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Abstract

Single-stage multi-person human pose estimation (MPPE) methods have shown great
performance improvements, but existing methods fail to disentangle features by individ-
ual instances under crowded scenes. In this paper, we propose a bounding box-level
instance representation learning called BoIR, which simultaneously solves instance de-
tection, instance disentanglement, and instance-keypoint association problems. Our new
instance embedding loss provides a learning signal on the entire area of the image with
bounding box annotations, achieving globally consistent and disentangled instance rep-
resentation. Our method exploits multi-task learning of bottom-up keypoint estimation,
bounding box regression, and contrastive instance embedding learning, without addi-
tional computational cost during inference. BoIR is effective for crowded scenes, out-
performing state-of-the-art on COCO val (0.8 AP), COCO test-dev (0.5 AP), CrowdPose
(4.9 AP), and OCHuman (3.5 AP). Code will be available at https://github.com/
uyoung-jeong/BoIR

1 Introduction
Multi-person human pose estimation(MPPE) localizes 2D keypoint locations of multiple
human instances from an image. It is useful not only for 3D pose estimation and activity
recognition [41], but also for human-robot interaction [5], autonomous driving [43], aug-
mented/virtual reality and surveillance applications. In wild scenarios, where severe inter-
person occlusion and background clutter frequently occur, the capability of multi-person
pose estimation becomes even more crucial.

Recent advances in single-stage MPPE methods [20, 34, 40] have shown significant per-
formance improvements. Compared to top-down methods [11, 16, 37], they do not require
off-the-shelf person detectors and therefore robust to detection errors. Unlike bottom-up
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(a) (b) (c) (d) (e) (f)

Figure 1: (a): Bbox Mask Loss framework. Blue dot is a query box(blue colour) center, while
red dot is another box center. Lin

pull pulls instance center and soft-masked mean embeddings
inside the box, Lout

push pushes pairwise instance-background embeddings, and Linst
push pushes

pairwise instance embeddings. (b)-(f): Visualization of feature similarities from the center
features of bounding boxes in (b). (c) and (d) are CID feature similarities from A and B
centers, respectively, while (e) and (f) are BoIR feature similarities.

methods [4, 6, 19, 35, 39], they solve instance-keypoint association problems by explicitly
detecting instances, usually using instance center locations.

While single-stage methods showed promising results, they still suffer from instance-
keypoint association under heavy inter-person occlusion, which often results in noisy predic-
tions. We summarize the main reasons in two aspects. First, existing representation-based
methods lack multi-task supervision to learn diverse aspects of instance representation. Even
if they add multiple tasks, it would incur computational overhead during inference. Second,
previous works have spatially sparse supervision. Many works apply losses only on ground-
truth keypoint locations, which is too sparse for the model to holistically learn the entire
image region, leading to noisy and globally inconsistent results, as illustrated in Fig. 1. Al-
though heatmap-based approaches apply Gaussian kernel to generate ground-truth keypoint
heatmaps, it is still more sparse than conventional segmentation level supervision.

In this paper, we focus on an effective instance representation learning method which can
provide both rich spatial and multi-task supervision. First, we reformulate the existing MPPE
pipeline to apply embedding loss on a separate embedding branch, which can effectively map
nonlinear features of instances while the primary task branch’s performance is not degraded.
Then, we design a new contrastive learning scheme, termed Bbox Mask Loss, using bound-
ing box(bbox) supervision. It contrasts instance embeddings on both inside and outside of
the ground-truth boxes, which provides learning signals on the entire image region. Com-
bining with box regression and bottom-up keypoint heatmap regression as auxiliary tasks,
we apply multi-task learning scheme to learn effective instance representation for multiple
keypoint estimation.

In summary, we introduce a novel method for instance representation learning at the
box level, named BoIR. BoIR adeptly addresses the challenges of instance disentanglement
and instance detection simultaneously, without incurring any additional computational costs
during inference. These are achieved through the following key contributions:

• Bbox Mask Loss effectively disentangles features by instances in the embedding space
using a new embedding loss with spatially rich bounding box level supervision.

• Auxiliary task heads enrich instance representation by sharing multiple aspects of the
instance, while no additional computational cost is induced during inference.

BoIR excels at challenging crowded scenes, surpassing comparative methods by 0.5 AP on
COCO test-dev, 4.9 AP on CrowdPose test, and 3.5 AP on OCHuman test.
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2 Related Works

2D Multi-person human pose estimation (MPPE). 2D MPPE methods can be roughly
classified by instance handling approaches. Top-down methods use detectors [8, 26, 27] to
get person boxes and use cropped images as input. Bottom-up methods first detect keypoints
and group them into instances. Single-stage methods, on the other hand, detect instances
first and then regress instance-wise keypoints. Single-stage methods eliminate the need to
crop an image into multiple instance-wise images, and avoid the need for keypoint grouping.

SimpleBaseline [37] and HRNet [31] are top-down methods, and are generally used as
backbone networks in various works. MIPNet [11] is one of the recent top-down approaches
that considers multiple instances within a box by modulating the channel dimensions to
regress individual keypoints.

OpenPose [1], PersonLab [24], and PifPaf [12] share a similar idea of estimating a
vector field that associates keypoints with instances. HigherHRNet [4] and its subsequent
works [6, 19, 35, 39] are another class of bottom-up methods using Associative Embed-
ding [22]. From the pixel-wise one-dimensional embedding, they assign the detected key-
points to respective instances using off-the-shelf grouping algorithm [13]. These methods
tend to lack the capability of instance detection since their training losses are mainly tar-
geted for keypoint estimation.

There are several single-stage methods based on Transformers [33]. PETR [29] avoids
using Hungarian algorithm for instance grouping by randomly initializing query embeddings
to regress keypoints. In contrast, ED-Pose [40] extracts query embeddings via a human
detection decoder, but it requires substantial computational cost due to the massive amount
of learnable parameters, which is critical for real-time pose estimation. QueryPose [38]
similarly performs box and keypoint regression via query embeddings and Transformers-
based decoders, and its performance on CrowdPose test is inferior to CID by 0.2 AP with
the same HRNet-W48 backbone.

FCPose [20] and CID [34] are single-stage methods using an instance center map. FC-
Pose generates instance proposals from a single-stage person detector and employs instance-
wise dynamic convolution on global features. Similarly, CID estimates instance center map
to detect instances, and performs channel and spatial attention between sampled feature and
global features, but it does not perform box regression. CID directly applies contrastive loss
on the backbone network’s output feature, which does not effectively disentangle features
by instances, as discussed in SimCLR [3]. Additionally, CID’s contrastive loss is spatially
sparse since it is applied solely on instance center locations. Instead, we introduce a sepa-
rate embedding branch that enhances learning keypoint features, providing richer spatial and
multi-task guidance. KAPAO [21] is another method that reformulates keypoint regression
task as an object detection task, jointly detecting persons and keypoints.

Representation learning with distance metrics. Deep metric learning aims to learn a dis-
tance metric in the embedding space for better representation, generally composed with a
pull term for closing the distance among positive samples, and a push term for differentiat-
ing between different classes. Push loss term is crucial for effective representation learning,
so many works are devoted to proposing various negative sampling strategies. Contrastive
loss [7], triplet loss [28], N-pair loss [30] and InfoNCE loss [23] are some of the approaches.
SimCLR [3], MoCo [9], and CLIP [25] are representative works using variants of InfoNCE
loss. All of these methods use cosine similarity as a similarity metric.
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Removed in inference phase
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Figure 2: Left: Overview of our framework. Instance keypoint (kpt) head and center head
are primary regression heads. bottom-up keypoint (buk) head, bounding box (bbox) head
and embedding (emb) head are auxiliary task regressors which are not used during infer-
ence. Right: Layer composition of instance keypoint head. ’Linear’: linear layer, ’Conv’:
convolution layer, ’LN’: Layer Normalization, ’IN’: Instance Normalization, ’⊗’: Hadamard
product. ’coord’: relative coordinates of the heatmap pixel indices. f ′ ∈ RC′×H×W : projec-
tion of f by single convolution layer.

3 Method

3.1 Framework overview

Our framework comprises two main parts: auxiliary task branch and instance keypoint
branch. Given an input image, backbone network outputs a feature f ∈ RC,H,W , where H
is height and W is width. Task-specific heads produce instance center heatmaps c ∈ R1,H,W ,
box predictions b ∈ R4,H,W , bottom-up keypoint heatmaps kbu ∈ RK,H,W and instance em-
bedding map e ∈ RD,H,W . During training, after detecting instances from the center map,
instance features f p are sampled from the backbone feature at the ground-truth center coor-
dinates. f p are used as conditions for regressing instance-wise keypoints k in the instance
keypoint head, as proposed in [34]. In case of embedding branch, we sample instance em-
beddings p from e. During inference, f p are sampled from predicted instance centers. We
made several enhancements to the instance keypoint head, including Layer Normalization
and Instance Normalization for stable learning, as illustrated in Fig. 2. Please note that
b,kbu,e are not estimated during inference.

3.2 Bbox Mask Loss

Existing instance representation learning methods such as Associative Embedding(AE) and
CID’s contrastive loss failed to handle multiple people in several aspects, often leading to
noisy results. Firstly, they only compare instance embeddings with ground-truth(GT) in-
stance locations, making it difficult to generate a push loss term when only one GT instance
is present in an image. Secondly, there are unlabeled instances in training datasets, and exist-
ing works typically ignore these unlabeled instances, which induces additional noise during
inference. Thirdly, the number of human instances per image in training datasets is insuffi-
cient for effective instance representation learning. For example, COCO train set has an
average of 2.6 people per image, excluding labels with iscrowd=1. Similarly, CrowdPose
trainval set has 4.2 people per image.

Citation
Citation
{Wang and Zhang} 2022



JEONG, BAEK, CHANG, KIM: BOIR: BOX-SUPERVISED INSTANCE REPRESENTATION 5

To alleviate aforementioned challenges, inspired by a weakly supervised instance seg-
mentation method [36], we introduce spatially rich supervision via box annotations, termed
Bbox Mask Loss. It disambiguates each instance embedding from outside of the box region,
which can handle arbitrary unlabeled instances and background clutter. It applies soft mask-
ing on the inside of the box based on embedding similarity, which is effective for feature
disentanglement under heavy cross-instance occlusions. Moreover, it can produce push loss
term even when only a single GT instance is available in an image, serving as a simple but
effective negative sampling method.

Bbox Mask Loss incorporates multitude of push and pull loss terms, including in-box
pull Lin

pull , out-box push Lout
push, and cross-instance push Linst

push. First, given a GT instance and
corresponding box with height h and width w, we compute pixel-wise embedding similarity
between embedding map and the instance embedding as follows:

s(x,y)i = ψ(d(e(x,y), pi)), (x,y) ∈ Bi, (1)

where d is a distance metric, and ψ is an inversion operator to convert the distance to similar-
ity with [0,1] output range. From ablative experiment, as reported in Table 4, we find that L2
distance for d and Gaussian kernel for ψ outperforms cosine distance and cosine similarity.
Bi is a set of coordinates inside the box bi, where i = 1,2, ...,N. As a pulling term inside
the box, we want the model to produce similar embeddings on the foreground region of the
same person. To realize the objective, we compare the instance center embedding with the
mean instance embedding p̄i, as defined below:

Lin
pull =

1
N

N

∑
i=1

d(pi, p̄i), where p̄i =
∑(x,y)∈Bi e(x,y)s(x,y)i

∑(x,y)∈Bi s(x,y)i

. (2)

To decouple the instance embedding from the background, we define the out-box push loss
using out-box mean embedding p̄c

i :

Lout
push =

1
N

N

∑
i=1

ψ(d(pi, p̄c
i )), where p̄c

i =
∑(x,y)∈Bc

i
e(x,y)

|Bc
i |

. (3)

Note that Bc
i is a set of coordinates outside the ith box, and p̄c

i is a mean embedding of the
background except the ith box region. Lastly, cross-instance push term compares instance
embeddings retrieved from ground-truths, which is the same as the existing losses.

Linst
push =

1
(N(N −1)/2)

N

∑
i=1

N

∑
j>i

ψ(d(pi, p j)). (4)

3.3 Auxiliary tasks
In order to encourage the features to have richer and more disentangled information for
MPPE, we incorporate multiple auxiliary tasks and instance representation learning in par-
allel. Our multi-task branch consists of shared layers and four separate regression heads,
consisting of instance embedding, bottom-up keypoint, box, and instance center.

We concurrently reduce dimensionality of the backbone feature and incorporate multi-
resolution shared feature representation based on ASPPv2 [2]. It resolves the problem of
regressing globally consistent instance features. Original ASPPv2 module incurs heavy
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Method Backbone Input size AP AP50 AP75 APM APL AR
Top-down methods

SBL [37] ResNet-152 384×288 73.7 91.9 81.1 70.3 80.0 -
HRNet [32] HRNet-W32 384×288 74.9 92.5 82.8 71.3 80.9 -

Bottom-up methods
HrHRNet [4] HrHRNet-W32 512 66.4 87.5 72.8 61.2 74.2 -
DEKR [6] HRNet-W32 512 67.3 87.9 74.1 61.5 76.1 72.4
SWAHR [19] HrHRNet-W32 512 67.9 88.9 74.5 62.4 75.5 -

Single stage methods
FCPose [20] ResNet-101+FPN 800 65.6 87.9 72.6 62.1 72.3 -
PETR [29] ResNet-101 800 68.5 90.3 76.5 62.5 77.0 -
ED-Pose [40] ResNet-50 800 69.8 90.2 77.2 64.3 77.4 -
CID [34] HRNet-W32 512 68.9 89.9 76.0 63.2 77.7 74.6
CID [34] HRNet-W48 640 70.7 90.3 77.9 66.3 77.8 76.4
BoIR HRNet-W32 512 69.5 90.4 76.9 64.2 77.3 75.3
BoIR HRNet-W48 640 71.2 90.8 78.6 67.0 77.6 77.1

Table 1: Comparison with state-of-the-art methods on COCO test-dev set. Best scores
are marked as bold for small (e.g. HRNet-W32) and large (e.g. HRNet-W48) models re-
spectively.

computational cost when fusing multiple resolution features. We alleviate this by further
squeezing the output channel size of each multi-resolution feature to 128, and then apply a
fusion layer to obtain a final feature with 256 channel size. This design reduces the number
of trainable parameters of ASPP by 50%. This shared bottleneck module design helps to
prevent auxiliary tasks from dominating over the primary task, by restricting the amount of
information flow to the auxiliary tasks.

Each regression head comprises with one residual block and one output convolution layer
for sufficient capability of learning nonlinear feature transformation. In case of box regres-
sion, we adopt anchor free method [15] for efficient training. For clarity, we do not use the
bbox head outputs during inference, and the box head serves as an efficient and informative
auxiliary task head.

3.4 Training losses

We employ five loss functions: instance-wise keypoint heatmap loss Lkpt , center heatmap
loss Lcenter, bottom-up keypoint heatmap loss Lbuk, bbox loss Lbbox, and embedding loss
Lemb.

L= Lkpt +Lcenter +Lbuk +Lbbox +Lemb. (5)

Focal loss [14, 45] is used for Lkpt ,Lcenter and Lbuk, while CIoU loss [44] is used for Lbbox.
For embedding loss, we use three loss terms as defined in Equation 2,3,4. We use AE loss
for calculating respective terms:

Lemb = Lin
pull +Lout

push +Linst
push. (6)
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Method Backbone Input size AP AP50 AP75 APE APM APH

Top-down methods
SBL [37] ResNet-101 - 60.8 81.4 65.7 71.4 61.2 51.2
SPPE [16] ResNet-101 320× 256 66.0 84.2 71.5 75.5 66.3 57.4

Bottom-up methods
HrHRNet [4] HrHRNet-W48 640 65.9 86.4 70.6 73.3 66.5 57.9
DEKR [6] HrHRNet-W32 512 65.7 85.7 70.4 73.0 66.4 57.5
SWAHR [19] HrHRNet-W48 640 71.6 88.5 77.6 78.9 72.4 63.0

Single stage methods
PETR [29] Swin-L 800 71.6 90.4 78.3 77.3 72.0 65.8
ED-Pose [40] ResNet-50 800 69.9 88.6 75.8 77.7 70.6 60.9
CID [34] HRNet-W32 512 71.3 90.6 76.6 77.4 72.1 63.9
CID [34] HRNet-W48 640 72.3 90.8 77.9 78.7 73.0 64.8
CID∗ [34] HRNet-W32 512 74.9 91.8 81.0 82.0 75.8 66.3
BoIR HRNet-W32 512 70.6 89.9 76.5 77.1 71.2 63.0
BoIR HRNet-W48 640 71.2 90.3 76.7 77.8 71.8 63.5
BoIR∗ HRNet-W32 512 75.8 92.2 82.3 82.3 76.5 67.5
BoIR∗ HRNet-W48 640 77.2 92.4 83.5 82.7 78.1 69.8

Table 2: Comparison with state-of-the-art methods on CrowdPose test set. Best scores
are marked as bold for small(e.g. HRNet-W32) and large(e.g. HRNet-W48) models respec-
tively. Models with ∗ are trained on COCO and finetuned on CrowdPose.

4 Experiments

4.1 Datasets and evaluation metrics
We evaluated the performance of our approach on four benchmark datasets.
COCO Keypoint 2017 [17] comprises train (57K images), val (5K images), and test-dev
(20K images) splits, annotated with 17 keypoints. We use train split for training, and val
split for hyperparameter tuning.
CrowdPose [16] consists of 20K images and 80K instances, annotated with 14 keypoints.
Following the evaluation protocol of [34], we use trainval split (12K images, 43.4K in-
stances) for training and test split (8K images, 29K instances) for evaluation.
OCHuman [42] is targeted for evaluation on crowded scenes with extreme conditions. 2,500
images are for val set, and 2,231 images are for test set. We evaluate our method follow-
ing [10, 34].
Evaluation metrics. We follow COCO evaluation protocol, where AP(Average Precision)
and AR(Average Recall) are computed based on OKS(Object Keypoint Similarity) with
varying thresholds, including AP (averaged AP), AP50 (AP at OKS=0.5), and AP75 (AP
at OKS=0.75). In case of CrowdPose, we additionally report metrics based on crowd index,
including APE (easy), APM (medium), and APH (hard).

4.2 Implementation details
Our implementation is based on [34]. We use HRNet-W32 and HRNet-W48 as back-
bone networks and perform hyperparameter tuning with COCO val set results. We apply
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Method Backbone COCO val OCHuman val OCHuman test
AP AR AP AR AP AR

DEKR [6] HRNet-W32 68.0 73.0 37.9 - 36.5 -
DEKR [6] HRNet-W48 71.0 76.0 - - - -
CID [34] HRNet-W32 69.8 75.4 44.9 - 44.0 -
CID [34] HRNet-W48 - - 46.1 - 45.0 -
BoIR HRNet-W32 70.6 76.3 47.4 80.1 47.0 80.3
BoIR HRNet-W48 72.5 78.3 49.4 80.8 48.5 80.7

Table 3: Comparison with state-of-the-art methods on COCO val and OCHuman val,
test set. OCHuman performance is evaluated with COCO pretrained model without fine-
tuning.

AdamW optimizer with initial learning rate 1.0e-3, weight decay 2.5e-2, and cosine learning
rate scheduler with 10 warmup epochs, following [18]. For COCO, we train the model for
140 epochs on 4 GPUs(RTX 3090 for HRNet-W32, A6000 for HRNet-W48) with AMP,
with 20 batch size for each device. For CrowdPose, similar to [34], we train the model for
310 epochs when training from scratch, while 100 epochs with 1 warmup epoch are applied
for transfer learning. Following [4, 6, 34], we apply single scale test with flipping.

4.3 Comparison with state-of-the-arts

Results on COCO datasaet. We report COCO val results in Table 3, and test-dev
results in Table 1. Our method outperforms existing state-of-the-art under the same or similar
backbone. Our method with HRNet-W32 backbone outperforms CID by 0.8 AP on val and
0.6 AP on test-dev. Similarly, we achieve 0.5 AP improvement on test-dev with
HRNet-W48 backbone. Furthermore, we conducted t-test on five COCO val set results
from respective methods, and our method achieved statistically significant and consistent
improvements over CID with p-value 6.4×10−5.

Results on CrowdPose dataset. We compare other methods on CrowdPose test in Ta-
ble 2. BoIR is the second best among state-of-the-art methods. Nonetheless, our method
suffers from performance drop of 0.7 AP on the HRNet-W32 backbone and 1.1 AP on
HRNet-W48 backbone. We speculate that as the model size increases, the model suffers from
insufficient amount of training data on CrowdPose, as the performance difference between
CID and ED-Pose on CrowdPose is also reversed on COCO. To validate the hypothesis, we
introduce finetuning on CrowdPose using the model weights trained on COCO train set.
Finetuning strategy is proven to be far more effective, surpassing existing state-of-the-art by
4.5 AP with the HRNet-W32 backbone, and 4.9 AP with HRNet-W48 backbone. For a fair
comparison, we additionally conducted the same finetuning strategy on CID, and our method
also outperforms the baseline by 0.9 AP.

OCHuman results. Comparison on OCHuman is summarized in Table 3. Following the
protocol in [10], we evaluate the model trained on COCO without finetuning on OCHu-
man. BoIR outperforms comparative methods on both val and test set by large margin.
Therefore, our instance representation learning is effective especially for crowded scenes.
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Bbox Mask Loss Bbox Head AP
69.6

✓ 70.2
✓ 70.4

✓ ✓ 70.6

Emb. Loss Dist. Metric AP
Contrastive cosine 70.3
Contrastive L2 70.2

AE L2 70.6

Table 4: Left: Ablation study of Bbox Mask Loss and bbox regression head on COCO val
set. Right: Ablation study of embedding loss function and distance metric on COCO val
set, where Bbox Mask Loss and bbox head are used.

Method Backbone # params. (M) Time (ms) AP
CID HRNet-W32 29.3 86.7 69.8
CID HRNet-W48 65.4 - -
ED-Pose ResNet-50 47.9 113.9 71.6
ED-Pose Swin-L 218.8 272.1 74.3
BoIR HRNet-W32 31.8 110.6 70.6
BoIR HRNet-W48 68.9 167.3 72.5

Table 5: Computational cost comparison on COCO val set. Inference time is measured
with single RTX 3090 and 1 batch size.

4.4 Ablation study

We have performed ablative experiments, as illustrated in Table 4. The effectiveness of Bbox
Mask Loss and Bbox Head has been validated by assessing four possible combinations, and
the result shows that our proposed methods are useful. We additionally conduct ablative
experiments on embedding losses and distance metrics. AE loss turns out to be superior to
Contrastive loss. We hypothesize that L2 distance with Gaussian kernel used in AE loss is
better suited for keypoint evaluation criteria, as claimed in [22]. We also extensively compare
computational cost in Table 5. Our method manages to keep the computational cost within a
reasonable extent, compared to ED-Pose.

For qualitative and visual analysis, we compare our method with CID in Fig. 3. The
color coding in the figure represents the t-SNE results of the learned features (3 dim). For
skateboarding (left), CID missed the border, explaining the inconsistent and less disentangled
features. This was evident from the similarity of the color of the border to the background,
which also appeared overall noisy. In contrast, BoIR demonstrated clear, consistent, and
distinct t-SNE colors for the border, effectively separating it from the background. For right,
BoIR further exhibited distinct colors for different individuals, successfully distinguishing
between two closely interacting people, where CID failed.

We also visualize the behaviour of our method for overlapping instances in Fig. 1 (b-f).
Two boxes A and B in (b), (c), and (d) respectively show the feature similarities of CID
from the respective box centers. Similarly, (e) and (f) show the corresponding similarities
of BoIR. Our method demonstrates a notably effective separation of features for closely
interacting individuals.
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Keypoint t-SNE Keypoint t-SNE
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Figure 3: Example outcomes using our approach. The image on the left is from the COCO
val set, while the image on the right is from the CrowdPose test set. We employed t-SNE,
running it for 250 iterations, on the output backbone feature, with three output dimensions
per pixel, corresponding directly to normalized RGB values.

5 Conclusion
This paper proposes a new multi-person pose estimation method using bounding box-supervised
instance representation learning, called BoIR. It provides rich spatial supervision, utilizing
embedding similarity as a soft mask for positive sampling, and the background region as a
negative sample. It also incorporates auxiliary tasks for richer multi-task learning, without
additional computation cost during inference. Our instance embedding can effectively disen-
tangle instances in crowded scenes, surpassing comparable state-of-the-art methods on mul-
tiple human pose estimation benchmarks. Despite notable performance improvement with
transfer learning, effective representation learning on small training data is a remaining issue,
and we plan to mitigate the limitation as future work. Potential future work also involves en-
hancing auxiliary supervision by incorporating additional tasks, e.g. action recognition, and
leveraging image captions within the framework of multi-modal contrastive training.
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Appendix
In this supplementary material, we provide further details about 1) Bbox Mask Loss 2) ar-
chitecture composition 3) additional experiments 4) visualization and comparative analysis
with CID.

6 Bbox Mask Loss
From the instance embedding map e, we first apply L2 normalization on e. Then, we sample
instance embedding p from e and compute respective loss terms as following:

Lin
pull =

1
DN

N

∑
i=1

D

∑
d=1

(
p(i,d)− p̄(i,d)

)2 (7)

Lout
push =

1
N

N

∑
i=1

exp

{
−β

D

D

∑
d=1

(
p(i,d)− p̄c

(i,d)

)2
}

(8)

Linst
push =

1
N(N−1)

2

N

∑
i=1

N

∑
j>i

exp

{
−β

D

D

∑
d=1

(
p(i,d)− p( j,d)

)2

}
(9)

D is the dimension of the instance embedding, N is the number of ground-truth instances
in an image, and i, j represent the instance indices. β = 1

2σ2 is a scaling coefficient for the
Gaussian kernel proposed in Associative Embedding [22].

7 Architecture Composition
In the case of 512x512 input size, output heatmap size is set to 128x128. In the case of
640x640 input size, output heatmap size is 160x160. HRNet-W32 backbone outputs 480
channels, due to concatenation of all block outputs. Similarly, HRNet-W48 backbone out-
puts 720 channels.

In the case of auxiliary task heads, 1 residual block and 1 convolution layer are applied.
Residual block receives 256 input channels and outputs 128 channels. The final convolution
layer outputs task-specific output channels. In case of bottom-up keypoint head, it is the
number of keypoints(17 in COCO, 14 in CrowdPose). In case of the bounding box head, it
outputs 4 channels(left, top, right, bottom distance). In case of embedding head, it is D. All
convolution layers in the auxiliary task head have a 3x3 kernel size.

In case of instance-wise keypoint regression head, 64 hidden channel size is applied for
HRNet-W32 backbone. 96 hidden channel size is used for HRNet-W48 backbone.

8 Additional Experiments
We report full comparative evaluation results on COCO val set on Table 6. CID paper does
not report full results, so we report the scores using the provided trained model weights.
Since HRNet-W48 backbone model is not available, CID’s HRNet-W48 results are not re-
ported. BoIR outperforms all comparative stae-of-the-arts except for HRNet-W48 backbone
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Method Backbone Input size AP AP50 AP75 APM APL AR
Top-down methods

SBL [37] ResNet-152 384×288 74.3 89.6 81.1 70.5 81.6 79.7
HRNet [32] HRNet-W32 384×288 75.8 90.6 82.5 72.0 82.7 80.9

Bottom-up methods
HrHRNet [4] HrHRNet-W32 512 67.1 86.2 73.0 61.5 76.1 -
HrHRNet [4] HrHRNet-W48 640 69.9 87.2 76.1 65.4 76.4 -
DEKR [6] HRNet-W32 512 68.0 86.7 74.5 62.1 77.7 73.0
DEKR [6] HRNet-W48 512 71.0 88.3 77.4 66.7 78.5 76.0
SWAHR [19] HrHRNet-W32 512 67.1 86.2 73.0 61.5 76.1 -
SWAHR [19] HrHRNet-W48 640 69.9 87.2 76.1 65.4 76.4 -

Single stage methods
PETR [29] ResNet-101 800 70.0 88.5 77.5 63.6 79.4 -
ED-Pose [40] ResNet-50 800 71.6 89.6 78.1 65.9 79.8 -
CID [34] HRNet-W32 512 69.8 88.5 76.6 64.0 78.9 75.4
BoIR HRNet-W32 512 70.6 89.2 77.4 65.1 79.0 76.3
BoIR HRNet-W48 640 72.5 89.9 79.1 68.2 79.4 78.3

Table 6: Comparison with state-of-the-art methods on COCO val set. Best scores are
marked as bold for small(e.g. HRNet-W32) and large(e.g. HRNet-W48) models respec-
tively.

β AP AR
0.5 69.8 75.7
1 70.3 76.2
5 70.2 76.0

10 70.5 76.2
15 70.2 76.0

Emb. Dim AP AR
1 70.4 76.3
8 70.4 76.3

16 70.4 76.2
32 70.4 76.3
64 70.1 75.8
128 70.5 76.2

Table 7: Left: Ablation experiment of β on COCO val set. D = 128 by default. Right:
Ablation experiment of embedding dimension D on COCO val set. β = 10 by default.

on APL. Our method with HRNet-W32 backbone outperforms CID by 0.8 AP. Our method
with HRNet-W48 even outperforms ED-Pose by 0.9 AP.

We report ablation experiments on AE’s Gaussian kernel scaling coefficient β and em-
bedding dimension D on COCO val set on Table 7. For fast training and simplicity, we
use Bbox Mask Loss and do not use bbox head during experiment. In case of β , 10 was
the best among the options. In case of D, changing the embedding dimension shows little
performance difference. We conjecture that AE loss for higher dimensions needs more re-
finement to benefit high dimensional representation. The primary cause is L2 normalization
over embedding dimension before loss computation, which significantly drops the loss scale
and floating point precision compared to the original AE loss formulation. Simply removing
the normalization would cause unstable training with AMP, so further research is required to
improve the current framework.
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Figure 4: Comparative visualization on COCO val set.

9 Visualization

We provide extensive outputs of our model in Fig. 4 and Fig. 5. We visualize keypoint pre-
diction outputs along with instance center heatmap, t-SNE of backbone output feature, and
feature similarity between top-1 confident instance parameter and the entire feature map. t-
SNE is applied on the output backbone feature for 250 iterations with 3 output dimensions
per pixel, which directly corresponds to normalized RGB values. Instance similarity is mea-
sured by computing the L2 distance between the top-1 confident instance’s parameter and
the feature map, and then applying a Gaussian Kernel.

We additionally report failure cases of BoIR in Fig. 6. In case of the left images, BoIR
produces duplicated predictions on the same person, due to wide activation area of the center
heatmap. In case of the right images, BoIR places occluded joints on implausible positions,
while this does not affect evaluation performance. However, BoIR generally produces dis-
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CID BoIR CID BoIR

GT

Pred

Center

t-SNE

Sim

Figure 5: Comparative visualization on CrowdPose test set.
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Figure 6: Failure cases on COCO val set.

entangled instance features and detects people better than CID.
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