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Learning-Based Reflection-Aware Virtual Point
Removal for Large-Scale 3D Point Clouds

Oggyu Lee , Kyungdon Joo , and Jae-Young Sim , Member, IEEE

Abstract—3D point clouds are widely used for robot perception
and navigation. LiDAR sensors can provide large scale 3D point
clouds (LS3DPC) with a certain level of accuracy in common envi-
ronment. However, they often generate virtual points as reflection
artifacts associated with reflective surfaces like glass planes, which
may degrade the performance of various robot applications. In this
letter, we propose a novel learning-based framework to remove such
virtual points from LS3DPCs. We first project 3D point clouds onto
2D image domain to investigate the distribution of the LiDAR’s
echo pulses, which is then used as an input to the glass probability
estimation network. Moreover, the 3D feature similarity estimation
network exploits the deep features to compare the symmetry and
geometric similarity between real and virtual points with respect
to the estimated glass plane. We provide a LS3DPC dataset with
synthetically generated reflection artifacts to train the proposed
network. Experimental results show that the proposed method
achieves the better performance qualitatively and quantitatively
compared with the existing state-of-the-art methods of 3D reflection
removal.

Index Terms—Deep learning for visual perception, computer
vision for automation, data sets for robotic vision.

I. INTRODUCTION

L IDAR sensors basically emit light pulses to environment,
and then by measuring the response time, they can accu-

rately estimate the distance to the surrounding scene. By virtue
of their accuracy, LiDAR sensors, as a way of acquiring 3D point
clouds, have become a popular and essential choice in robotics.
Concretely, intelligent agents (e.g., robots and autonomous vehi-
cles) highly depend on the acquired 3D point clouds by LiDAR
sensors for various 3D perception tasks, such as mapping [1],
[2], [3] and 3D object detection [4], [5]. In most cases, LiDAR
sensors guarantee large-scale 3D point clouds (LS3DPCs) with
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Fig. 1. Reflection artifacts in LS3DPC. Left: Captured point clouds including
virtual points (blue). Right: Captured reference image corresponding to reflec-
tion artifacts.

cm-level accuracy, but they could generate undesirable point
clouds due to reflective environment, such as buildings with
glass, that may significantly influence downstream robot tasks.
In this letter, we call these undesirable and physically inexistent
point clouds virtual points and aim to remove such virtual points
for given LS3DPCs.

The virtual points occur as the reflection of light pulses.
Specifically, a light pulse emitted from LiDAR sensor is reflected
on a reflective or specular surface, such as mirrors or glasses,
and travels toward another direction to collide with another
object, resulting in a virtual point. Therefore, the virtual points
inherently appear in a symmetric form against the corresponding
actual points with respect to the reflective surface (see Fig. 1).

Several methods have been proposed to address the problem
of virtual points via reflection removal, where they exploit
the inherent properties of symmetry and geometric similarity
between the virtual points and their corresponding real points.
In these methods [6], [7], [8], comparing the geometric shapes
of point clouds and estimating the glass regions are essential for
virtual point detection. They extracted hand-crafted features [9]
to compute the geometric similarity between point clouds, and
used the multi-echo property of LiDAR to estimate the glass
regions. However, the hand-crafted features do not consider the
density difference between the virtual point cloud and the real
point cloud in reflective environment. Moreover, the previous
methods often fail to find accurate glass regions if the points are
not sampled on the glass and/or if a real object is located close
behind the glass surface.

In this letter, we propose a new systematic framework that
removes the virtual points by taking advantage of inherent
geometric properties of LS3DPC. In particular, we focus on
devising a simple yet effective learning-based method where
the network pipelines for both 2D and 3D representations are
employed, respectively. The network for 2D image domain takes
an input called count map, the projection image of a 3D point
cloud, and estimates the glass region distingushed from other
ones, such as trees and far-away building windows, to assign
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the glass probability values to point clouds. On the other hand,
the network for 3D domain extracts deep features based on a
voxel-based structure to compare the symmetry and geometric
similarity between point clouds at once even with different
densities and different orientations. Finally, the resulting glass
probability and the similarity score are combined together to
determine the virtual points.

The contributions of this letter are as follows:
1) We first proposed a simple yet effective learning-based

framework that removes virtual points in LS3DPCs, which
demonstrated the superior performance both qualitatively
and quantitatively compared with the existing methods.

2) We made use of both the 3D point cloud as well as
the projected 2D image to estimate the glass region and
compute the symmetry and geometric similarity between
real and virtual points.

3) We collected 10 ordinary LS3DPC models and applied
various augmentation schemes to make realistic syn-
thetic scenes with virtual points for training. Furthermore,
we manually labeled 6 scenes from UNIST LS3DPC
dataset [6] for quantitative experiments.

II. RELATED WORK

A. Representations of Point Clouds

Point clouds have a set of unordered and unstructured 3D
points that straightforwardly convey 3D information. We can
use raw point clouds themselves [10], [11], [12], [13], as well as
transform point clouds into various domains, such as projection
images with the front view [14], [15] or bird-eye view [5], [16],
voxels [17], [18], [19], and connected graphs [20], [21]. Each
representation has its own pros and cons. We briefly discuss the
representations in the following.

Point-based methods are widely used in various fields such
as object detection [13] and segmentation [12]. They have
been mainly developed based on PointNet [10] and its variants.
Charles et al. [10] directly used the raw point cloud as input
and processed the points with multi-layer perceptrons (MLPs).
Charles et al. [11] improved [10] by adding local grouping
which allows the network to look at neighboring points utilizing
hierarchical structures.

Projection-based methods [5], [14], [15], [16] have the ad-
vantage of converting point clouds to other structured data, but
they may place the points with far distance from each other
to be close in the projection domain. For example, we can
acquire a depth map by projecting the 3D point clouds toward
the center of scanner. Then the depth map can be used with the
corresponding color images by sensor fusion for various tasks
such as detection [14] and noise removal [15]. The bird-eye view
projection methods [5], [16], [22] convert the point clouds into
the view seen from the top, that are widely used in the detection
task due to the benefit of localizing objects.

Voxel-based methods [4], [17], [18], [19], [23], [24] contain
3D information into well structured regular grids. However,
they suffer from the limitations of high computation and large
memory space with increasing the voxel resolution. To alleviate
the computational complexity, sparse convolution-based meth-
ods [4], [23] have been proposed that employ 3D convolution
on voxel representation. The voxel representation has been
actively used in the fields of object detection [4], [17], [18],
[19], segmentation [23], and registration [24].

Graph-based methods [20], [21] connect neighboring points
and use their connection along with the position in training. They
take advantage of using neighboring points but the neighbor
computation is more expensive compared to handling raw point
clouds itself. Yang et al. [20] applied the graph convolution to
train the autoencoder for classification purposes. Wang et al. [21]
applied the dynamic graph convolution, which dynamically
updates its graph information to connect neighboring points in
the features space.

In this work, we used the voxel representation to extract
3D features from LS3DPCs, that can handle empty 3D spaces
and different density of point clouds to reliably compute the
symmetry and geometric similarity.

B. 3D Reflection Removal

Depending on the principle of LiDAR, 3D reflection removal
is divided into two categories: single-echo and multi-echo based
approaches. In the single-echo based reflection removal [25],
[26], LiDAR sensors capture a single echo pulse only for each
emitted light. The positions of virtual points generated by reflec-
tive objects vary according to the location of LiDAR sensors, and
therefore we additionally require the registration information
between the captured LS3DPC models in multiple positions.
Gao et al. [25] projected the LS3DPC models toward the origin
of scanner to obtain the intensity and range images. By applying
the sliding windows to the projected images, they estimated the
change of pixel distribution and detected the reflective regions.
The virtual points are removed by comparing the reflective
regions of the captured scenes at various locations. Gao et al. [26]
also improved the previous method by using the transformers to
estimate the reflective regions. However, the single-echo based
methods require multiple captures as well as the additional
intensity data of point clouds. Moreover, these methods can only
consider the existence of points not exploiting the geometric
properties.

In contrary to the single-echo based methods, the multi-echo
based reflection removal [6], [7], [8] can assess multiple echo
signals from an emitted light pulse of LiDAR, which are then
used to estimate the glass regions without additional information
of the range and intensity. Therefore, the multi-echo based meth-
ods analyze the symmetry and geometric similarity between the
points within a single 3D point cloud model while not requiring
multiple scans and their registration. Yun and Sim [7] were the
first to propose a solution for the multi-echo based 3D reflection
removal. They first estimated the glass regions by using the
distribution of the number of echo pulses, and detected the virtual
points by comparing the symmetry and geometric similarity of
points. They also improved the glass region estimation method
in [7] by applying the superpixel method [27] to cluster the
glass regions in the panoramic images. The initial method [7]
was generzlied in [6], where multiple glass planes are estimated,
respectively, and the multiple trajectories of light reflection were
investigated.

Whereas the existing methods remove the virtual points us-
ing the hand-crafted features, the proposed method detects the
virtual points by exploiting deep features of LS3DPCs based on
voxel representation. Thus the proposed method successfully
works with exceptional cases which are not handled in the exist-
ing methods. For example, the proposed method yields reliable
performance even with the density difference and locally empty
spaces of point clouds, and furthermore, learns the features that
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Fig. 2. Principle of virtual point generation. The real and virtual objects are
colored in green and black, respectively.

can distinguish the objects with similar shapes but different
orientations.

III. PROBLEM STATEMENT

While capturing a real-world scene by using LiDAR scanners,
virtual points are generated due to the reflection of light on
reflective or specular surfaces such as glass. Fig. 2 illustrates
the principle of virtual point generation with multi-echo LiDAR
scanners. A light ray (orange), emitted from LiDAR, hits the tree
and returns to LiDAR generating a real 3D point Ptree. Another
light ray (blue dashed) first hits a glass plane and generates a real
3D pointPglass on the glass. However, the light is then transmitted
and reflected on the glass simultaneously, where the transmitted
light additionally generates a real 3D point Phuman on the human
behind the glass plane. On the other hand, the reflected light
(blue solid) hits the tree in front of the glass plane that generates
a virtual 3D pointPvirtual behind the glass in a symmetric location
to the real point Ptree with respect to the glass plane, since the
LiDAR scanner is unaware of the existence of glass. We aim to
detect and remove the virtual points from a given input point
clouds and maintain real points only.

IV. PROPOSED METHOD

We propose a learning-based virtual point removal method
composed of glass probability estimation network and 3D fea-
ture similarity estimation network that are trained independently
in a two-step manner. Fig. 3 shows the overall inference process
of the proposed method. In the glass probability estimation mod-
ule, we assign glass probabilities to the pixels of 360 ◦ image by
extracting the deep features from the distribution of the number
of echo pulses. Then, based on the voxel representation in 3D
space, we iteratively compute the feature similarity between the
corresponding points in symmetric positions with respect to the
estimated glass plane. Finally, we detect the virtual points by
thresholding the result of multiplication between the estimated
glass probability and the feature similarity at each point.

A. Glass Probability Estimation

As discussed in Section III, multiple 3D points can be gen-
erated from a single light ray hitting the glass surface. For
example, the emitted light (blue) in Fig. 2 generates the three
points of Pglass, Phuman, and Pvirtual. We exploit this property to
estimate the glass region in 2D image domain. Specifically, as
shown in Fig. 4, we project the generated points of an input
LS3DPC model onto the surface of the unit sphere and visualize
the distribution of the number of points, called count map, by

unfolding the spherical grids into 2D image domain. We consider
a 3 × 3 surface patch as each pixel in the count map that
corresponds to the frustum in 3D space shown in Fig. 4(a). We
see that the glass regions are associated with relatively large
numbers of points than non-glass regions. However, far-away
background objects often exhibit large numbers of points as well,
and no points can be sampled on some glass regions where real
objects are attached directly behind the glass plane.

To detect the glass regions more reliably and accurately, we
extract the deep features from the 2D count map by using
a ResNet32 [28] based segmentation network. The extracted
features are further refined by using the channel attention and
spatial attention based on the dual attention scheme [29]. In the
last layer, we apply the sigmoid function to represent the glass
probability. Since we have a binary classification task between
glass and non-glass regions, the glass probability estimation
network is trained by using the binary cross-entropy loss

Lc(X,Y) = − 1

N

N∑

i=1

{Yi log(Xi) + (1−Yi) log(1−Xi)} ,
(1)

where X is a synthetically generated count map as training data
and Y is the corresponding ground truth map of glass regions.
Xi and Yi denote the values at the i-th pixels in X and Y,
respectively, and N is the number of total pixels.

The count map and the resulting probability map are shown
in Fig. 4(b) and (c), respectively, where we see that the resulting
map captures the glass regions faithfully. We consider the pixels
having probability values higher than a threshold of 0.7 as can-
didates, and then select the point closest to the LiDAR location
at each pixel. We finally estimate the glass plane in 3D space
by applying the plane RANSAC [30] to the selected points over
an entire image. Note that the selected points are highly likely
sampled on the glass plane since the objects behind the glass are
always farther than the glass plane from the location of LiDAR
scanner.

B. 3D Feature Similarity Estimation

The glass plane divides the 3D space into the front spaceΩfront,
where the LiDAR location belongs, and the back space Ωback.
Note that the virtual points appear in Ωback only. Therefore, for
each point P ∈ Ωback, we determine whether it is a virtual point
or not. To this end, we compare the symmetry and geometric
similarity between P ∈ Ωback and its corresponding real point
in Ωfront.

However, there are challenges to find the corresponding real
points to given virtual points. The virtual points exhibit relatively
lower density than that of their corresponding real points. More-
over, some virtual points in Ωback may have no corresponding
real points in symmetric positions in Ωfront due to the occlusion.
To deal with these characteristics, we first voxelize the points and
then apply the 3D convolution and max-pooling consecutively
to the voxelized points in the proposed 3D feature similarity
estimation network. We intuitively assume that, when humans
search for virtual points, they usually focus on the global features
first compared to the local geometry of points. Thus we employ
the multi-scale voxel representation with a bigger scale in the
point cloud featuring process, and apply the convolution and
downsampling to grasp the global features. We measure the 3D
feature similarity between the feature vectors of the voxel of
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Fig. 3. Overall framework of the proposed 3D reflection removal method.

Fig. 4. Count map and glass probability map. (a) Illustration of the surface
patch composed of 3 × 3 spherical grids and the frustum space covered by the
surface patch. (b) The count map showing the distribution of the number of
projected points at each surface patch. (c) The glass probabilty map estimated
from the count map.

Fig. 5. Point sampling and voxelization. For a given virtual point Panc, we
select its positive sample Ppos ∈ Ωfront and negative sample Pneg ∈ Ωback,
respectively. Then we voxelize the neighboring points centered on Panc, Ppos,
and Pneg, respectively.

a query point in Ωback and that of the symmetric real point in
Ωfront. Then we assign the same similarity score to all the points
inside the same voxel. This voxel selection is repeated in a voting
manner [31] until the similarity estimation network computes the
similarity scores for all the points.

For training the 3D feature similarity estimation network, we
employ the triplet loss. Fig. 5 shows the selection of the positive
and negative samples inspired by [24], [32]. For a given query
point Panc ∈ Ωback, we find the positive sample Ppos ∈ Ωfront by
using the householder matrix [6], which is corresponding to

Fig. 6. 3D feature similarity estimation. (a) A 3D scene where both of the wall
inΩback and the floor inΩfront have planar shapes. The similarity scores obtained
by using (b) the previous method [6] and (c) the proposed method, respectively.

Panc in a symmetric location with respect to the glass plane.
We also select a negative sample Pneg from the real points in
Ωback, where Pneg has a FPFH [9] feature similarity to Panc
lower than a threshold value such that the geometric shape of
Pneg is different enough from that of Ppos. Then we create the
voxels Panc, Ppos, and Pneg, with a pre-defined size, centered
on Panc, Ppos, and Pneg, respectively. The points in Ppos are set
to be positive because Panc is the reflection of Ppos and thus
should have similar shapes unless occluded. However, different
objects in symmetric positions with respect to the glass plane
may have similar shapes, for example, both of the wall and floor
have planar shapes but they have different orientations from each
other, as shown in Fig. 6. In such a case, these objects should
be distinguished from each other, and therefore, we augment
the point clouds with random rotations before voxelization to
guide the network to learn the shapes in various orientations.
Moreover, to consider the occlusion, we do not consider Panc in
virtual point detection when the corresponding Ppos is empty,
where the voxels containing less than 10 points are considered
to be empty.

The 3D feature similarity estimation network is trained such
that the feature vectors of the virtual points are forced to be
close to the feature vectors of their corresponding positive points,
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while being pushed away from the feature vectors of the negative
points. In practice, we train the network by using the triplet
margin loss given by

Ltriplet(Panc,Ppos,Pneg) =

max {||Φ(Panc)− Φ(Ppos)|| − ||Φ(Panc)−Φ(Pneg)||+ 1, 0} ,
(2)

where Φ(·) refers to the feature vectors in the 3D feature simi-
larity estimation network.

V. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed learning-based
framework compared with the existing methods [6], [8] by using
the synthetically generated dataset and manually labeled real
dataset. Note that various hand-crafted features were employed
to find accurate glass regions [6], and RGB color values of
points were additionally used to cluster the point clouds [8]. 3D
visualization results are shown in the supplementary material.

A. Datasets

Synthetic Training Dataset: Collecting a large number of
LS3DPC models with reflection artifacts by using terrestrial
LiDAR scanners is labor-intensive and time-consuming task.
Therefore, to obtain the training data, we add synthetically
generated reflection artifacts to real LS3DPC models. We first
used a terrestrial LiDAR scanner [33] to capture 10 LS3DPC
scenes without reflection artifacts. For each scene, we synthet-
ically placed 100 glass planes with arbitrarily selected sizes
ranging from 6∼12 meters in width and 3∼5 meters in height,
respectively, and we generated 1000 LS3DPC models with
reflection artifacts in total. Specifically, we reconstructed mesh
surfaces for LS3DPC models, and performed the ray casting to
the mesh surfaces by using the Open3D API [34] with the same
resolution of LiDAR scanning to [7]. To generate more realistic
LS3DPC models considering the weak intensity of echo pulses
in real-world environment, we randomly removed one-third of
the rays transmitted through a glass plane and removed one-half
of the points sampled on the glass plane and the virtual objects,
respectively, during the ray casting. Also, we generated the
count maps accordingly by projecting 3D points into 2D image
domain. Fig. 7 compares (top) a real LS3DPC model with
real reflection artifacts and (bottom) a LS3DPC model with
synthetically generated reflection artifacts that is modified from
(middle) a real LS3DPC model without reflection. We see that
the overall characteristics of the synthetic model are very close
to that of the real model in terms of the glass shape and the count
map.

Real Test Dataset: To evaluate the performance of the reflec-
tion removal on real data with the ground truth labeling, we
manually annotated 6 scenes with single glass plane selected
from UNIST LS3DPC dataset [7]. We initially assigned the
labels of virtual and real points by using [6], and then refined the
labels manually using a 3D visualization tool [35]. We excluded
the points sampled near the glass plane, within 20 cm from the
glass plane, due to the ambiguity caused by the sampling noise
and the error of glass plane estimation in [7].

Fig. 7. Synthetically generated reflection artifacts: Top: A real scene with real
reflection artifacts. Middle: A real scene without reflection artifacts. Bottom: A
real scene modified from the middle one with synthetically generated reflection
artifacts where an arbitrarily placed glass plane is colored in green. The real and
virtual points are colored in red and blue, respectively.

B. Training Details

Glass Probability Estimation Network: Among the count
maps of the 1000 generated LS3DPC models with synthetic
reflection artifacts, we used 800 count maps to train the glass
probability estimation network and used the other 200 maps for
testing. The glass probability estimation network was trained
for 200 epochs. We resized the input count maps to the size of
256× 1024, and applied the augmentation schemes of shifting
and translation to avoid overfitting. We set the batch size to
32, and the learning rate to 0.0001. We used the Adam opti-
mizer [36].

3D Feature Similarity Estimation Network: Each LS3DPC
model has nearly 5 millions of points causing high compu-
tational complexity in 3D feature estimation, and therefore,
we used 17 models of good quality among the 1000 LS3DPC
models with synthetic reflection artifacts. However, to make the
3D feature similarity estimation network learn various shapes,
we additionally included 12 more scenes from Semantic3D
dataset [37], which has European-style buildings and vegetation.
Among the 29 models, we used 25 models for training and
the remaining 4 models for testing, respectively. We trained
the network for 60 epochs where each epoch consists of 200
iterations. We took the space with the size of 3.2 meters for
voxel sampling, which is then divided into 32 × 32 × 32 voxels
with the size of 0.1 meters, considering that the scale of a
single LS3DPC model is usually larger than 100 meters. We
also applied the rotation and scale augmentation to the points.
We set the batch size to 16 and the learning rate to 0.0001. We
used the Adam optimizer.

C. Qualitative Performance

Glass Probability Estimation: We first evaluate the perfor-
mance of the proposed glass probability estimation method
compared with the state-of-the-art method [6]. Fig. 8 compares
the estimated probability maps. As depicted in the red boxes,
the existing method often fails to capture the entire glass areas
completely. For example, no points are sampled in the missing
regions on the glass plane due to the weak intensity of echo
pulses in ‘Gymnasium’ scene, and multiple echo pulses are not
returned in the missing regions in ‘Terrace’ and ‘Natural science
building’, where some objects, such as curtains and pillars, are
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Fig. 8. Comparison of the estimated glass probability maps. The first row shows the panoramic images including glass regions. The second and third rows show
the resulting probability maps estimated by using the existing method [6] and the proposed method, respectively.

TABLE I
QUANTITATIVE PERFORMANCE COMPARISON IN TERMS OF THE OVERALL F1

SCORE EVALUATED ON THE SIX TEST SCENES FROM [7]

closely attached to the glass planes. Then the virtual points
associated with the false negatives in the detected glass regions
are not considered in the reflection removal process. In contrary,
the proposed method grasps such challenging regions reliably,
and furthermore, fills in locally missing glass regions faithfully
compared with the existing method. The proposed method often
provides some false positives in the glass detection results, how-
ever the proposed feature similarity estimation module alleviates
the effect of such false positives by enforcing the conditions of
symmetry and geometric similarity.

Reflection Removal: We evaluate the performance of the
reflection removal by showing the detected virtual points in
Fig. 9. The glass planes are visualized in yellow in Fig. 9(a),
and the real and virtual points are colored in red and blue,
respectively. As shown in Fig. 9(c), the existing method [6]
provides degraded performance to separate the virtual points
from the real points compared to the ground truth. Moreover,
it often fails to detect the virtual points of far away structures
as shown in ‘Architecture building’ and ‘Terrace.’ However,
as shown in Fig. 9(d), the proposed method faithfully detects
the virtual points, even when they are mixed together with the
real points, outperforming the compared existing method while
capturing the far away structures successfully.

D. Quantitative Performance

In Table I, we compared the quantitative performance of
the proposed method with that of [8] and [6] by using the
manually labeled 6 real scenes. For all the test models except
‘Gymnasium,’ the proposed method outperforms the previous
methods by large margins in terms of the average F1 score.
Note that relatively many points are sampled on the floor inside
the building in the ‘Gymnasium’ scene, where both the floor
and the ground outside the building exhibit planar shapes and
have a symmetric relation to each other. Therefore, the proposed

method captures such symmetric and geometrically similar re-
lations of points faithfully, and detected the real floor as virtual
yielding quantitatively worse performance.

E. Ablation Study

Table II shows the effect of the proposed modules of the 3D
feature similarity estimation and the glass probability estima-
tion, respectively. We employ [6], the current state-of-the-art
method in multi-echo based 3D reflection removal, as our base-
line. We see that, when applying the proposed method to the
baseline [6], the reflection removal performance is increased by
0.138 on average, in terms of the F1 score. Especially, we have
a significant gain of 0.451 on ‘Terrace,’ that coincides with the
qualitative results compared in the last row in Fig. 9. However,
the 3D feature similarity estimation module does not have a gain
on ‘Botanical garden’ due to the irregularly shaped vegetation
both inside and outside of the building. In this case, it becomes
quite tricky to reliably classify the mixed real and virtual points
since the real points associated with the inside vegetation can
be detected as the virtual points corresponding to the real points
associated with the outside vegetation. On the other hand, the
proposed glass probability estimation method also degrades
the performance on ‘Gymnasium’ that has the floors at the
symmetric locations inside and outside of the building. The glass
probability map obtained by the baseline fails to completely
capture the entire glass areas, and therefore lots of real points
on the floor inside the building are not detected as virtual due to
inaccurate symmetry relation. However, the proposed method
accurately estimates the glass plane and hence the real points
on the indoor floor are detected as virtual points corresponding
to the real points sampled on the floor outside of the building
due to accurately computed symmetry relation and geometric
similarity. Consequently, correct estimation of the glass regions
in the proposed method degrades the performance of reflection
removal on the ‘Gymnasium’ scene ironically.

VI. DISCUSSION

The proposed method was designed assuming planar glasses
only, and hence fails to work with curved glasses due to the
difficulty in symmetry computation between point clouds. More-
over, the reflection artifacts also occur with various non-glass
reflective surfaces such as water surface and marble floors in
buildings. Fig. 10 shows an example where we see the virtual
points of the person and trees below the wet ground in a rainy
day. However, in such a challenging case, the reflection artifacts
often appear in different shapes and densities from that of the
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Fig. 9. Comparison of the virtual point detection results. (a) Input LS3DPC models where the glass planes are visualized in yellow. (b) The ground truth labeling
of real and virtual points. (c) The virtual point detection results of the existing method [6]. (d) The virtual point detection results and (e) the refined LS3DPC
models obtained by using the proposed method. The real and virtual points are colored in red and blue, respectively. From top to bottom, ‘Architecture building,’
‘Botanical garden,’ ‘Engineering building,’ ‘Gymnasium,’ ‘Natural science building,’ and ‘Terrace.’.

TABLE II
EFFECT OF THE PROPOSED MODULES OF THE 3D FEATURE SIMILARITY ESTIMATION (FSE) AND THE GLASS PROBABILITY ESTIMATION (GPE)
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Fig. 10. Reflection on non-glass surface. The virtual points are generated by
the reflection on the puddles and wet ground in a rainy day.

original objects. Moreover, the multiple echo property of LiDAR
may not hold that makes it hard to apply the proposed method.
It can be a future research topic to develop a more generalized
reflection removal method to handle the curved glasses and
non-glass reflective surfaces.

VII. CONCLUSION

We proposed a novel learning-based framework for reflection
removal in LS3DPCs. We first designed the glass probability
estimation network that investigates the distribution of the Li-
DAR’s echo pulses on 2D image domain. Also, we devised
the 3D feature similarity estimation network that extracts deep
features of 3D points based on the voxel representation which
are then used to grasp the symmetry relation with geometric sim-
ilarity between real and virtual points. We trained the proposed
network using LS3DPC models with synthetically generated
reflection artifacts, and tested it on real datasets with manually
annotated ground truth labels. Experimental results demon-
strated that the proposed method significantly outperforms the
state-of-the-art methods qualitatively and quantitatively.
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