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Abstract— Recently DRAM-based PIMs (processing-in-memories) with
unmodified cell arrays have demonstrated impressive performance for ac-
celerating AI applications. However, due to the very restrictive hardware
constraints, PIM remains an accelerator for simple functions only. In this
paper we propose NTT-PIM, which is based on the same principles such
as no modification of cell arrays and very restrictive area budget, but
shows state-of-the-art performance for a very complex application such
as NTT, thanks to features optimized for the application’s characteristics,
such as in-place update and pipelining via multiple buffers. Our experi-
mental results demonstrate that our NTT-PIM can outperform previous
best PIM-based NTT accelerators in terms of runtime by 1.7 ∼ 17×
while having negligible area and power overhead.

Keywords—Processing-in-memory (PIM), fully homomorphic encryp-
tion (FHE), number theoretic transform (NTT), DRAM, row buffer

I. INTRODUCTION

The recent success of AI has caused important changes in the
computing landscape, one of which being the renewed interest in
PIM (processing-in-memory) [1]–[3]. Though the idea of PIM dates
back to 70’s, recent approaches to AI-PIM by DRAM makers
take a more principled approach [4], such as limiting the size of
compute hardware, providing a full SW stack, and keeping memory
arrays and the DRAM interface intact, which has led to successful
demonstrations of AI-PIM in the industry setting [4], [5].

On the other hand, current AI-PIM architectures [6], [7] can only
support very simple functions such as matrix-vector multiplication
(MVM). In this paper we extend the scope of DRAM-based PIM by
optimizing an industry-designed PIM architecture [7] for a nontrivial
non-AI application. In particular, we target Fully Homomorphic
Encryption (FHE) [8], where the most important function is NTT
(Number-Theoretic Transform). In addition to being memory-bound,
NTT has highly irregular memory access patterns, which is a main
difference compared to MVM or AI applications.

In this paper we propose a novel PIM architecture and a mapping
method for NTT on PIM. One of the key challenges in finding
efficient mapping is asymmetric memory access time depending on
whether consecutive accesses to a bank are to the same row (buffer
hit) vs. different rows (buffer conflict). While previous works on
accelerating FHE workloads [9], [10] use large on-chip memory to
increase data reuse and hide memory latency, PIM must economize on
chip area, which is another key challenge. Exploiting the recursive
structure of the NTT computation, our mapping algorithm divides
the problem into smaller ones, and uses a different mapping strategy
depending on the input size, categorized into three regimes based
on architectural parameters. One important architectural parameter
is the size and number of local buffers. We show that whereas a
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Fig. 1: From software to DRAM commands.
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Fig. 2: Left: Bank datapath, where colored parts are our extension.
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single-buffer architecture is extremely inefficient for NTT, providing
at least one auxiliary buffer would greatly enhance mapping efficiency
through a technique called in-place update. We also propose and
evaluate the use of more buffers through pipelining, which increases
hardware overhead minimally but can improve performance signifi-
cantly by both hiding memory latency and reducing the number of
row activations. Our architecture and mapping scheme also allows
for bank-level parallelism (i.e., running different NTT functions in
each bank), which can be naturally exploited by FHE applications
with linear speedup.

Our experimental results based on architectural parameters of
HBM2E demonstrate that our PIM architecture has very little hard-
ware overhead, less than half of Newton’s [7], which is already at
a tiny level, yet can deliver state-of-the-art performance for NTT
acceleration. Compared with the previous best PIM-based NTT
accelerators [11], [12], our architecture does not modify cell arrays,
and our solution can support arbitrary polynomial length and modulo
values, and yet ours can deliver up to 1.7 ∼ 17× speedup at the NTT
level (except the bit reversal, which is common in all the compared
works).

II. BACKGROUND AND RELATED WORK

A. DRAM and PIM

Software running on a CPU issues memory requests, which are
handled by the memory controller (MC) (see Fig. 1). Understanding
DRAM timing, MC schedules memory requests and generates low-
level DRAM commands such as row activate and column read/write.
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A DRAM chip consists of multiple banks, which share command,
address, and data buses. At the chip and bank level, the unit of
a memory transaction is a DRAM atom (32B in HBM), which
ultimately comes from a row of DRAM cells of a bank [13]. When
a row is activated, the contents of the cells belonging to the row
are copied to the bitline sense amplifiers (BLSAs), also known as
row buffer (e.g., 1 KB in size). A subsequent read command latches
part of the row buffer (a DRAM atom) to the global sense amplifiers
(GSAs), sending it out via chip I/O (see Fig. 2).

Recent PIM works add extra logic inside DRAM banks [5] or
modify the dram die structure [4]. DRAM based PIM has been
able to successfully integrate computing logic inside existing DRAM
technology, significantly reducing the memory bottleneck of machine
learning applications. While the processing unit of FIMDRAM [5]
is located in an independent memory cell and uses an additional
bus to send data among banks, Newton [4] has a MVM logic inside
the memory bank, completely eliminating the data transfer between
the logic and the memory. The limitation of Newton [4] is that
the datapath is rather simple and fixed, and it is hard to store
intermediate data. This constraint makes it hard to map algorithms
with intermediate data and complex memory access such as NTT.

MeNTT [11] is a 6T-SRAM based PIM accelerator for NTT. It
computes NTT in a bit-serial fashion, which is not very efficient for
high-precision arithmetic such as 64-bit or 32-bit. Also it is inflexible
in terms of modulo and maximum polynomial length. CryptoPIM [12]
is a ReRAM-based PIM accelerator targeting polynomial multiplica-
tion. While it is expected to have low cost due to the advantage of
ReRAM technology, ReRAM technology has issues with fabrication
such as variation and faults. Also CryptoPIM is inflexible in terms
of modulo and maximum polynomial length.

B. FHE and NTT

Latest FHE schemes [8], [14] are based on Ring Learning-With-
Errors (Ring-LWE) [15], which encodes vectors as polynomials with
coefficients of finite fields. A typical polynomial can be defined as
Rq = Zq[X]/(XN + 1), a polynomial whose length is a power of
2 and each of its coefficients is a modulo of a prime number q. The
product of two polynomials can be computed efficiently in the NTT
domain [16]. NTT is a generalization of the discrete Fourier transform
(DFT) on the finite field, where complex multiplication is replaced
with an integer multiplication followed by a modulo operation. For
a given polynomial a = a0 + a1x + a2x

2 + ... + aN−1x
N−1, we

can associate a vector a = (a0, a1, ...aN−1). Then the polynomial
multiplication a ∗ b can be computed using NTT, which is more
efficient than direct multiplication.

a ∗ b = NTT−1(NTT (a)⊙NTT (b)) (1)

where ⊙ represents the element-wise product and NTT−1 is inverse
NTT. The inverse NTT computation is mathematically identical to
the original NTT except that the twiddle factor ω is replaced with its
inverse.

NTT shares the characteristic irregular memory access pattern with
FFT (Fast Fourier Transform). A size-N NTT can be computed in
logN stages, each of which involves N/2 parallel butterfly unit (BU)
operations, followed by bit reversal (see Fig. 3). There is a large body
of work on efficient parallel FFT algorithms [17], [18], e.g., Pease
[17], which is well suited for FPGAs and ASICs due to its regular
structure, and Stockham [18], which is self-sorting. However, those
algorithms often require multiple (logN ) shuffling stages, which
means more frequent interactions with CPU (unless hardware for
shuffling is added, increasing cost) and may not be any better than the
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Fig. 3: Left: Dataflow of NTT algorithm (based on Cooley-Tukey
FFT, bit-reversal is omitted). Right: A butterfly unit (BU) operation
consisting of two ModAdd/Sub and one ModMult operations.
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Cooley-Tukey FFT algorithm [19]. Also intra-row data reuse can be
easily and fully exploited by recursive Cooley-Tukey FFT, which we
use in this work. We assume that bit reversal is performed by software
running on a CPU, which is a common assumption in previous PIM
approaches [11], [12]. Further, bit reversal can be avoided altogether
when all NTT-domain operations are element-wise operations [11].

III. OUR ARCHITECTURE AND MAPPING

A. Analysis of NTT Computation

For size-N NTT, the number of compute operations is
O(N logN), and the amount of data transfer is either O(N) if the
entire input fits in the local memory, whose size is denoted by M ,
or O(N) per stage otherwise. In recursive Cooley-Tukey FFT, the
first logM stages (assuming M is a power of 2) can be partitioned
into N

M
independent blocks, each of which would fit in the local

memory (see Fig. 4). Therefore, the total amount of data transfer
when N ≥ M is O(N + N(logN − logM)), and the compute-
to-data-transfer ratio (CDR) is O( logN

1+log N
M

) ≤ O(logN), where
equality holds when M = N . The CDR cannot be increased further
by such techniques as batching. Tiling (also known as blocking) is
also difficult due to the irregular memory access pattern. All of the
above suggests that NTT is memory-bound and PIM can be a good
candidate to accelerate NTT. However, DRAM memories have very
asymmetric access time. Also the very limited size of a row compared
to N makes the problem of mapping NTT to PIM challenging.

B. Necessity of An Auxiliary Buffer

Suppose N is small enough to fit in a row buffer. Then the NTT
function can be implemented efficiently by a small compute unit (CU)



within a bank that can read two words of a row (performed by two
load µ-ops), do a butterfly unit (BU) operation, and write the result
back to the input locations (by two store µ-ops). Every access to
memory (i.e., load/store) except the first will be a buffer hit, which
is optimal.

However, if N is larger than the row buffer size (denoted by
R), there is no efficient mapping that realizes maximal data reuse,
unless there is an extra buffer. With a single buffer (i.e., GSA only),
assuming CU is equipped with two scalar registers for two BU inputs
(see Fig. 2), every BU operation requires two loads and two stores,
and about half of them require row activation, which greatly increases
memory access time.

C. Sufficiency of One Auxiliary Buffer

Suppose that N = 4R. As illustrated in Fig. 4, the first logR
stages can be vertically partitioned into 4 independent blocks (only
two are shown), each of which can be processed efficiently with one
row activation, resulting in just 4 (= N

R
) row activations for the logR

stages.
The question is whether the other stages can be done efficiently. Let

us assume that there is an auxiliary buffer of size R. We call GSAs
and the extra buffer primary (P ) and secondary atom buffer (S),
respectively. For the (1+logR)-th stage, a naı̈ve implementation may
require a third buffer for the output, since the two buffers P and S are
occupied by the two inputs. But observing that each input element is
used exactly twice, we can schedule operations such that we complete
each BU operation before moving on to the next, which allows us
to store the output of a BU operation directly to its input locations
(in-place update). The combination of BU-grained scheduling and
in-place update not only eliminates the need for a separate output
buffer, but also allows us to fully reuse input data in P and S, which
is true for the following stages as well. Each stage (not a BU op)
after the first logR stages requires 4 (= N

R
) pairs of reads and writes,

but half of the writes can be made a buffer hit, resulting in at most
3 N
2R

row activations, which is much less than if no in-place update
and no third buffer are used.

D. New DRAM Commands and Our PIM Architecture

One problem with adding an extra row buffer is a very large area
overhead. However, the extra buffer needs only to be of a DRAM
atom size, Na. In fact, GSAs are also of a DRAM atom size [13],
[20].

To realize the mapping outlined above, CU needs to support the
following operations.

• C1 takes input from one buffer, S, and performs the NTT
function minus bit-reversal, which includes logNa stages of Na

2

BU operations per stage. The result is stored into the same buffer
as the input.

• C2 takes input from two buffers, P and S, and performs one
Na-way vectorized BU operation. The result is stored back into
P and S. Note that C1 and C2 must perform modulo add/mult
[6] in order to support NTT.

The memory hierarchy of our PIM architecture is as follows. The
CU has two operand registers (as well as other registers, e.g., for
twiddle factors), which can be seen as L0 memory. The P and S
buffers are L1 memory, and data movement between L0 and L1 is
accomplished by load/store µ-ops, which are very fast (2 cycles)
and part of C1 and C2. The memory banks are L2 memory, and data
transfer between L1 and L2 is managed by explicit commands, which
we simply call read and write. These CU-read/write are similar to

column read/write, taking about a dozen cycles, except that data
transfer stops at P or S instead of chip I/O.

Algorithm 1 Intra-atom NTT compute: C1(S)→ S

Inout S : vector reg for both input and output
Param ω0, rω : init value & step size for twiddle factor gen.

1: ωs : twiddle factor for each stage, initialized to 1
2: for (stage = 1; stage ≤ logNa; stage+=1) do
3: let ω ← ω0, m← 2stage−1

4: for (k = 0; k < Na; k +=2m) do
5: for (j = 0; j < m; j +=1) do
6: let a← S[k + j]
7: let b← S[k + j +m]
8: S[k + j]← (a+ b) mod q
9: S[k + j +m]← (a− b) · ω mod q

10: ω ← ω · ωs mod q
11: end for
12: end for
13: ωs ← ωs · rω mod q
14: end for

Algorithm 2 Inter-atom NTT compute: C2(P, S)→ P, S

Inout P, S : vector regs for both input and output
Param ω0, rω : init value & step size for twiddle factor gen.

1: let ω ← ω0

2: for (j = 0; j < Na; j +=1) do
3: let a← P [j], b← S[j]
4: P [j]← (a+ b) mod q
5: S[j]← (a− b) · ω mod q
6: ω ← ω · rω mod q
7: end for

IV. IMPLEMENTATION DETAIL

A. Host Interface and Architecture

From the software perspective, our NTT function can be invoked
as a write request (see Fig. 1), which contains NTT parameters as
“write data”. We assume N to be a power of 2. The input data
(N 32b integers) is assumed to be already in the memory; thus,
only the address is passed. The MC generates a sequence of DRAM
commands to fulfill the NTT function (see Fig. 4). The result is stored
at the same location as the input, and a write response is given to
the request initiator to signal that NTT is completed. The MC needs
to be modified to implement the mapping algorithm presented in the
next section.

Algorithms 1 and 2 describe the C1 and C2 commands. The BU
in Fig. 2 has two operand registers. Each buffer is single-ported, but
a small crossbar switch allows full connectivity between buffers and
BU registers. To do computation, CU first loads input from P and/or
S to its registers, does a BU operation, and stores the results, which
is repeated in a pipelined fashion for all elements available. In our
architecture the size of a DRAM atom (Na) is 8.

We generate twiddle factors on-the-fly using a method similar to
[21], which allows us to use all memory bandwidth for accessing
input polynomial.

To pass parameters (q, ω0, rω), a value (16-bit) is placed on the
global buffer, which is visible to all banks, and subsequently loaded
to a scalar register in the CU of a bank (in multiple cycles for higher
precision values).



The secondary atom buffer can be implemented using SRAM cells
(6T/cell) plus inverters (2T/cell) to provide complementary signals
needed.

B. NTT Computation Mapping

Given the memory hierarchy of our PIM architecture, there are
three mapping regimes as illustrated in Fig. 5.

1) Intra-atom (when N ≤ Na): applies to the first logNa stages,
and uses C1 command.

2) Intra-row (when Na < N ≤ R, where R is the row buffer
size): applies to the next log R

Na
stages.

3) Inter-row (when N > R): applies to the rest of the stages. Both
intra-row and inter-row use C2 command.

Both intra-row and inter-row are “inter-atom”, but their difference is
that only inter-row requires intermittent row activate commands.

The MC generates DRAM commands by dividing a given NTT
function or its dataflow graph (DFG) such as Fig. 3 as follows .
First, note that there are two ways to divide a DFG: stage-wise
(horizontally) or data-wise (vertically). Second, observe that all data
dependence is within a row during the first logR stages, whereas in
the latter stages all data dependence is across rows but BU operations
are vectorized with at least R ways. (The analogous applies to an
atom buffer as well.) Therefore, we propose to divide the first logR
stages of a DFG vertically into N

R
independent row-sized blocks,

each of which is divided again horizontally into (i) the first logNa

stages, which are handled using intra-atom mappding, and (ii) the
rest of the stages, which are handled using intra-row mapping. The
latter stages are in the inter-row regime, for which we process a DFG
stage-by-stage and each stage in the sequential order. Since each C2
command in this regime always involves at least two row activations,
the processing order does not make much difference in performance,
but increasing the size or number of buffers does, which we discuss
next.

V. PIPELINING OPTIMIZATION

While a dual-buffer architecture can fully realize data reuse up to
intra-row mapping, it suffers from frequent row activations in inter-
row mapping. Also even if full data reuse is achieved, it does not
necessarily mean the highest throughput possible. Fig. 6 illustrates
the difference between executing two CU operations consecutively
(without pipelining) vs. with pipelining. In the case of pipelined
execution, read commands for the second compute operation can start
before write commands for the first compute finish, thereby hiding
some memory access latency.

On the other hand, pipelining requires more buffers. In the case
of intra-atom mapping, pipelining is possible even with a single
auxiliary buffer (since our mapping uses only one buffer, we can
use the other buffer for pipelining), but more buffers mean more
overlap. In general, to overlap n executions requires n times as
many buffers. For the other mapping regimes, more than one auxiliary
buffers are necessary for pipelining. Also C1 and C2 commands need
to take operands from any buffers, including one primary and multiple
secondary buffers. Thus in addition to increased buffer area, hardware
overhead of pipelining includes a larger crossbar switch in CU (see
Fig. 2). CU-read/write commands and C1/C2 commands need more
parameters too, but having no immediate field, they have enough bits
to encode additional parameters.

Pipelining has an unexpected positive effect in inter-row mapping:
reduced number of row activations. Equipped with more buffers
thanks to pipelining, we can group same-row read/write commands
together as illustrated in Fig. 6c, eliminating some row activations in

TABLE I: Architecture Parameters

Architecture Parameters Timing Param. (cycles)
DRAM atom size 32B CL 14
# of columns per row 32 tCCD 2
# of rows per bank 32,768 tRP 14
# of ranks 1 tRAS 34
# of banks 1 tRCD 14

tWR 16

TABLE II: PIM Area Overhead (Nb: # of all atom buffers)

Architecture Nb Area (mm2) %
A DRAM bank 4.2208 –

Newton [7] 0.0474 1.123

NTT-PIM

1 0.0213 0.504
2 0.0232 0.550
4 0.0263 0.624
6 0.0285 0.676

the process. Note that the likelihood of finding same-row commands
within the two CU compute operations is quite high, since the inter-
row regime has highly vectorized BU operations.

The MC is responsible for generating pipelined schedules. One
issue is that since the command bus is shared between all DRAM
commands, we need to choose which command to issue first between
read/write vs. compute. It can be decided rather easily, since the
latency of each command is known in advance.

VI. EXPERIMENTS

A. Experimental Setup

To evaluate the performance of our NTT-PIM, we have developed
our in-house PIM simulator, which consists of a front-end driver and
DRAMsim3 [22] working in tandem. The front-end driver serves
two purposes: to generate DRAM command sequence simulating the
memory controller including our mapping algorithm, and to verify
the functionality of our NTT function as executed in DRAMsim3.1

Table I lists the parameters used in our evaluation, which are
based on HBM2E. While all our results are based on running NTT
on a single bank, FHE applications can naturally run multiple NTT
functions using multiple banks.

B. Synthesis Results

Since PIM is supposed to be fabricated using a memory technology,
which is not open, it is hard to estimate the area overhead of
our architecture accurately. Instead, we provide a comparison with
Newton [7] in terms of hardware overhead, which should assure that
our CU is small enough to be fabricated inside a memory bank.
We have implemented both Newton’s compute hardware, mostly
consisting of 16 16-bit floating-point MACs, and our CU in Fig. 2 in
Verilog RTL, and synthesized them with Synopsys Design Compiler
using Samsung 65 nm standard-cell library. The area of auxiliary
atom buffers is estimated with CACTI 7.0 at 65 nm. We have verified
that our designs meet the timing requirement for 1200 MHz, which
is the operating frequency of HBM2E.

We have fully pipelined the BU inside CU, which supports ModAd-
d/Sub and ModMult for arbitrary modulo values using Montgomery
reduction algorithm [23]. The latency of C1 and C2 is 15 and 10
cycles, respectively.

Table II summarizes area results, which show that our hardware
overhead is small, being less than half of Newton’s, which is already

1The front-end driver is written in Python, and runs iteratively with
DRAMsim3 to implement two-way communication between the two, which
was added to double-check the correctness of timing and functionality.
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at a tiny level. Also the additional overhead of having multiple atom
buffers seems marginal. To give a rough comparison, we have also
estimated the area of a single DRAM bank using CACTI-3DD [24]
DDR4 model at 32 nm, which is the most advanced node supported
by the tool.2

C. Performance and Effect of Using Multiple Buffers

Fig. 7 compares performance of our PIM architecture under various
values of N (polynomial length) and Nb. First we note that without
auxiliary buffers, there is no performance advantage even compared
with a software execution, whereas even just one auxiliary buffer can
improve performance by an order of magnitude.

Moreover, adding more buffers gives very significant speed up of
about 1.5 ∼ 2.5× depending on N . As expected, having multiple
auxiliary buffers proves more effective when N is larger, which is
because at larger N , a bigger portion of runtime is accounted for
by inter-row mapping and inter-row mapping benefits more from
pipelining.

D. Sensitivity to Clock Frequency

To see the effect of lower clock frequency we have varied the
frequency from 300 MHz to 1200 MHz. The computation time of
the CU increases in proportion to the inverse of clock frequency, but
the absolute latency of DRAM memory access time (in ns) is kept
constant. The result is summarized in Fig. 8. Since most of the latency
of NTT-PIM is due to DRAM memory operations, the performance
of NTT-PIM is quite tolerable under lower frequencies, still achieving
3 ∼ 7× speedup compared to CPU. The performance of NTT with
long polynomial lengths tend to be more robust on lower frequencies,
slowing down 1.65× only when the clock frequency drops by 4×.

2We intentionally use an older technology for logic, to simulate the effect
of implementing logic with a memory technology, which would be slower
and take larger area.
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E. Comparison with Previous Work

Table III compares our NTT-PIM with previous PIM-based NTT
accelerators as well as x86 CPU and FPGA, in terms of latency and
power. Our NTT-PIM achieves speedup of minimum 1.7× up to 17×
depending on the polynomial size. It is important to note that ours is
much more flexible than some of the compared works. For instance,
CryptoPIM [12] has a limitation that the modulo is fixed (a severe
drawback for FHE, which runs multiple NTTs using different modulo
values) and both CryptoPIM and MeNTT [11] limit the maximum
polynomial size. Ours has no such restriction. Moreover, the power
consumption of MeNTT [11] is very low, which is largely due to
the fact that its maximum polynomial size is very small (1K). While
our NTT-PIM’s latency increases exponentially as the polynomial
length increases, it is expected of any scheme supporting arbitrary
polynomial length. After all, the number of operations increases
as O(N logN). But it has also to do with the fact that longer
polynomials require frequent row activations due to larger portion
of inter-row mapping.



TABLE III: Comparison with Previous Work

Design NTT-PIM MeNTT CryptoPIM x86 CPU FPGA
Method DRAM 6T-SRAM RRAM Software -
Bitwidth 32 14 / 16 16 / 32 32 16# of atom buffers (Nb) 2 4 6

Latency (ns)

N : 256 3.90 2.50 1.94 23‡ 68.57† 84.81 21.56†

512 14.16 8.33 6.58 26‡ 75.90† 168.96 47.64†

1024 38.19 21.62 16.89 34.3† 83.12† 349.41 101.84†
2048 95.84 53.03 41.18 - 363.90 736.92 -
4096 230.45 124.95 96.62 - 392.69 1503.31 -

Energy (nJ)

N : 256 0.80 0.49 - 0.144‡* 68.67† 570.60 2.15†

512 4.77 2.67 - 0.324‡* 75.90† 1179.52 5.28†

1024 13.86 7.16 - 0.868†* 83.12† 2483.77 12.52†
2048 36.68 18.98 - - 363.60 5273.07 -
4096 93.08 48.93 - - 421.78 10864.64 -

Note. 1. † indicates 16-bit bitwidth and ‡ 14-bit.
2. *very small memory, supporting only N ≤ 1024.
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Fig. 8: Sensitivity to clock frequency (Nb = 2).

VII. CONCLUSION

We presented NTT-PIM, a novel PIM architecture supporting more
flexible data movement within and across bank rows, and a mapping
method for NTT functions. To address the challenges of highly
irregular memory access patterns and very restricted area budget,
our solution exploits the characteristics of the algorithm, such as BU
op-level scheduling, in-place update, and pipelining using multiple
buffers. Our experimental results demonstrates that even without
modifying cell arrays, PIM can provide state-of-the-art performance
at very little area and power overhead for important functions such
as NTT.

Our architecture and mapping is designed to support bank-level
parallelism, and while we expect near-linear speed up as the number
of banks increases, a more thorough investigation at the system level
is left for future work.
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