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Abstract—Abundant training data for deep neural networks
improve the performance of single image dehazing (SID) sub-
stantially, however they suffer from the domain-shift problem
of the discrepancy between the training set and the test set.
In this paper, we propose a zero-shot SID method to overcome
the domain-shift problem in a self-supervised learning manner.
We employ two generator networks to estimate the transmission
and the original scene radiance, respectively, from an input
hazy image. We also synthesize the pseudo atmospheric light
image (PALI) to train the transmission generator to assign zero
transmission values to PALI. Since the pseudo-sky patches and
the dense-hazy region rarely have the structural textures, the
network learns the dense-hazy property from the PALI in a self-
supervision learning manner. The experimental results show that
the proposed method faithfully restores the scene radiance image,
and the PALI loss is effective to train the deep neural network.

Index Terms—single image dehazing, zero-shot learning, self-
supervised learning

I. INTRODUCTION

As shown in Figure 1, the particles floating in the air, e.g.
haze and fog, cause the scattering and absorption of the light.
Therefore, the images captured under the aforementioned envi-
ronment exhibit low contrast, blurriness, and color distortion,
since the scene radiance is attenuated along the light path to
the camera and the atmospheric light unrelated with the scene
is additionally observed. Single image dehazing (SID) is an
ill-posed problem, which estimates the original scene radiance
image from an input hazy image.

There are three approaches for SID: model-driven, domain-
driven, and image-driven methods. The model-driven meth-
ods [1]-[3] solve the inverse problem of the image formation
model (IFM) to estimate the scene radiance image from the
hazy image. The IFM is defined as

I(x) = J(x)t(x) + A(1 - t(x)), (D

where I(x), J(x), and ¢(x) denote the observed intensity, the
scene radiance, and the transmission at pixel x, respectively.
A means the atmospheric scattered light accumulated from
infinitely far region in the hazy image, and t(x) = e~#4()
is the transmission, where 3 is the attenuation coefficient and
d(x) is the distance between the camera and the scene. The
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Fig. 1: The imaging model with haze.

model-driven SID methods estimate unknown parameters of
A and t to recover J from I based on (1), and thus provide
limited performance due to the mismatch between the imaging
model and real situation.

Recently, deep neural networks have been making break-
through for SID that learn arbitrary mapping functions from
the hazy image domain to the clean image domain [4]-[8].
However, the domain-driven methods often suffer from the
domain-shift problem between training image set and test
image set. To overcome this problem, the image-driven meth-
ods were recently proposed that train deep neural networks
using only an input hazy image without additional training
datasets. But the existing methods do not completely utilize the
advantages of abundant data [9], [10] or the prior knowledge
of IFM [11].

In this paper, we propose an image-driven SID method
based on the zero-shot and self-supervised learning frame-
work. We design two generators to estimate the transmission
map t and the scene radiance image J, respectively, from
an input hazy image. We find the atmospheric light A and
synthesize the pseudo atmospheric light image (PALI) of dense
haze by adding the random noise to the image of the constant
color of A. The PALI should be assigned the zero transmission
values, since it has no structural textures and is assumed
to be associated with infinitely far regions. Then we train
the transmission generator with self-supervision such that the
PALI is assigned small transmission values close to zero.
Experimental results demonstrate that the proposed method
yields better performance compared with the state-of-the-art
SID methods.
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II. RELATED WORKS

We briefly summarize the three approaches for SID.

A. Model-driven Approach

The model-driven methods solve the inverse problem of (1)
to estimate the scene radiance J(x) such that

I(x) - A(l - t(x))
t(x) '

Therefore the goal of the model-driven method is to estimate
the unknown parameters of ¢ and A from I. Several priors
for the parameter estimation are used: the maximization of
local image contrast or the image sharpness [2], the surface
shading and the scene transmission are uncorrelated in local
patches [3], and the dark channel prior (DCP) that the mini-
mum intensity among the RGB channels of the scene radiance
is generally zero [1].

J(x) = )

B. Domain-driven Approach

To train deep neural networks, a dataset called RESIDE [12]
has been synthesized from a RGBD image dataset based
on the IFM in (1). To overcome the domain gap problem,
recent works employed real hazy images by simulating the
haze using fog generators [13]-[16]. The supervised learning
methods require paired datasets of hazy and clean images. The
supervised learning methods estimate the parameters of the
IFM following the model-driven methods [4], [5], or directly
estimate the scene radiance from an input hazy image [6]—[8].
However, the paired image datasets are hard to be obtained in
general. Goltz et al. [17] proposed the unsupervised learning
method by employing the DCP prior as a loss function [1].
However, the discrepancy between the domain of training
images and the domain of test images causes the domain-shift
problem, and therefore the domain-driven methods often cause
limited performance on test images.

C. Image-driven Approach

Recently, the image-driven methods, or the zero-shot learn-
ing methods, have been proposed to avoid the domain-shift
problems, that train deep neural networks using the input
hazy image only without any training dataset. The Double-DIP
(DDIP) [9] solves the low-level vision problems with the layer
decomposition methodology. Inspired by that the entropy of
the blended image with two different images is higher than
the sum of the entropy of each image, Gandelsman et al.
established two separate generators where each reconstructs
an exclusive individual image. The Zero-shot Image Dehazing
(ZID) [10] combines various prior-based losses, such as the
DCP. The Zero Restore (ZR) [11] synthesizes the hazy images
using the target hazy image and the IFM (1).

III. PROPOSED METHOD

We propose a SID method based on the zero-shot and self-
supervised learning framework. The overall architecture of the
proposed method is described in Figure 2. We first estimate
the transmission map ¢ and the scene radiance image J from
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Fig. 2: Overall architecture of the proposed method.
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Fig. 3: The generator structure. G*’s are the sub-networks at multiple
scales.

an input hazy image I using two generators of G; and G,
respectively, and estimate the atmospheric light A. Then we
generate I according to the IFM (1), which is then compared
to the input image I in the unsupervised manner. We also
synthesize PALI to train G, in the self-supervised manner,
assuming that PALI is useful to train the zero-shot SID since
A is similar to I(x) with extremely low (x).

A. Training by Parameter Estimation

The two generators of G; and (G; have the identical
structure, where the detailed structure is illustrated in Figure 3.
It is composed of the four sub-networks at different scales, and
each sub-network has the four modules of Conv-BN-LReLU.

The atmospheric light A is estimated from the input image
by also using the estimated transmission map. Since the atmo-
spheric light A is the additive intensity due to the scattering
of light accumulated from the infinitely far region, we assume
the region of A to be the brightest region in an hazy image
and assigned zero transmission values. Specifically, we find A
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Fig. 4: Self supervision by using the pseudo atmospheric light image.

as the maximum intensity at pixel x among the pixels having
the lowest 1% values of the transmission.

To train the network, we employ the reconstruction loss
Lyec and the regularization loss L,.,. Note that the generators
G and G have the results at four different scales. For the
simplicity, we define the loss functions first and apply them
equivalently to each scale. We reconstruct a hazy image I
from the estimated J, A and ¢ based on the IFM in (1). The
reconstruction loss is computed as

Lree= 5 SN FL) — L), 3)

where N is the number of pixels and F' is the smoothed L1
distance given by

Fle) = 0.5¢2,
el — 0.5,

if |e| < 1.
otherwise.

“4)

We also assume smooth transmission such that the distance
d(x) and the attenuation coefficient 3 is homogeneous in an
image, and define the regularization loss as

1 N .
b = D{IVACOI + Wil f.

where V,, and V,, denote the partial derivative operators.

B. Pseudo Atmospheric Light Image

The transmission estimator G; may assign small transmis-
sion values to foreground objects with the similar colors to
A. We propose to synthesize the PALI S using the estimated
atmospheric light and train the network using the PALI in
a self-supervised learning manner as shown in Figure 4.
Specifically, we first construct an image H by setting the
intensity of all the pixels to A. Then we select random
noises from the Gaussian distribution with zero mean and the
standard deviation of 0.01 which are then added to H to obtain
the PALI S.

Based on the assmuption that the desired transmission
values for the PALI are almost zero, we train G to generate a
transmission image g corresponding to the PALI S such that
ts is encouraged to be close to zero transmission image tg.
Note that G is trained to avoid estimating the structured pixel
regions with the similar colors to A as the far region, since
the PALI has no structured textures such as edges or corners.

() A

® J

(a) Input

Fig. 5: The results of parameter estimation.

To this end, we design the PALI loss given by
1 R
LpaL1 = N zx: F(ts(x)), (©6)

where x is the pixel and 5 = G,(S). Note that the PALI S is
regarded as the pure haze image with no valid scene radiance
information, and therefore GG; can learn the characteristics of
the haze more faithfully via Lpay;. Finally, the total loss is

Etotal = £rec + >\1£PALI + )\2£rega (7)
where A1, \g are the hyper-parameters empirically set to 1072,

IV. EXPERIMENTAL RESULTS
A. Experiment Setup

a) Datasets: We use the unpaired real hazy images from
https://www.wisdom.weizmann.ac.il/~vision/BlindDehazing/
and the paired images from the test set of the I-HAZE [13]
and O-HAZE [14], which have gaps from the model of (1)
and are available for the quantitative evaluation as well.

b) Training details: At the beginning, we trained Gy to
reconstruct I from I for the network parameter initialization
purpose. After that, all networks are trained with Ligal
simultaneously. We used the Adam [18] optimizer to train
the networks, and set the initial learning rate as 5.0 x 1074,
which is then decayed by half for every 100 iterations. Due to
the computational complexity, we down-sampled the images
by 4 for the I-HAZE [13] and O-HAZE [14] images. We
implemented the experiments with the PyTorch on a single
TITAN RTX.

B. Results of the Proposed Method

a) Parameter Estimation Results: We show the results of
the parameter estimation in Figure 5. The input hazy images
have the low contrast and the color distortion problems, which
are alleviated in the scene radiance images J as shown in
Figures 5(a) and (b). The other parameters associated with
the IFM, A and i, are also reliably estimated as shown in
Figures 5(c) and (d).
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(d) 500" iter.

(a) Input (b) 15t iter. (c) 47 iter.

Fig. 6: The intermediate results of the parameter estimation during
the training. (a) An input hazy image, and the intermediate results of
the proposed method at the (b) 1st, (¢) 47th, and (d) 500th iterations,
respectively. From top to bottom, each row represents J, , and the
candidate regions for A.

. I-HAZE O-HAZE
Loss Function
PSNRT  SSIM1T | PSNRT  SSIM7T
Liotal 15.7308  0.7048 | 17.8736  0.6754
w/o0 LpALL 15.1986  0.6951 17.6011  0.6424

TABLE I: The quantitative effect of the PALI loss.

b) Progressive Performance Improvement: We synthe-
size the PALI using the atmospheric light A and random
Gaussian noise to learn the haze characteristics more faithfully.
We also show the progressive improvement of performance of
the transmission estimator G, through the training iterations in
Figure 6. At the 15! step, some non-sky regions are selected as
the candidate region for A, and therefore the estimated trans-
mission map t becomes unreliable as shown in Figure 6(b).
The main reason is that even the non-sky regions are bright and
homogeneous having similar colors to the initial atmospheric
light. Nevertheless, as we train the transmission estimator
G with the synthesized PALI, the performance of G; is
incrementally improved and a correct sky-region is selected
as the candidate region, then consequentially the quality of
the estimated scene radiance is gradually improved.

c) Effect of PALI Loss: We conduct the ablation study
on the proposed PALI loss. Figure 7 compares the qualitative
results. When removing the PALI loss Lpayrj, the haze in the
top region are not removed and the transmission values in
that region are underestimated as shown in Figure 7(c). As
we discussed in section IV-BOb, the synthetic PALI leads to
the better performance of the transmission estimation.

Table I also shows the quantitative scores tested on I-
HAZE [13] and O-HAZE [14], where we see that the total loss
Liotar including the PALI loss achieves the best performance.

C. Comparison With Existing Methods

In this section, we compare the proposed method with the

(b) £total

(a) Input (c) w/o LpaLl

Fig. 7: The qualitative effect of the proposed PALI loss. (a) An input
hazy image I. The results of the proposed SID method (b) with the
PALI loss and (c) without the PALI loss, respectively. The images
from top row to bottom are the estimated J, i, and A.

existing SID methods: the model-specific method DCP [1],
the supervised domain-driven methods AOD-Net [4] and
MSBDN [6], and the unsupervised domain-driven method
DCPLoss [17], and the image-driven methods DDIP [9],
ZID [10], and ZR [11]. We compare our method with them
on the conventional unpaired real hazy data. For AOD-
Net [4], MSBDN [6], and DCPLoss [17], we downloaded
pre-trained models provided by authors. For the image-driven
methods [9]-[11], we trained the models from the scratch for
each image with the shared code and the default settings.

a) Qualitative Comparison: We first provide the qual-
itative comparison results tested on the unpaired real hazy
images in Fig 8. DCP [1] successfully removes the haze
well, but as the DCP adopts the approximation and the
regularization such as the soft matting, the haze remains
at the boundaries of the objects, as shown in the last row
in Fig 8(b). The supervised-learning based domain-driven
methods, the AOD-Net [4] and the MSBDN [6], rarely remove
the haze artifacts due to the domain-shift problems as shown
in Fig 8(c-d). Note that the test images are not in the training
datasets [12]-[14]. Similarly, the unsupervised-learning based
domain-driven method, DCPLoss [17], also shows the limited
performance due to the domain-shift problems as shown in
Fig 8(e). We expect the image-driven methods shows the better
performance than the domain-driven methods as it is free from
the domain-shift problems. However, DDIP [9] tends to lose
the color information, ZID [10] draws the artifacts due to
the over-enhancement significantly ruining the naturalness of
the restored images, and ZR [11] shows the under-enhanced
results as shown in Figure 8(f-h). On the other hands, the
proposed method faithfully restores the scene radiance without
noisy artifacts as shown in Figure 8(i).

We also compare the methods on the paired real hazy
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(f) DDIP [9]

(g) ZID [10] (h) ZR [11] (i) Ours

Fig. 8: Qualitative comparison of the SID results tested on the unpaired hazy images.

(a) Tnput () DCP [1]  (c) AOD-Net [4] (d) MSBDN [6] (¢) DCPLoss [17]
LHAZE O-HAZE

Method PSNRT  SSIMT | PSNRT _ SSIMT
DCP ] | 121475 06272 | 165172 0.6775
AOD-Net (4] | 153520 0.7121 | 150626 0.5782
MSBDN [6] | 163030 07093 | 17.5609 04408
DCPLoss [17] | 15.2877 07141 | 16.8780  0.5983
DDIP 9] | 149828 0.6950 | 166616  0.6323
ZID [10] | 118692 0.5043 | 132808 04994
ZR11] | 163311 06972 | 164143 04398
Ours 157308 07048 | 178736 0.6754

TABLE II: Quantitative comparison of the SID results tested on the
[-HAZE and O-HAZE images. Numbers in red, blue, and bold denote
the best, second-best and third-best scores.

images in Figure 9. In this case, the DCP shows artifacts as the
under estimated transmission, which is the main drawbacks of
the model-specific method. On the other hands, the domain-
driven methods show the satisfactory performance as shown
in Figure 9(c-e). However, please note that it is difficult
to prepare the abundant images for the unseen future test
images, and it is worth to note that the image-driven methods
have comparable performance with the domain-driven methods
except for the ZID.

b) Quantitative Comparison: For the quantitative com-
parison, we evaluate the PSNR and SSIM scores for the test

images in [-HAZE and O-HAZE and the results are shown in
Table. II. The proposed method has the third-best PSNR score
in I-HAZE [13] and showed the best PSNR and the second-
best SSIM scores in O-HAZE [14]. It is worth to note that
the proposed method have the best performance on the O-
HAZE, which is even better than the domain-driven method
trained by the abundant dataset, since the proposed method is
softly constrained by (1) than mode-driven methods. Yet, the
proposed method still have limitations on the more extreme
cases, such as the non-homogeneous haze. Nevertheless, the
experimental results suggest that the image-driven SID method
can outperform the domain-driven method and thus there are
rooms to research in a zero-shot and self-supervised learning
scheme in the future.

V. CONCLUSION

In this paper, we proposed a zero-shot SID method with the
self-supervised learning scheme. We employed two generators
to estimate the transmission and the original scene radiance
from an input hazy image, respectively. We also synthesize
the PALI to train the deep neural networks in the self-
supervised learning strategy. Using the PALI, the network
learns the characteristics of dense haze and the performance
is improved accordingly. The experimental results showed that
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(f) DDIP [9]
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Fig. 9: Qualitative comparison of the SID results tested on the -HAZE and O-HAZE images.

proposed method is effective and has the comparable

performance with the state-of-the arts SID methods when
tested on the I-HAZE dataset and even outperforms them when
tested on the O-HAZE dataset.
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