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ABSTRACT Skeleton-based human action recognition has attracted significant interest due to its simplicity
and good accuracy. Diverse end-to-end trainable frameworks based on skeletal representation have been
proposed so far to map the representation to human action classes better. Most skeleton-based human action
recognition approaches are based on the skeletons, which are heuristically pre-defined by the commercial
sensors. Nevertheless, it is not confirmed whether the sensor-captured skeletons are the best representation
of human bodies for the action recognition task, while in general, the dedicated representation is required for
achieving the successful performance on subsequent tasks such as action recognition. In this paper, we try
to deal with the issue by explicitly learning the skeletal representation in the context of the human action
recognition task. We start our investigation by reconstructing 3D meshes of the human bodies from RGB
videos. Then we involve the transformer architecture to sample the most informative skeletal representation
from reconstructed 3D meshes, considering the inner and inter structural relationship of 3D meshes and
sensor-captured skeletons. Experimental results on challenging human action recognition benchmarks (i.e.,
SYSU and UTD-MHAD datasets) have shown the superiority of our skeletal representation compared to the
sensor-captured skeletons for the action recognition task.

INDEX TERMS 3D representation, action recognition, human mesh, transformer.

I. INTRODUCTION
Recognizing the temporal actions of human bodies has been
an essential task in the field of computer vision. Several
deep learning architectures [1]–[9] have been proposed so
far to capture the human actions properly. Popular meth-
ods for the human body actions are based on RGB-D
representation [1]–[4] and skeleton representation [5]–[9].
RGB-D video is the most trivial input that requires only
RGB-D cameras to collect; however, it requires a large
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amount of memory capacity. In the aspect of efficiency, skele-
tal representation is the most promising, as it captures key
component of human bodies and is able to achieve compara-
ble accuracy to the RGBD-based human action recognition.
Despite its success, the sensor-captured skeletons are varied
depending on the sensor types, and there might be room for
improvement in its representation.

Recognizing the 3D skeleton has been widely studied
for its practicality after it was initially commercialized by
the Kinect sensor [10]. There has been much technical
progress in the field of 3D human pose estimation using
the deep learning approaches [11]–[13]. More recently, many
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FIGURE 1. Examples of 3D skeletal representation obtained from the
Kinect sensor and our algorithm: (a) original RGB images, (b) 3D
skeletons obtained from the Kinect sensor, and (c) 3D skeletons obtained
from our algorithm. For our representation, five points with high
importance are highlighted in red color.

methods appeared to reconstruct both 3D poses and shapes
of the human bodies from single RGB images. Most of
them [14]–[16] are reconstructing 3D human meshes based
on SMPL [17]. 3D meshes represent human bodies as thou-
sands of 3D vertices, thereby capturing more detailed move-
ments of the human bodies compared to coarse skeletons. 3D
meshes have the potential to provide better action recognition
capability than the sensor-captured skeletons.

In this work, we are motivated to explore to obtain the
proper skeletal representation from human mesh for recog-
nizing human actions. We developed our framework based
on two steps: we first reconstructed 3D meshes of human
bodies from RGB videos and then learned to sample the most
informative skeletal representation, as shown in Figure 1, for
action recognition using the transformer architecture [11].
We tried to reveal two key propositions via the proposed
framework: 1) howmuch the 3Dmeshes could help the action
recognition task and 2) which is the most effective configu-
ration of skeletal representation for better action recognition.

At a more detailed level, reconstructing 3D meshes of
human bodies from single RGB images is performed using
the ExPose [16] algorithm. First, it reconstructs the 3D
meshes via the SMPL-X model [15], which has 10, 475 ver-
tices and 20, 908 triangular faces for the human’s faces,
bodies, and hands. Then, we involved the transformer archi-
tecture [11] in sampling the most informative skeletal rep-
resentation for action recognition. Our transformer is mainly
trained by involving three supervisions: considering the inner
and inter relationship among 3D mesh vertices sequences
input and 3D sensor-captured skeletons sequences input, and
enforcing 1) our 3D sampled skeletons output close to the 3D
mesh vertices input, 2) our 3D vertices output close to the
3D mesh vertices input, and 3) the excellent accuracy in the

action recognition task. By the method, we showed the supe-
riority of our learned skeletal representation compared to the
sensor-captured skeletons on two challenging human action
recognition benchmarks: SYSU [18] and UTD-MHAD [19]
datasets. Our contributions could be summarized as follows:
• We propose to investigate a method that is able to
learn the skeletal representation of human bodies for the
action recognition task.

• Wepropose an effective skeletal representation sampling
scheme by first reconstructing the 3D meshes of human
bodies from RGB videos and then generating the most
informative skeletal representation among them.

• We conduct experimental analysis on our skeletal rep-
resentation learning method and then show that our
method is able to produce the skeletal representation
that has superior accuracy on SYSU and UTD-HMAD
datasets compared to sensor-captured skeletons.

II. RELATED WORKS
In this section, we review 3D human mesh reconstruction
algorithms that are able to capture human body motions.
Then, we further review action recognition algorithms that are
based on different modalities: RGB, depth, and 3D skeletons.

A. 3D HUMAN MESH ESTIMATION
Recently, there have been approaches for estimating both
poses and shapes of humans in RGB images or videos.
These methods provide the J-regression matrix that is able
to obtain the 3D skeletons from the 3D mesh vertices.
These 3D skeletons include the pre-defined skeletons such
as wrists, elbows, ankles, knees, neck, head, etc.. There
has been a method [20] that uses the advantage of both
optimization-based and regression-based methods for esti-
mating 3D mesh. Kocabas et al. [21] proposed a framework
that incorporates the temporal dynamics of the human body
and shape. Lin et al. [22] proposed the end-to-end human
pose and mesh reconstruction with transformer [11], which
is a non-parametric body mesh reconstruction method. 3D
skeletons from these methods may not be the best tool for
action recognition because these methods use SMPL [17]
body model and this model can not express the pixel-aligned
human hand meshes which provide important information to
recognize action. Thus, we propose a framework that sam-
ples skeletal representation from SMPL-X [15] 3D meshes,
which can express the human body, hand and face, for action
recognition.

B. HUMAN ACTION RECOGNITION
Action recognition is a critical computer vision field where
a lot of research is being done because it can be bene-
ficial in real life. Therefore, many network models using
various cues have been proposed: Zhang et al. [23] pro-
posed semantics-guided neural networks for skeleton-based
human action recognition. They introduced the semantics
of skeletons and frames. It is more helpful to understand
the relationship between skeletons and recognize human
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FIGURE 2. The summary for the overall training method: orange and gray blocks mean the model which needs to be trained and the frozen model whose
parameters are fixed during training, respectively. The skeletons sequences input S and 3D mesh vertices sequences input V obtained from the ExPose
are feed to the transformer with positional encoding. Then, sampled skeletons sequences output Ŝ and estimated vertices sequences output V̂ are
obtained from the transformer architecture. The action classifier (SGN) needs sampled skeletons sequences Ŝ as input. Then, it outputs the prediction of
the action label ŷ . At Stage 1, the transformer is initially trained. At Stage 2, alternating training is performed and this is divided into two stages: 2-1 and
2-2. At Stage 2-1, the transformer is frozen and the action classifier is trained. At Stage 2-2, the transformer is trained and the action classifier is frozen.
By this, the action classifier is trained to use the learned skeletal representation as input, and the transformer is trained to sample better skeletal
representation dedicated to the action recognition task.

action. Das et al. [24] proposed a 3D sensor-captured skele-
tons and RGB-based network model with spatial embed-
ding and attention. This model uses two modalities to
learn better spatio-temporal features for action recognition.
Zhang et al. [25] proposed a view adaptive neural network
model to handle the challenge of large view variations in
human actions. Zhang et al. [26] proposed the VA-fusion
method that has a view adaptation sub-network. It selects
the suitable observation view for action recognition. There
are two network models, VA-RNN and VA-CNN, and the
output features from the two network models are fused
to predict action labels. Zhang et al. [27] proposed an
element-wise-attention GRU network model. The input data
is multiplied by the attention value and passed to the GRU
model. This simple method can be applied to RNN and
LSTM. Islam et al. [28] proposed a hierarchical multi-modal
attention-based human activity recognition algorithm. It uses
N modalities for action recognition. This model extracts
the uni-modal spatio-temporal feature and uni-modal self-
attention in each modality. Then, after fusing the uni-modal
features, it computes the multi-modal features and multi-
modal multi-head self-attention for action recognition. It uses
RGB images, skeletons and inertial, etc. Liu et al. [29] pro-
posed a multi-modal CNN-based action recognition net-
work model. CNN module predicts a body heatmap and
pose. The late fusion scheme improved the accuracy by
using 3D sensor-captured skeletons and estimated heatmap.
Wang et al. [30] proposed amulti-stream interaction network.

It consisted of a human skeleton module, an object module,
and the interaction between human and object modules. This
network learns the relationship between humans and objects
to recognize human action in a better way. Ke et al. [31]
proposed to use the discriminator to learn latent long-term
global information and local action information for action
recognition. McNally et al. [32] proposed a spatio-temporal
activation model using RGB videos for action recognition.
Zhao et al. [33] proposed the probabilistic model, which is
hierarchical. Bayesian framework improved the ability to
detect intra-class variations in the spatial and temporal extent
of actions.Weiyao et al. [34] proposed themulti-modal action
recognition model, which consists of bi-linear pooling and
an attention network. This model used RGB videos and
skeletons.

Recently, there appears action recognition pipelines
that exploit the transformer architecture [11]; while most
approaches built their framework based on the skeleton rep-
resentation obtained from the commercial sensors. We try to
investigate more optimal skeletal representation for the action
recognition in the aspect of the configurations and the number
of skeletons.

III. METHOD
This paper aims to learn the proper skeletal representation
for the human action recognition task. We will investigate the
proper configurations and the number of the skeletons which
are suitable for human action recognition. We have pre-stage
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for reconstructing full-body 3D meshes from RGB videos
involving the recently proposed 3D mesh reconstruction net-
work [16]. We build our entire framework to have overall two
distinct stages: involving the transformer architecture [11] to
sample the most informative skeletal representation from 3D
meshes for action recognition and involving the action clas-
sifier [23]. In the remainder of this section, we will explain
the details of the positional encoding and how the individual
stages work. Also, in Figure 2, we visualized our overall
pipeline having a transformer-based sampling skeleton net-
work and action classifierwithin it.We summarized our entire
training process in Algorithm 1.

A. DETAILS ABOUT THE POSITIONAL ENCODING
In the transformer architecture [11], sequence order infor-
mation is missing as the architecture does not have the
recurrent layers which are able to encode the sequence fea-
ture. Thus, the transformer usually encodes such information
using the positional encoding scheme. We also perform it
to encode the skeletons and mesh vertices as the sequences
having spatial information. In our preliminary experiment,
we observed that without the positional encoding, the trans-
former training is not robust, thus we tried to involve it in our
framework. We added ‘‘spatial positional encoding’’ to the
skeletons and mesh vertices similar to previous transformer-
based approaches [11], [22], [35]. Especially, we followed
the method of [35] adding the learnable weight parameter
W ∈ R(#S+#V )×64 to the skeletons and mesh vertices input
embeddings, where #S is the number of skeletons and #V is
the number of mesh vertices.

B. PRE-STAGE: EXTRACTING FULL-BODY 3D MESHES
FROM RGB VIDEOS
To reconstruct the 3D meshes, we used SMPL-X [15]
deformable 3D mesh model for human bodies and involved
the ExPose [16] algorithm. SMPL-X full-body mesh has
10, 475 vertices and 20, 908 triangular faces. ExPose recon-
structs the SMPL-X full-body 3D human mesh from a single
RGB image. ExPose is pre-trained on a large 3D human
mesh dataset, and it is one of the state-of-the-art methods
in human pose and shape estimation. Please note that we do
not fine-tune ExPose on SYSU and UTD-MHAD datasets.
We reconstructed and saved the 3D human meshes from
RGB images of the SYSU and UTD-MHAD datasets using
ExPose [16] before starting the experiment.

C. STAGE 1: LEARNING TO SAMPLE THE SKELETAL
REPRESENTATION
After reconstructing 3D meshes using ExPose [16], we sam-
ple the most informative skeletal representation for action
recognition using the transformer. We encode the inner and
inter relationship among 3D mesh vertices input V and 3D
skeletons input S using the self-attention mechanism. From
this mechanism, we can sample the skeletons Ŝ which retain
the geometric information of 3D meshes and have implicit
information of 3D skeletons S. The transformer needs 3D

Algorithm 1 The Summary of Our Entire Training Process
Input: For transformer’s input, skeletons sequences S and
input 3D mesh vertices sequences from ExPose V . For action
classifier, sampled skeletons sequences Ŝ.
Output: Sampled skeletons sequences Ŝ and estimated
vertices sequences V̂ from transformer. Prediction of action
label ŷ from action classifier.
Parameter: The number of epochs T1, T2−1, T2−2, and T3.
Target: Ground-truth action label y.

1: for t1 = 1, . . . , T1 do
2: For S, Ŝ, V , and V̂ , calculate the loss from Eq. 6 and

update parameters of transformer.
3: end for
4: for t2 = 1, 2, 3 do
5: for t2−1 = 1, . . . , T2−1 do
6: For y and ŷ, calculate the loss from Eq. 7 and update

parameters of the action classifier.
7: end for
8: for t2−2 = 1, . . . , T2−2 do
9: For S, Ŝ, V , V̂ , y, and ŷ, calculate the loss from Eq. 8

and update parameters of transformer.
10: end for
11: end for
12: for t3 = 1, . . . , T3 do
13: For y and ŷ, calculate the loss from Eq. 7 and update

parameters of the action classifier.
14: end for

skeletons input S and 3D mesh vertices input V with posi-
tional encoding, and it outputs sampled skeletons sequences
Ŝ and estimated vertices sequences V̂ . We proposed to define
two losses Lcf and Lrec to train the transformer architecture at
stage 1.
Lcf is the loss that is similar to the chamfer distance loss

proposed in [36] that is proposed to make our sampled skele-
tons output Ŝ close to the 3Dmesh vertices inputV as follows:

Lcf = Lf (Ŝ,V )+ βLm(Ŝ,V )+ γLb(Ŝ,V ) (1)

where

Lf (Ŝ,V ) =
1

|Ŝ|

∑
s∈Ŝ

min
v∈V
||s− v||22 (2)

Lm(Ŝ,V ) = max
s∈Ŝ

min
v∈V
||s− v||22 (3)

Lb(Ŝ,V ) =
1
|V |

∑
v∈V

min
s∈Ŝ
||v− s||22. (4)

In the average worst case, two losses Lf and Lm keep the
sampled skeletons in Ŝ close to those in the 3D mesh vertices
input V , respectively. On the other hand, Lb ensures that the
sampled skeletons output Ŝ are well spread over 3D mesh
vertices input V .

The second loss Lrec is proposed to minimize the absolute
difference between our estimated 3D vertices output V̂ and
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TABLE 1. Ablation study on SYSU and UTD-MHAD dataset using the
different types of skeleton representation. The method in the first row
shows the results obtained using the sensor-captured skeletons, while
the second row shows the results obtained using our skeletal
representation.

the 3D mesh vertices input V as follows:

Lrec = ||V − V̂ ||1. (5)

Lrec helps the our estimated 3D vertices output V̂ does not
lose the information of 3Dmesh vertices inputV and sampled
3D skeletons output Ŝ can be affected by self-attention from
well-reconstructed estimated 3D vertices output V̂ and it can
retain the geometry information of 3D mesh vertices input V .
Thus, sampled 3D skeletons output Ŝ can be sampled well
from the 3D mesh vertices input V .

We used the following weighted sum of the above two-loss
terms for training transformer at stage 1:

Ls1 = αLcf + δLrec (6)

where α = 30, β = 1, γ = 1 and δ = 10.

D. STAGE 2: LEARNING TO RECOGNIZE ACTION AND TO
SAMPLE SKELETAL REPRESENTATION TOGETHER
In stage 2, we involved the action recognition network (i.e.,
SGN [23]) to simultaneously train the action classifier using
the newly obtained skeletal representation and further opti-
mize the transformer using the supervision from the action
classifier. We involved additional cross-entropy loss for the
training action classifier (i.e., SGN) as follows:

Lce = −
C∑
i=1

yilog(ŷi) (7)

where C is the number of action labels, yi is the ground-truth
action label, and ŷ is the probability of action prediction.
Stage 2 is divided into two stages: stage 2-1 and stage 2-2.

During the stage 2-1, the action classifier is trained using
the cross-entropy loss Lce, while during the stage 2-2, the
transformer is further trained using the loss as follows:

Ls2 = αLcf + δLrec + εLce (8)

where α= 30, δ= 10, and ε= 0.01. Using cross-entropy loss,
the transformer can be trained to sample the most informative
skeletal representation that is good for action recognition.
We conducted an experiment on the effectiveness of Lce
for training a transformer. More experimental details can be
found in the Experiments section.

IV. EXPERIMENTS
We have used SYSU [18] and UTD-MHAD [19] benchmarks
and reconstructed 3D mesh of human bodies from each RGB

image using ExPose [16]. Its vertices are used as input of
transformer-based sampling skeleton network with sensor-
captured 3D skeletons.

A. DATASET
1) SYSU HUMAN-OBJECT INTERACTION DATASET [18]
SYSU dataset contains 12 action classes and 40 different
subjects. It has 480 videos and provides 20 skeletons with
3D coordinates for each video. We used two protocols, Cross
Subject (CS) and Same Subject (SS), proposed in [18]. For
Cross Subject, half of the subjects are used for training and the
others for testing. For the Same Subject, half of the sequences
for each subject are used for training and others for testing.
We reported the average accuracy of 30-fold cross-validation.

2) UTD-MHAD [19]
UTD-MHAD contains 27 action classes and 8 different sub-
jects. 8 subjects repeated each action four times. It has
861 videos and provides 20 skeletons with 3D coordinates
for each video. It also has depth and inertial data modalities.
We used Cross Subject for the evaluation proposed in [19].
The data for the subject numbers 1, 3, 5, 7 were used for
training, and the data for the subject numbers 2, 4, 6, 8 were
used for testing.

B. IMPLEMENTATION DETAILS
When 10, 475 mesh vertices are fed into the transformer as
input at once, it causes an insufficient memory error. Our
transformer is proposed to process the coarse mesh vertices
to prevent this. We used an average pooling layer to pool
10, 475 mesh vertices to 431 mesh vertices. We selected
the average pooling layer over max-pooling layer as it can
keep the geometric information contained in the original
10, 475 mesh vertices. As a result, the number of mesh ver-
tices for the transformer are 431.

1) DATA PROCESSING
We divided each action video into 20 clips equally. We gen-
erate a new sequence of 20 frames by randomly choosing one
frame from each clip for training. For testing, we create 5 new
sequences as we did in training and used the mean score to
predict the action label. During training, data augmentation
is used. For SYSU and UTD-MHAD datasets, the 3D mesh
X, Y, Z angle rotation is used for data augmentation. We ran-
domly select the three angle rotation degrees between [-30,
30] for X, Y, Z axes, respectively.

2) TRAINING
We used the PyTorch library with Titan GPU. We used the
Adam optimizer [37] with a learning rate of 0.001 for the
transformer and SGN. The batch size is set to 16 for all
datasets. The Label smoothing [38] is used for action recog-
nition, and smoothing factor 0.1 is used. We also set T1,
T2−1, T2−2, and T3 to 100, 20, 20, and 120, respectively,
in Algorithm 1.
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FIGURE 3. Ablation study on SYSU dataset using the different number of
sampled skeletons and different types input of transformer: From this
graph, we can see the overall action recognition accuracy is affected by
the different number of skeletons, and we could obtain the best results
using around 60 to 80 skeletons. The triangle marker denotes the method
using only reconstructed 3D mesh vertices for transformer input. The
circle marker denotes the method using both sensor-capture skeletons
and reconstructed 3D mesh vertices for transformer input. Blue and red
lines denote the same subject (SS) protocol and cross subject (CS)
protocol, respectively.

C. ABLATION STUDY
We conduct ablative experiments for better understand our
results. Especially, we designed and conducted two types of
ablative experiments (for varying the number of skeletons and
for varying the loss functions used) as follows:

1) THE DIFFERENT NUMBER OF SKELETONS AND
DIFFERENT TYPES INPUT
In Table 1, Figure 3, and Figure 5, we experiment with the
different number of sampled skeletons and different types of
input on the SYSU and UTD-MHAD datasets. In Table 1,
the skeletal representation obtained from our proposed trans-
former is better than the sensor-captured skeletons for action
recognizer (SGN) input. In the SYSU in CS protocol, SYSU
in SS protocol, and UTD-MHAD in CS protocol, our pro-
posed method achieves the 6.2%, 5.8%, and 1.6% higher
accuracy, respectively. As shown in Figure 3, the best number
of sampled skeletons is 60 in CS protocol and 80 in SS
protocol for the SYSU dataset. As shown in Figure 5, the best
number of sampled skeletons is 40 or 80 for the UTD-MHAD
dataset.

2) EFFECTIVENESS OF VARIOUS LOSSES FOR
TRANSFORMER
Wewanted to train the transformer to sample skeletons which
are helpful for action recognition. To do that, we used Lcf ,
Lrec, and Lce. Lcf makes sampled skeletons output Ŝ closer to
3D mesh vertices input V . Lrec makes estimated 3D vertices
output V̂ closer to 3D mesh vertices input V . Lce makes
transformer-based network to sample skeletons more helpful

TABLE 2. Effectiveness of Lcf , Lrec , and Lce for training transformer to
sample skeletons which are helpful for action recognition. We conducted
the experiment on the SYSU dataset in Cross Subject (CS) protocol.

for action recognition. In Table 2, we observed that using all
losses improves the accuracy.

D. VISUALIZATION OF ATTENTION
We visualize the self-attention between a specified skeleton
and all other vertices in Figure 4. The action label in the first
row is drinking and in the second row is basketball shoot. The
brighter the color, the stronger the attention. In the first row
and column (f), the skeleton on the left foot pays attention
to all vertices except the right leg vertices. In the second row
and column (f), the skeleton on the left knee pays attention
to head vertices and arms vertices. Some skeletons attend to
vertices close to them and some skeletons attend to vertices
far from them for action recognition. Column (g) shows the
output vertices (white) and sampled skeletons (red).

E. VISUALIZATION OF SMP
In Figure 6, we visualize the response of the spatial
Max-Pooling layer in SGN [23]. Five green and red cir-
cles are top-5 skeletons selected by SMP in column (a) and
column (b), respectively. Column (a) shows the important
green skeletons for action recognition among blue skele-
tons captured by Kinect. Column (b) shows the important
red skeletons for action recognition among blue skeletons
obtained from the transformer. Column (c) shows the overlay
on an original image with green and red circles in column
(a) and column (b), respectively. The visualization shows
the improvement in the correlation between learned skele-
ton joints and target actions compared to the correlation
between conventional skeleton joints and actions: Especially,
we observed that 1) more suitable skeleton locations are
learned via the proposed method, thereby 2) the importance
of skeleton joints are better captured and 3) action recognition
accuracy is further improved accordingly. Five joints are cho-
sen following the setting of [23], which is the suitable number
out of 20 joints. In the first row and column (a), SGN consid-
ers the skeleton on the neck important for packing backpacks.
However, in the first row and column (b), SGN considers
skeletons on only hands important for packing backpacks.
Intuitively, the hand skeletons are important to recognize
packing backpacks. Likewise, in the second row and column
(a), SGN considers the skeleton on the neck important for
pouring. In the second row and column (b), SGN considers
skeletons on the hands and the elbow important for pouring.

1) DISCUSSION
One limitation of our representation is: ours cannot learn the
bone connection between the learned skeleton joints. Thus,
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FIGURE 4. We visualize the self-attention between a specified skeleton and all other vertices. The brighter the color, the stronger the attention. The
first row shows drinking, and the second row shows a basketball shoot. Column (a) shows original images. Column (b) shows self-attention of the
skeleton on the head. Column (c) shows self-attention of the skeleton on the right arm. Column (d) shows self-attention of the skeleton on the left
arm. Column (e) shows self-attention of the skeleton on the right leg. Column (f) shows self-attention of the skeleton of the left leg. Column (g) shows
output vertices (white) and sampled skeletons (red).

FIGURE 5. Ablation study on UTD-MHAD dataset using the different
number of sampled skeletons and different types input of transformer:
From the graph, we found that we can obtain the best action recognition
accuracy using around 40 and 80 skeletons. The experiment is conducted
using the Cross Subject (CS) protocol. The triangle marker denotes the
method using only reconstructed 3D mesh vertices for transformer input.
The circle marker denotes the method using both sensor-captured
skeletons and reconstructed 3D mesh vertices for transformer input.

the bone connection is missing in Figure 6(b) while there is
the bone connection for conventional skeletons in Figure 6(a).
We found that jointly learning both the bone connection and
the skeleton joint locations is non-trivial due to the memory
inefficiency: The bone connection exhibits N 2 complexity,
if there is N joint locations. We think this challenge could
be tackled in the future work. One thing to note is: recent
action recognition pipelines such as [23] automatically learn
to extract the correlation among skeleton joints without given
spatial bone connections, which might be the crucial infor-
mation for the action recognition. Thus, in our experiment,
the spatial connection was not importantly tackled.

F. COMPARISON WITH STATE-OF-THE-ART METHODS
We analyzed our results in this sub-section. In Table 3 and
Table 4, we enumerate the accuracy we obtain for both
SYSU [18] and UTD-MHAD [19] datasets, respectively.

FIGURE 6. We visualize the responses of the spatial Max-Pooling layer in
SGN. Column (a) is the result using the skeletons captured by Kinect with
blue circles. Column (b) is the result using sampled skeletons obtained
from the transformer with blue circles. Five green and red circles are
top-5 skeletons selected by SMP among blue circles in column (a) and
column (b), respectively. Column (c) shows top-5 skeletons with the
original image. The first row and second row show packing backpacks
and pouring, respectively.

TABLE 3. Results for action recognition on SYSU dataset. * denotes the
model uses parameters pre-trained on another large action dataset.

In Table 3, we present the accuracy of our action classi-
fier and other state-of-the-art methods on the SYSU dataset.
There are two protocols, Cross Subject (CS) and Same Sub-
ject (SS). VA-LSTM [25], MSIN Human [30], SGN [23],
LGN [31], EleAtt-GRU [27], and VA-fusion [26] require the
skeletons input like our method. EleAtt-GRU uses weights
pre-trained on another large action dataset, while our method
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FIGURE 7. Visualization for responses of the spatial Max-Pooling layer in SGN. The 1st and 4th columns show results using the skeletons
captured by Kinect. The 2nd and 5th columns show results using our sampled skeletons from the transformer. Five green and red circles
are top-5 skeletons selected by SMP among green circles in the 1st and 4th columns, and the 2nd and 5th columns, respectively. The 3rd
and 6th columns show top-5 skeletons visualized with the original image.

outperforms it and other state-of-the-art methods with our
learned skeletal representation; while not using such a strong
prior.

In Table 4, we present the accuracy of our human body
action classifier and other state-of-the-art methods on the
UTD-MHAD dataset. There is a protocol, Cross Subject
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TABLE 4. Results for action recognition on UTD-MHAD dataset.

(CS). STAR-Net [32] uses 2D key-points from heatmap as
input data. HDM-GB [33] uses RGB videos as input data.
PoseMap [29] uses 3D pose from Kinect and heatmap as
multi-modal input data. HAMLET [28] and BPAN [34] use
RGB videos and skeletons from Kinect as multi-modal input
data. Our method uses our skeletal representation as input and
outperforms the other state-of-the-art methods.

V. CONCLUSION
In this paper, we proposed to learn the proper skeletal
representation for the human action recognition problem.
Especially, we constituted the overall framework by first
reconstructing the 3D mesh vertices from the RGB video,
then learning to sample the proper skeletal representation to
improve the action recognition framework. From the exper-
imental analysis, we verified two things: 1) By using the
learned skeletal representation for action recognition, we con-
firmed on average around 6% accuracy improvement over
the same SGN action classifier based on the sensor-captured
skeletons, proving that there is much room for improvement
in the sensor-captured skeletons, 2) We also obtained ablative
results by varying the number of skeletons. Depending on
data and protocols, the best accuracy has been obtained for
around 40 and 80 skeletons. This suggests that the skeletal
representation needs to be more densely sampled to model
the human actions properly.

APPENDIX
MORE VISUALIZATION FOR SAMPLED SKELETONS AND
IMPORTANCE FOR ACTION CLASSES
In Fig. 7, we visualized more examples for comparing the
sensor-captured skeletons obtained from the Kinect sensor
and our sampled skeletal representation from the transformer:
We visualized the sensor-captured skeletons and our skeletal
representation obtained from the transformer for individual
action frames. Samples in the left columns are from the SYSU
dataset, while the samples in the right columns are from the
UTD dataset. Green and red dots represent the top-5 impor-
tant skeletons for revealing the action classes obtained by the
spatial max-pooling layer of the SGN action classifier [23]
for sensor-captured skeletons and our sampled skeletons,
respectively. We also visualize green and red dots in the same
image frame to show their difference in 3rd and 6th columns.
We can observe that red dots tend to vary depending on the
different action classes in the dataset, while green dots tend to
remain fixed regardless of the action classes in each dataset.
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