jelic et al. [25] proposed a multi-sensor system comprising a
gated camera, RGB cameras, a LiDAR, and an FIR camera. The
authors provide a large-scale dataset, called DENSE, captured
in the real-world driving scenes over a wide range of areas for
robust object detection in adverse weather conditions.

Unlike existing datasets, our multi-modal depth dataset pro-
vides depth information under various environmental changes
with the help of our sensor system, which can operate under
changing environments reliably.

III. MULTI-MODAL DEPTH ESTIMATION

In this section, we first formally define the multi-modal depth
estimation problem, and then we describe the manner in which
adaptive depth bases are determined and adaptive cost volumes
unify depth representations of passive (e.g., stereo system) and
active (e.g., LiDAR) sensors. We then describe our network
architecture and loss functions for training.

A. Problem Definition

We define the multi-modal depth estimation problem as a
task to estimate dense depth information of a scene given
data from diverse sensors as inputs. Here, the input data may
include images (e.g., RGB, grayscale, and NIR), sparse depth
measurements (e.g., LiDAR and Radar), and other forms of data
containing depth cues (e.g., defocus blur [26]). LetD = {Ii}|D|

i=1
be a set of input domains where Ii is the i-th domain input.
Then, the multi-modal depth estimation problem can be defined
as follows:

D = Z
(
F
(
{Gi(Ii| θGi

)}|D|
i=1

∣∣∣ θF
) ∣∣∣ θZ

)
, (1)

where D denotes a dense depth; Z(·|θZ) is a depth regression
function; F (·|θF ) is a depth cue fusion function; Gi(·|θGi

) is
the depth cue generation function of the i-th domain (e.g., a
stereo matcher or an optical flow estimator); and θZ , θF , and
θGi

denote parameters of the corresponding functions (network
weights and camera parameters). This definition implies that
intermediate depth cues (adaptive cost volumes) are generated
from domain-specific functions to benefit maximally from the
multi-modal data. The overall pipeline of the proposed algorithm
is shown in Fig. 2.

B. Adaptive Cost Volume Generation

The cost volume that we selected as our unified depth repre-
sentation differs from the conventional cost volume because each
depth basis is determined by considering the spacing between
adjacent depth bases. In a stereo RGB setup, for example,
suppose that the features from left and right images and a
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Fig. 2. Overall pipeline of the proposed algorithm. The proposed framework is an end-to-end trainable deep neural network. Depth cues from multiple sensors
are represented by adaptive and pseudo-cost volumes and are geometrically fused for depth estimation. Note that we adopt individual feature extractors for passive
sensors to effectively utilize domain-specific features.

Fig. 3. Comparison of conventional and proposed adaptive cost volumes
and depth bases analyses. Cost volumes are calculated with an example stereo
system with focal length 700 px, baseline 0.4 m, and disparity interval 4 px. (a)
Conventional disparity-based cost volume is purely based on a fixed disparity
interval. (b) Proposed adaptive cost volume minimizes the redundancy and
imbalance of depth and disparity bases. In depth bases plots on the right, the
blue and red points denote depth values of each cost slice and depth differences
between adjacent cost slices, respectively.

target depth range (i.e., depth range of interest) are given. In
conventional methods [1], [4], [7], the target depth range is
further discretized to a set of depth bases D = {dj}|D|

j=1 where
j is the depth basis index. Then, a cost volume C is constructed
by calculating matching costs (e.g., �1 or �2 feature distance) for
each depth basis, dj , as follows:

C(x, y, j) = φ
(
fl(x, y), fr(x− d̄j , y)

)
, (2)

where x and y are the pixel coordinates; d̄j is the disparity value
that corresponds to depth dj ; fl and fr are features from left
and right images, respectively; and φ(·, ·) is a matching cost
function. After several optional cost aggregation and refinement
processes [7], [27] on C, the disparity value with the minimum
matching cost is assigned to the pixel and converted to the cor-
responding depth value. An example cost volume for the depth
range [1.5 m, 20 m] is shown in Fig. 3(a). Because the regularly
discretized disparity bases D̄ = {· · · , 18, 22, · · · } are ignorant
of the system configuration, there exist imbalances and tiny
depth spacing between adjacent cost slices (i.e., imbalanced and

redundant depth bases problem). These subtle depth differences
can be often ignored to minimize redundancy in D and reduce
computational costs in real-world applications [14], [28].

To resolve the problem, we propose to construct a cost volume
based on a set of adaptive depth bases D. We determine D to
minimize redundancy and imbalance by considering the system
configuration (e.g., focal length and baseline for stereo) and
depth and disparity intervals between adjacent cost slices. Algo-
rithm 1 describes the proposed adaptive depth bases generation
algorithm. In Algorithm 1, D is determined by two rules: two
adjacent cost slices should either have i) greater depth difference
than the unit depth τ , or ii) greater disparity difference than the
unit disparity τ̄ . Our algorithm ensures that the generated D is
with less redundancy by only preserving the meaningful depth
and disparity differences between adjacent cost slices.

Fig. 3 provides analyses of the conventional and proposed
adaptive depth bases of cost volumes. The conventional method
results in many tiny depth and disparity gaps between adjacent
cost slices. In contrast, our method has eliminated redundant
depth bases effectively, yielding a drastically reduced computa-
tional cost (28/44 = 63.6%). These properties are particularly
important because a low computational cost is essential for
real-world applications.
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Fig. 4. Geometry-aware cost volume fusion algorithm. We first (a) deter-
mine the set of adaptive depth bases D of the reference sensor, and then (b) D is
transformed to the coordinates of other sensors. This leads to (c) geometrically
consistent cost volumes across sensors because the cost slices of each sensor at
the same index represent the same 3D plane in the world.

C. Pseudo-Cost Volume Generation

Although we have adopted the adaptive cost volume as a
unified depth representation for multi-modal fusion, the con-
struction of cost volumes from active sensors that directly pro-
vide depth measurements (e.g., LiDARs) is not straightforward.
Unlike existing algorithms that directly infer dense depth from
a sparse depth [2] or assign fixed coefficients [29], we propose
to construct a pseudo-cost volume from depth measurements.

Specifically, once D and Z(·) are given (cf., (1)), a depth
value can be directly converted to a cost-like representation. In
this work, the softmax-based depth regression function [1], [7]
is adopted as Z(·), defined as follows:

D = Z(C | θZ) =
|D|∑
j=1

dj · σ (C(j)) , (3)

where σ(·) denotes the softmax function. Note that θZ includes
the set of adaptive depth bases D.

With this setup, a depth value d can be represented as a linear
combination of the elements in D as follows:

d = αdl + (1− α)du, d ∈ [dl, du), (4)

where dl and du denote the lower and upper depth boundaries
in D. With a slight abuse of notation, the proposed pseudo-cost
representation is defined as follows:

Cpseudo(j) =

⎧⎨
⎩
α if dj = dl
1− α if dj = du,

0 otherwise

j ∈ [1, |D|], (5)

where | · | denotes the cardinality. Note that this representation
can be understood as a special case of Eq. (3), where all the
coefficients, except forα and1− α, are zeros. With the proposed
pseudo-cost volume representation, the depth information from
both passive (e.g., stereo cameras) and active (e.g., LiDARs)
sensors can be manipulated seamlessly.

D. Geometry-Aware Cost Volume Fusion

In order to accurately fuse depth cues from multi-modal
sensors, we must consider the geometric configuration between
sensors, as shown in Fig. 4. Without loss of generality, we first set

one sensor as a reference and assume that the coordinates of the
other sensors are aligned with the reference sensor. This assump-
tion is reasonable because all sensors are calibrated and sensor
data can be rectified (e.g., images) or reprojected (e.g., LiDARs).
Under this assumption, the set of adaptive depth bases D of the
reference sensor is determined [see Fig. 4(a)] and transformed
to the coordinates of other sensors with extrinsic parameters
between sensors [see Fig. 4(b)]. As a result, the cost slices of
each sensor at the same index represent the identical depth plane
in the 3D space regardless of sensor types or locations. This
ensures a geometric consistency in cost volumes across sensors.

Note that our geometrically consistent representation simpli-
fies the reprojection in 3D space to the warping in 2D space [30]
because the cost slices to be fused between different modal-
ities are on the same plane, as shown in Fig. 4. Therefore,
the proposed method further reduces computational costs be-
cause warping requires 2D interpolation, whereas reprojection
requires 3D interpolation.

The proposed geometry-aware cost volume fusion is defined
as follows:

Cfused = F
(
{Ci}|D|

i=1

∣∣∣ θF
)
=

∑
Ii∈D MiĈi∑
Ii∈D Mi

, (6)

where Cfused is the fused cost volume, Ĉi is the warped cost
volume from the i-th domain Ii, and Mi is its valid pixel
mask. Note that θF includes intrinsic and extrinsic parameters
of sensors. In (6), the valid pixel mask Mi plays an important
role in fusing depth cues from only the valid pixels of each
sensor. For example, the depth value of a pixel without LiDAR
depth information should be determined by information from
stereo images from RGB, grayscale, and NIR cameras. In the
valid pixel mask M of LiDAR pseudo-cost volumes, the regions
without LiDAR values are set to zero. Thus, only the depth cues
from stereo images contribute to estimating the accurate depth
values regardless of missing LiDAR values.

Note that althoughM can be replaced with confidence or relia-
bility predictions, we presume that it would be more challenging
to estimate them in changing environments. Instead, we utilize
intra- and cross-scale cost aggregation processes [7] on Cfused

to suppress any unreliable and inaccurate depth cues. In fact, the
expected roles of the aggregation and confidence predictions are
similar; therefore, we adopt the valid pixel mask-based fusion
strategy. After fusion and cost aggregation, the final depth is
estimated by (3) through the fused cost volume Cfused.

E. Depth Estimation Framework

An overview of our network is shown in Fig. 2. For image
feature extractors, we adopted feature pyramid networks [31] to
utilize multi-scale features. We also utilized image-based depth
refinement [27] to further enhance the depth accuracy.

We trained our network with �1 or �2 loss as a reconstruction
loss with the ground truth depth as follows:

L(Dgt,Dpred) =
∑
x,y

∣∣Dgt(x, y)−Dpred(x, y)
∣∣ρ , (7)

where Dgt and Dpred denote the ground truth and predicted
depth values, respectively. Here, ρ is set to 1 for �1 loss and to 2
for �2 loss. Note that modules with trainable parameters, such as
feature extractors, cost aggregation and refinement, and depth
refinement modules, are trained with (7).
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IV. MULTI-MODAL DEPTH DATASET

Over the last decade, various large-scale multi-sensor depth
datasets [5], [12], [25], [32]–[35] have been made publicly
available. Unfortunately, they do not consider dynamic envi-
ronmental changes or do not provide the accurate (semi-)dense
ground truth depth information.

Therefore, we introduce a new multi-modal depth dataset with
changing environments. For this purpose, we propose a new
multi-modal vehicular sensor system. In addition, we introduce
a new KITTI multi-modal depth dataset by rearranging existing
KITTI datasets [2], [12]. Due to space limitations, we will briefly
describe our system and multi-modal datasets. Please refer to the
supplementary material for further details.

A. Vehicular Multi-Modal Sensor System

To benefit from the complementary characteristics of multi-
modal sensors and ensure robustness toward changing environ-
ments, we adopted stereo RGB, stereo NIR, and two LiDARs
for our sensor system. In addition, we utilized a GNSS/IMU
sensor to capture synchronized vehicle poses in GNSS coor-
dinates. The intrinsic and extrinsic parameters of the sensors
are pre-calibrated by setting the left RGB camera as a refer-
ence [36]–[38]. The stereo RGB provides 1224× 360 images
with 0.3 m baseline, the stereo NIR provides 1280× 360 images
with 0.05 m baseline after the rectification, and LiDARs provide
roughly 8 K depth points that are visible in the reference frame.
All sensors, except LiDARs that are waterproof, were installed
inside the vehicle with a stable power supply to ensure reliable
operations under extreme conditions including rain, snow, and
fog.

B. Multi-Modal Depth in Changing Environments Dataset

For our multi-modal depth in changing environments
(MMDCE) dataset generation, we collected synchronized sensor
data in campus, residential, and downtown areas in various
environmental conditions, including weather, time, and seasonal
changes. We followed the semi-dense ground truth depth gen-
eration method of the KITTI Depth Completion (KITTI DC)
dataset [2]. Specifically, 10–15 successive frames of point clouds
were accumulated using vehicle poses from the GNSS/IMU
sensor. Then their alignment was further refined [39] and filtered
with stereo depth estimation results [7].

We collected 20 driving sequences in day and night with var-
ious environments and extracted more than 100 K synchronized
frames, and semi-dense ground truth depth maps are generated.
In total, 6,628 images were generated, including 5,876 daytime
(Train: 4,344, Validation: 656, Test: 876) and 752 nighttime
(Train: 601, Test: 151) images. Note that there is no overlap
between train, validation, and test sets in time, weather, and
locations. Fig. 5 shows example data captured under various
environmental conditions.

C. KITTI Multi-Modal Depth Dataset

One commonly used depth dataset, the KITTI DC dataset [2],
only provides a single RGB image and LiDAR measurements.
Fortunately, the KITTI raw dataset [12] provides stereo RGB
and grayscale images (1242× 375 and 0.54 m baseline), and
we can trace synchronized stereo grayscale and RGB images of
the KITTI DC dataset. Therefore, we rearranged the KITTI DC

Fig. 5. Example images of the proposed MMDCE dataset. Our dataset was
captured with various environmental changes. Note that only left RGB images
are shown.

dataset to generate the KITTI multi-modal depth (KITTI MMD)
dataset in order to compare the proposed approach with other
methods. In this way, we collected 32,917 train, 3,426 validation,
and 1,000 test data. Each sample consists of stereo RGB, stereo
grayscale, and LiDAR point clouds with roughly 20 K points,
as well as a semi-dense ground truth depth image. Fig. 6(a) and
(b) show example images of the KITTI MMD dataset.

V. EXPERIMENTAL RESULTS

In this section, we describe the implementation details and
evaluate the depth estimation performance of the proposed algo-
rithm on the MMDCE and KITTI MMD datasets. Furthermore,
the robustness and stability of our algorithm in dynamic environ-
ments were verified using the proposed MMDCE dataset. Ad-
ditionally, ablation studies on input modalities, adaptive depth
bases, and computational costs were conducted.

Our method was implemented using PyTorch [44] and trained
using four NVIDIA TITAN RTX GPUs. For all experiments,
we used an ADAM optimizer with β1 = 0.9, β2 = 0.99, and
an initial learning rate set to 0.001. Other training details will
be individually described for each dataset. The evaluation met-
rics adopted for the quantitative evaluations are RMSE, MAE,
iRMSE, and iMAE [2].

Note that adaptive cost volumes are constructed from stereo
RGB, stereo grayscale (or NIR), and pseudo-cost volumes are
constructed from LiDARs in our algorithm.

A. KITTI MMD Dataset

Our algorithm was trained for 30 epochs with the �1 loss and
a batch size of 16. The learning rate decayed by 0.2 at 10, 20,
and 25 epochs.

Table I shows the quantitative evaluation results on the KITTI
MMD dataset. Note that the proposed, LS [4], and CCVN [6]
methods were trained with approximately 30 K training data,
whereas the other methods were trained with approximately 90 K
training data. The depth estimation accuracy of the LiDAR only
algorithm [2] is quite low because of the sparsity of the input
information. The RGB and LiDAR-based depth completion
algorithms [10], [40]–[43] handled this problem effectively by
utilizing guidance from the additional RGB image to propagate
input sparse depth values into neighboring pixels. Stereo RGB
and LiDAR-based algorithms [4], [6] show comparable perfor-
mance or even further improvement despite the relatively small
amount of training data because the depth cues from stereo im-
ages are helpful for the regions without LiDAR measurements.
Furthermore, the proposed algorithm using stereo RGB, stereo
grayscale, and LiDAR shows the best performance in RMSE and
iMAE, as well as comparable performance in MAE and iRMSE.
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Fig. 6. Depth estimation results on the KITTI MMD, MMDCE day, and MMDCE night datasets. (a) RGB and LiDAR, (b) Grayscale or NIR, (c) NLSPN [10],
(d) LS [4], (e) CCVN [6], and (f) Ours. Our method estimates accurate depth values especially on the regions without LiDAR measurements. Note that the amount
of the input sparse depth of our MMDCE dataset is approximately 40% compared to that of the KITTI MMD dataset.

TABLE I
QUANTITATIVE EVALUATION ON THE KITTI MMD DATASET (R: RGB, L:

LIDAR, G: GRAYSCALE, M: MONO, S: STEREO)

Bold entities are the best result for each metric.
Underlined entries are the second-best result for each metric.

Owing to the additional depth cues from grayscale stereo images,
the ambiguities arising from stereo RGB or LiDAR sensors are
effectively resolved.

Fig. 6 shows depth estimation results in challenging areas.
NLSPN [10] shows reliable performance on the regions with
LiDAR measurements; however, its depth prediction accuracy
degrades on the regions without any depth values, as shown in
Fig. 6(c). This problem can be easily handled by stereo-based
algorithms, as the depth cues for those regions are still available
from stereo images. For example, LS [4] and CCVN [6] utilize
stereo RGB and LiDAR; however, they simply concatenate a
sparse depth image to the corresponding RGB image. Because
they do not consider geometric information, the depth prediction
accuracy is very low [see Fig. 6(d) and (e)]. This problem
is effectively handled by our algorithm because depth cues
from multiple domains are carefully fused in a geometry-aware
manner [see Fig. 6(f)]. Furthermore, possible noisy depth cues
from one domain can be implicitly handled during multi-modal
cost volume fusion owing to the accurate and complementary
depth cues from the other domains.

TABLE II
QUANTITATIVE EVALUATION ON THE MMDCE DATASET (R: RGB, L:

LIDAR, N: NIR, M: MONO, S: STEREO)

Bold entities are the best result for each metric.

B. Proposed MMDCE Dataset

Our network was trained for 30 epochs with the �1 + �2 loss
and a batch size of 8. For the nighttime split, we fine-tuned
the network trained on the daytime split because the number of
nighttime images was less. The other training settings were the
same as those in Sec. V-A.

Table II(a) shows the quantitative evaluation results on the
daytime split of our MMD dataset. NLSPN [10], LS [4], and
CCVN [6] were trained with the RGB-LiDAR and NIR-LiDAR
configurations for detailed analyses. The proposed algorithm
yields the best performance in all metrics. NLSPN shows similar
performance with RGB-LiDAR and NIR-LiDAR configurations
because it only utilizes a single image from the RGB or NIR
domains. However, LS and CCVN do not show reliable perfor-
mance with the NIR-LiDAR setup. In the proposed system, the
stereo NIR has a smaller baseline (0.05 m) compared to that of
the stereo RGB (0.3 m) (cf., Sec. IV-A). In this case, the viable
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TABLE III
PERFORMANCE EVALUATION WITH VARIOUS INPUT COMBINATIONS

(R: RGB, L: LIDAR, G: GRAYSCALE, N: NIR, S: STEREO)

Bold entities are the best result for each metric.

disparity range of the stereo NIR is quite limited. Because LS
and CCVN utilize the conventional cost volume construction
method, they fail to estimate far-depth ranges. In contrast, the
proposed adaptive cost volume construction method can handle
various system configurations. Therefore, our algorithm yields
reliable performance even with a small stereo baseline setup.

Similarly, our method shows reliable performance in night-
time scenes, as shown in Table II(b). Because nighttime scenes
often suffer from low lighting conditions or blur, the perfor-
mance is slightly lower compared to that of the daytime split,
with the exception of CCVN. However, our algorithm success-
fully exploits various depth cues from multiple sensors and
outperforms the other methods by a large margin.

Fig. 6 shows depth estimation results with challenging en-
vironments in daytime and nighttime. Because the amount of
input sparse depth points is about 40% compared to that of the
KITTI MMD, NLSPN [10] experiences performance degrada-
tion. Specifically, as there are fewer depth points on objects,
boundaries are often not well preserved and unwanted artifacts
frequently appear [see Fig. 6(c)]. Although LS [4] and CCVN [6]
show better performance, they suffer from mixed depth values
on under-exposed areas [see Fig. 6(d) and (e)]. In our algorithm,
although RGB images suffer from under-exposure, NIR images
exhibit slightly better exposure; therefore, as shown in Fig. 6(f),
better depth cues can be extracted from them, compared to those
obtained using RGB images.

In the nighttime, the advantages of the proposed method are
easily observable, as shown in Fig. 6. Because of the low-light
conditions, RGB images do not provide detailed information
about a given scene. However, LiDARs and NIR images still
provide sufficient information, although NIR images exhibit
slight blurring. Therefore, the proposed algorithm shows better
dense depth prediction results compared to those of the other
algorithms, as shown in Fig. 6.

C. Ablation Studies

Input Modalities: To analyze the effect of input modalities,
our network was trained for 10 epochs with various input combi-
nations. Table III shows performance comparisons with various
input modalities on the KITTI MMD and the proposed MMDCE
daytime datasets. The stereo RGB alone shows moderate depth
estimation performance. While LiDARs provide accurate depth
values from close to far distances, the stereo images cannot
provide accurate depth estimation at far distances due to the lim-
ited disparity resolution. Therefore, adding LiDAR information
effectively guides depth estimation in distant regions. Moreover,

Fig. 7. Depth estimation results with various input combinations. Depth
accuracy is getting improved with more input modalities (cf., Tab. III). (a) RGB
image. (b) RGB only. (c) NIR only. (d) RGB+LiDAR. (e) NIR+LiDAR. (f)
RGB+NIR+LiDAR.

Fig. 8. Depth estimation performance and processing time analysis with
various depth bases on the KITTI MMD dataset. Processing time decreases
while RMSE increases as adaptive depth bases get coarser (i.e., as unit depth
gets larger) as expected.

in the KITTI MMD dataset, the additional fusion of depth cues
from grayscale images further boosts the performance signifi-
cantly. Because grayscale images provide depth cues from a dif-
ferent perspective, some occluded regions in RGB images may
be observed. Furthermore, in the proposed MMDCE dataset,
NIR images often provide higher image quality in extreme light
conditions than that of RGB images (cf., Fig. 6). Therefore, the
fusion of depth cues from grayscale or NIR images leads to better
prediction results. Fig. 7 shows the prediction results on our
MMDCE dataset with various input modalities. As more input
modalities are utilized, the depth estimation accuracy improves.

Number of Adaptive Depth Bases: We further analyzed the
proposed algorithm by comparing the depth estimation perfor-
mance and processing time with various unit depth values on the
KITTI MMD dataset, as shown in Fig. 8. Note that a small unit
depth τ leads to a finer D with increasing number of elements.
As expected, a coarser D leads to a lower processing time and
larger RMSE. Therefore, D can be determined from the available
computational resources of the given environment.

VI. CONCLUSION

In this letter, we proposed a multi-modal sensor fusion al-
gorithm for depth estimation in changing environments. The
role of the cost volume is extended to a generalized depth
representation, and the adaptive cost volume is proposed to min-
imize redundancy and imbalance of depth bases in conventional
cost volumes. In addition, our geometry-aware cost volume
fusion algorithm accurately fuses geometrically consistent cost
volume across multiple sensors. As a result, complementary
characteristics of multi-modal sensors are effectively merged,
and the robustness to changing environments is increased con-
siderably. We also proposed a vehicular multi-modal sensor
system that comprises stereo RGB, stereo NIR, a GNSS/IMU,
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and two LiDARs. Using the system, we collected a multi-modal
depth dataset captured through various environmental changes
in weather, location, and time. The proposed algorithm was eval-
uated on the KITTI MMD and proposed MMDCE datasets both
quantitatively and qualitatively and was shown to outperform
state-of-the-art algorithms substantially. In future studies, we
will investigate domain-specific confidence-based cost fusion
algorithms.
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