
5220 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 8, AUGUST 2023

Vision-Based Approximate Estimation of Muscle
Activation Patterns for Tele-Impedance

Hyemin Ahn , Youssef Michel , Graduate Student Member, IEEE,
Thomas Eiband , Graduate Student Member, IEEE, and Dongheui Lee , Senior Member, IEEE

Abstract—It lies in human nature to properly adjust the muscle
force to perform a given task successfully. While transferring this
control ability to robots has been a big concern among researchers,
there is no attempt to make a robot learn how to control the
impedance solely based on visual observations. Rather, the research
on tele-impedance usually relies on special devices such as EMG
sensors, which have less accessibility as well as less generaliza-
tion ability compared to simple RGB webcams. In this letter, we
propose a system for a vision-based tele-impedance control of
robots, based on the approximately estimated muscle activation
patterns. These patterns are obtained from the proposed deep
learning-based model, which uses RGB images from an affordable
commercial webcam as inputs. It is remarkable that our model
does not require humans to apply any visible markers to their
muscles. Experimental results show that our model enables a robot
to mimic how humans adjust their muscle force to perform a
given task successfully. Although our experiments are focused on
tele-impedance control, our system can also provide a baseline for
improvement of vision-based learning from demonstration, which
would also incorporate the information of variable stiffness control
for successful task execution.

Index Terms—Deep learning for visual perception, telerobotics
and teleoperation, compliance and impedance control.

I. INTRODUCTION

IMAGINE that you teach a robot how to open a jar - which
requires you to apply the force to the jar properly, synchro-

nized with your hand motion. You fully demonstrate to the robot
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how to move its end-effector to perform a task, based on the
motion capture device. In this scenario, the robot would fail this
task if it only adjusts its end-effector trajectory. To achieve the
goal, it also needs to learn when and how to adapt its end-point
stiffness. In this regard, it is possible for robots to understand
how humans adjust their end-point stiffness, by using various
auxiliary sensors such as a grip-force sensor [1], a joystick-like
device [2], or EMG sensor [3], [4]. However, relying on a special
device could be a bottleneck, since it diminishes the accessibility
as well as the generalization ability. Therefore, we believe that
it would be beneficial to employ other affordable and general
sensors - like RGB webcams.

In this letter, we propose a framework for vision-based and
tele-impedance control, which relies only on RGB images with-
out visible markers. We show that recent improvement in visual
perception based on deep neural networks [5], [6], [7] can
be a highly appealing solution, for building an easy-to-use,
accessible, and generalizable tele-impedance control system.
Experimental results show that our framework enables a robot
to mimic how a human adjusts his/her end-point stiffness to
successfully perform a task, based on image inputs obtained
from an affordable RGB webcam.

Our vision-based tele-impedance system employs the approx-
imate estimation of discretized muscle activation patterns for ad-
justing the robot’s end-point stiffness parameters to successfully
perform a task. To obtain this estimation, we propose a deep
neural network-based model, which can infer the discretized
muscle activation pattern from a short video observation of the
human limb. The model output includes (1) whether the muscle
is activated or not, and (2) whether the muscle activation is in-
creasing, stable, or decreasing. Although this would not provide
detailed information such as the magnitude or orientation of the
end-point stiffness, our model is able to obtain some general
information of human muscle activation during the task.

The advantages of our system are as below:
� Unobtrusive: It does not require humans to put any markers

on their body parts.
� High accessibility: It can be applied with any type of

affordable RGB webcam.
� High generalization ability: It can be also successfully

applied to human users who did not participate in the
training data collection process.

These advantages are shown through our experiments, which
include the real-world robot demonstration of tele-impedance
control. We believe that our work would be a baseline study
for future researchers of vision-based impedance understanding
and control, such as vision-based learning from demonstration
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which incorporates the information of the end-effector’s position
as well as stiffness.

II. RELATED WORKS

Humans are characterized by their unique skill to perform
delicate physical interactions, thanks to their ability to adapt their
end-point force and impedance. Inspired by that, several works
have aimed at transferring such human interaction capabilities
to robots, encouraged by the emergence of a new generation of
compliant, torque-controlled robots. For example, [8] proposed
an adaptive control framework based on human-motor control
theory. Their framework can adapt the robot’s feed-forward
force, impedance, and reference trajectory to reach the optimal
interactive behavior while maintaining a compromise between
stability and efficiency. This controller was later extended in [9]
to perform contact tasks such as cutting and haptic exploration.
There also exist works that focused on developing interfaces
to transfer human’s variable impedance control skills to robots
during teleoperated task execution. This was done using a
grip-force sensor in [1], and a joystick-like device in [2] to
capture in real-time information about the human end-point
stiffness, or by learning a model for stiffness adaptation from
human demonstrations [10], with the purpose of commanding
the robot’s reference stiffness profiles during tele-operation.

Along the same lines, the use of EMG also received significant
attention in variable impedance transfer from humans to robots.
This was motivated by a seminal concept of tele-impedance [11],
which was proposed as a possible alternative to the standard
bilateral tele-operation. A human operator commands a remote
impedance-controlled robot with real-time motion commands
captured via optical tracking, and stiffness profiles estimated
from muscle activation measured with EMG. Similarly, Yang
et al. [3] used EMG to compute stiffness profiles for command-
ing the remote robot in standard bilateral tele-operation, where
the operator received haptic feedback from the environment.
Peternel et al. [4] proposed a framework that used EMG to-
gether with force sensing and a motion capture system to derive
suitable hybrid force-impedance control strategies from human
demonstrations for various contact tasks.

However, these approaches have less accessibility as well
as less generalization ability since they require costly sensors.
Applying affordable vision-based systems to transfer human
impedance control skills to robots would be a big game changer
in this research field. Unfortunately, as mentioned before, there
have been no attempts to address vision-based robot impedance
control. Instead, there exist works called optical myography,
which objective is to estimate finger movement. To do this, [12],
[13], [14] use a fixed testbed and fasten the human arms on it.
Afterward, visual observation is obtained from the 10 AprilTag
markers [12], [13] or a single undifferentiated marker (i.e.,
plain sticker) [14] that needs to be attached to the subject’s
forearm. These works were also extended to human hand gesture
recognition with multiple orientation-free markers on the front
and back of the human arm [15]. The advantage of optical
myography is the use of inexpensive camera sensors, which
makes the experiment process easier than other works with
force or position sensors. However, existing optical myography
studies require human subjects to attach visible markers, and

Fig. 1. Overview of how the proposed vision-based tele-impedance system
works. It first estimates a human pose to obtain the image patch of the target
limb (i.e., forearm). Then, the image patches are given to the proposed muscle
activation pattern estimator (MAPE), resulting in a static state (activated, in-
activated) and temporal state (increasing, stable, decreasing). Based on this, a
proper end-point stiffness profile is obtained and the robot controls its end-point
stiffness to perform a given task, by following how the human adapted one’s
stiffness to complete the task.

many of them require humans to constrain their arm position.
Compared to this, our system does not require any markers to
be attached, and human subjects can move their arm within the
range for target muscle regions to be visible.

We admit that there could be infeasibility when relying only
on images to obtain detailed and exact information on how
humans control their impedance. However, just as we know
whether an object is heavy or not by observing someone’s arm
lifting the object, humans are able to estimate approximate in-
formation of muscle activation by recognizing the visual pattern
of muscles [16]. Even if it would be challenging to measure the
exact value of human arm stiffness based on images, it would
be possible for us to infer with images whether the human is
stiffening up his/her arm or not. This approximate estimation of
muscle activation patterns can be beneficial for a robot to control
its end-point stiffness to perform a given task properly.

III. METHODOLOGY

A. Overall Structure

Fig. 1 shows how the proposed system works. On the left
side, it shows how our system obtains the visual input for
muscle activation pattern recognition. From the RGB image,
our system first obtains the human pose information based on
the lightweight 3D pose estimator from [17]. Based on that, a
square image patch is automatically cropped near the region
where the target limb is. Note that our system does not require
the human to locate the target limb in a certain image region
since the pose estimator can find the target limb position. We
choose the forearm as the target since the visual appearance
of its muscles would represent the wrist stiffness, which has
consequently an effect on human’s hand end-point stiffness [18].
After collecting a set of image patches for a short time duration,
it is used as an input for the proposed muscle activation pattern
estimator (MAPE). As shown in Fig. 1, MAPE results in two
muscle activation states, which are static state and temporal state.
The static state represents whether the muscle is activated or not,
and the temporal state represents whether the degree of muscle
activation is increasing, stable, or decreasing. Both states are
necessary for a robot to adapt its end-point stiffness to conduct
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Fig. 2. Illustration of how our dataset is collected from human subjects. While
a sequence of images of the forearm is collected by an affordable RGB webcam
(red box), an EMG signal is also collected from the bracelet-shaped sensor
(light blue box). After finishing this process, the collected raw data is properly
preprocessed such that a set of triplets of images, static states, and temporal
states can be obtained.

the task. A robot can decide whether to stay inactivated (low
stiffness) or activated (high stiffness) using the static state, and
whether to prepare the transition from the inactivated state to
the activated state using the temporal state. Note that MAPE
is trained in a supervised way, based on the RGB images from
an affordable webcam, and static/temporal states are annotated
from an EMG sensor.

For enhancing the performance of MAPE, we propose an
additional approach such as ‘visual data augmentation’ in the
training process. Its goal is to randomly apply several transfor-
mation techniques to the given muscle image patches, such as
rotation, translation, flipping, color adjustment, and background
change. By doing so, it is possible for MAPE to learn how to be
robust for different image conditions such as light, human pose,
and background.

In addition, we also apply ‘visual calibration’ in the training
process. It generalizes the performance of MAPE for various
human subjects, by reducing the effect of individual muscle’s
visual traits. To do this, it collects the muscle image patches from
a human subject when one releases or applies force to the muscle.
Afterward, when new image patches are given as inputs from
the human subject, it generates the calibrated image features by
considering the activated and inactivated muscle images of that
target human subject.

B. Dataset

1) Collection: To train the muscle activation pattern estima-
tor (MAPE), we build a dataset consisting of images observing a
human’s target limb (forearm) as well as corresponding discrete
state labels of muscle activation patterns. The labels include
the static and temporal states, where the static states denote
whether the muscle is activated or not, and temporal states denote
whether the degree of muscle activation is increasing, stable, or
decreasing.

To collect the dataset, we prepare an environment as shown
in Fig. 2. It shows a webcam (Logitech C920) and a bracelet
sensor named Myo from Thalmic Labs, which arranges 8 EMG
sensors around the forearm. We ask subjects to wear it on their
forearm near their elbow (see the cyan box in Fig. 2). The

Fig. 3. Illustration of various conditions when our dataset is collected from
human subjects. Conditions such as distance, light, and arm pose are varied in
two ways such that the data collection process can be conducted at least eight
times for each subject.

camera observes the subject with 10 fps and a resolution of
1920× 1080. Images are collected within a black background,
to simplify the data augmentation process (i.e., random back-
ground). After setting up the camera, we instruct the subject
to apply the force to the gripper by applying a tight grasp,
synchronized with the visual stimulus shown on the screen.
Here, the visual stimulus is a periodic square wave signal with
a length of 120 seconds and a time period of 4 seconds. We
ask the subjects to apply the grasp force of approximately 80%
of their maximum voluntary contraction [19] when the stimu-
lus value is high, otherwise release the grip force. According
to [18], this instruction would also affect the human end-point
stiffness.

Let us denote s(t) ∈ R8 as an EMG signal consisting of eight
channel values, which are the measurements from eight EMG
sensors of our bracelet sensor Myo. Then, its amplitude is cal-
culated as a(t) = ‖s(t)‖2. The rightmost graph in Fig. 2 shows
an exemplary EMG signal amplitude a(t) obtained from the
human subject when one controls the grip force while following
the visual stimulus.

To increase the generalization ability of our model, we collect
the dataset from six human subjects (3 males, 3 females /
3 Caucasians, 3 Colored / Age range 28∼44 /All in normal
physiques). In addition, as shown in Fig. 3, the data collection
processes based on the visual stimulus are performed 8 times
by combining the following settings. We captured two different
distances between the camera and the human, in particular 1 m
and 1.5 m. Also, we consider two different light conditions based
on the intensity of the light source. Finally, two different arm
poses were considered.

2) Annotation: For collected images, we crop the area of
the forearm according to the estimated wrist and elbow poses
from [17], as the red box shown in Fig. 2. Since our goal is to
estimate muscle activation based on observed visual patterns of
the muscle, we exclude the visual information of hands. When
training a model, an image patch inside this red box is randomly
rotated or translated for data augmentation.

For each cropped image showing the bare forearm, we need
labels of whether the muscle is activated or not, and whether
the muscle activation is increasing, stable, or decreasing. To
annotate these discrete labels, we employ the collected EMG
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signals. We first resample EMG signals to 30 fps, and apply
zero-phase digital filtering to the signal [20].

To annotate a static state at time t, we define a threshold
for the amplitude of the preprocessed EMG signal and label
the state as ‘activated’ if the amplitude at time t is larger
than the given threshold. The threshold is defined based on the
normalized EMG signal amplitude n(t), which is normalized as
n(t) = (a(t)−min a(t))/(max a(t)−min a(t)), where a(t)
denotes the original EMG signal amplitude at time t. Then,
the static state is defined as ‘activated’ if n(t) is larger than
δact, and vice versa. Here, δact is empirically chosen uniquely
for each human subject, by considering how the individual’s
muscle shape changes with respect ton(t). If one’s muscle looks
activated after n(t) is larger than a certain value, that value is
chosen as δact.

To annotate the temporal state, we obtain the slope s(t)
of n(t) by fitting a linear regression model to n(t− d) ∼
n(t+ d). A temporal state is defined as ‘increasing’ if
s(t) > δinc, as ‘decreasing’ if s(t) < δdec, and as ‘stable’
if δdec < s(t) < δinc. Thresholds δinc, δdec are empirically
chosen for each subject. Finally, the number of obtained
(Images, Static State, Temporal State) was 6,764.

C. Muscle Activation Pattern Estimator (MAPE)

The goal of our muscle activation pattern estimator (MAPE) is
to recognize the approximate label of muscle activation patterns
at each time stamp t = 1 . . . T based on the visual information.
However, the temporal state label of whether the muscle acti-
vation is increasing or not would not be captured from a single
image. Therefore, MAPE gets an input of V t ∈ RN×3×H×W ,
where a short video clip consists of N frames {It−N+1 . . . It}.
Here, It ∈ R3×W×H is an RGB image observing the bare
forearm at timestamp t.

MAPE generates two score vectors St and Tt based on V t,
such that: [St;Tt] = MAPE(V t), whereSt ∈ R2,Tt ∈ R3. Here,
St denotes an estimation score for the static state label at the time
stamp t. It would be recognized that the muscle is activated if
St[1] < St[2], where St[i] is the i-th element of St. Similarly,
Tt denotes an estimation score for the temporal state label at
the time stamp t. If argmaxi Tt[i] = 1, it would be recognized
that the muscle activation is decreasing. Otherwise, it would
be recognized that the trend of muscle activation is stable or
increasing if argmaxi Tt[i] is 2 or 3.

Fig. 4 visualizes the structure of the proposed neural network-
based MAPE. In this figure, it is assumed that the input consists
of 4 images. MAPE first extracts a set of image features from
Vt, based on the ResNet [5]. Let hk ∈ RD denote a feature
extracted from the k-th image Ik consistingV t. After extracting
Ht ∈ RN×D which consists of {ht−N+1 . . . ht}, Ht is fed to
recurrent neural networks (RNNs) [21]. After Ht passes the
RNNs, the resulting vector vt ∈ RD is mapped to St and Tt

with two separate fully connected layers.

D. Visual Data Augmentation

To train MAPE, it is crucial to collect a sufficient dataset
containing triplets ofD = {V t, St, Tt}t=1...T . To do this, as we
mentioned above, we recruited six human subjects and collected
a dataset from a different light, camera distance, and human pose

Fig. 4. Structure of the muscle activation pattern estimator (MAPE).

Fig. 5. Data augmentation process for improving the generalization perfor-
mance of MAPE. After randomly rotating or translating the image patch cropped
near the target region (i.e., forearm), it is randomly flipped in the horizontal or
vertical direction. Then, the brightness, contrast, and saturation of the image
are randomly adjusted. Finally, the background is replaced with various random
images from https://picsum.photos/.

conditions. However, even if we considered various conditions
in the data collection process, we still cannot guarantee that the
collected dataset is perfect since it is quite challenging to satisfy
diversity among all possible different conditions.

Therefore, to increase the generalization performance of the
model, we augment our input dataV t based on the below process
shown in Fig. 5.

1) Obtain the image patch of the forearm near the wrist (see
red box in Fig. 2).

2) Crop the image inside the red box, and randomly rotate
and translate that cropped image.

3) Flip the cropped image horizontally or vertically with a
probability of 0.5.

4) Randomly adjust the brightness, contrast, and saturation
of the cropped image.

5) Replace the black background with various random im-
ages from https://picsum.photos/.

The second and third procedures are to compensate for the
disadvantage of our data that is only collected from two types of
human postures. The fourth and fifth procedures are to increase
the generalization performance of the model with various bright-
ness conditions and backgrounds. The entire data augmentation
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Fig. 6. Comparison between subjects with different muscle shapes and defor-
mation patterns. Compared to Subject 6, Subject 1 has a smaller muscle size and
the variation of its deformation pattern is also less than Subject 6. In addition,
it is shown that the activated muscle image of Subject 1 looks similar to the
inactivated muscle image of Subject 6.

process is performed per each training iteration, such that more
randomly augmented data can be used for training as the number
of iterations increases.

E. Visual Calibration

However, even if we train MAPE with the augmented dataset,
we find out that the vanilla MAPE sometimes fails to obtain
the generalized result. Fig. 6 shows one of the examples that
provokes the cases of failure in generalization. It shows that the
visual pattern change between inactivated and activated muscles
of Subject 1 is less distinguishable compared to Subject 6. Also,
the image of the activated muscle of Subject 1 looks similar to
the inactivated muscle of Subject 6, rather than the activated
muscle of Subject 6. In this case, if the proposed vanilla MAPE
is trained with images from Subject 1, the ‘inactivated’ muscle
image of Subject 6 can be recognized as ‘activated’ due to this
visual similarity. On the contrary, if MAPE is trained only based
on the images of Subject 6, it would be challenging for the model
to discriminate the muscle activation status of Subject 1 since
his/her muscle activation change is less visible.

Based on this observation, we conclude that an additional
approach that can reduce the impact of an individual muscle’s
visual characteristics is necessary. Therefore, we introduce the
approach named ‘Visual Calibration’, which can generalize
the performance of MAPE for various human subjects. To do
this, it first requires human subjects to release or apply the
gripping force and collects images from inactivated and acti-
vated muscles. Let Iinact and Iact denote the collected images
of inactivated and activated muscles from this process. Then,
MAPE with Visual Calibration extracts image features from
Iinact and Iact based on ResNet. Let hinact and hact denote
the obtained image features. Then, the set of image features
Ht = {ht−N+1 . . . ht} which was obtained from the original
input V t is calibrated based on hinact and hact, such that
Hc

t = [hk − hinact;hk − hact]k=t−N+1,...,t can be obtained.
Finally, the calibrated features Hc

t are given as an input to the
LSTM-RNNs, and final results (St, Tt) are obtained. Fig. 7
summarizes how MAPE with Visual Calibration works. Note
that the same ResNet is used to extract features from V t, Iinact

and Iact, so that the efficiency can be improved in terms of the
number of parameters.

F. Implementation Details

When training MAPE, we use V t ∈ R4×3×112×112, where
four images It−3, It−2, It−1, It of size 3× 112× 112 are used
to construct V t. In experiments, our video clip is 10 fps, such

Fig. 7. Network architecture of the proposed machine activation pattern esti-
mator (MAPE) when visual calibration is applied.

that the video clip V t contains information during 0.4 s. After
extracting a set of image features Ht ∈ R4×2048 from V t based
on ResNet-50, it is normalized based on its L2-norm magnitude
and is fed to LSTM-based RNNs which dimension of the hidden
state is 2048. When Visual Calibration is added to MAPE, input
for the LSTM-RNNs is Hc

t = [ht − hinact;ht − hact], where
ht, hinact, and hact are image features after L2-norm based
normalization. After LSTM-RNNs process the input Ht, its last
hidden state vector becomes vt ∈ R2048, and it is mapped into
St and Tt based on two separate fully connected layers. To train
vanilla MAPE or MAPE with Visual Calibration, a cross-entropy
loss function is used for eachSt andTt, and Adam optimizer [22]
with a learning rate of 0.0001 is employed. At each iteration, a
batch size of 64 is sampled from the training dataset after the
data augmentation. The training procedure of MAPE takes less
than one day with a single GPU.

IV. EXPERIMENTS

A. Qualitative Results

Our dataset for training MAPE consists of RGB images
as well as static/temporal state annotations collected from six
different human subjects. After training MAPE with a dataset
from five human subjects, we obtain its qualitative results as
shown in Fig. 8 by giving data from the unseen human subject
as inputs. Compared to the ground truth of static/temporal state
labels, the estimation result shows that the proposed system
combining visual calibration as well as data augmentation to
MAPE generates the most reliable result (see the orange block
in Fig. 8). In addition, it is shown that the proposed system
without visual calibration or data augmentation generates less
reliable results (see gray blocks in Fig. 8). Note that relevant
quantitative results will be also shown in the next paragraph.
Based on this, we argue that the proposed visual calibration as
well as data augmentation are crucial for enabling MAPE to
understand the changes in muscle deformation patterns of the
unseen human subject. Therefore, it can be concluded that the
proposed two auxiliary processes are also important for increas-
ing the generalization ability of our vision-based tele-impedance
control system.

Authorized licensed use limited to: UNIST. Downloaded on January 09,2024 at 04:01:29 UTC from IEEE Xplore.  Restrictions apply. 



AHN et al.: VISION-BASED APPROXIMATE ESTIMATION OF MUSCLE ACTIVATION PATTERNS FOR TELE-IMPEDANCE 5225

Fig. 8. Qualitative result from MAPE when it is tested to the dataset of the human subject which is unseen during the training phase. Note that input images
are modified for better visualization. The result shows that the proposed system with visual calibration as well as data augmentation results in the most reliable
estimation compared to other cases.

Fig. 9. Confusion matrices obtained from the quantitative ablation study. On
matrices for the static state, - denotes inactivated and + denotes activated state.
On matrices for the temporal state, ↓ denotes decreasing, — denotes stable, and
↑ denotes increasing state. The result shows that the proposed system with visual
calibration and data augmentation is the best when considering both static and
temporal state estimation.

B. Quantitative Results

To measure the performance of MAPE, we perform 6-fold
cross-validation, by dividing the dataset with respect to the
human subject identity. Fig. 9 presents the confusion matrices
from the proposed system with and without visual calibration
or data augmentation. As expected from the qualitative results,
it is shown that the system with both visual calibration and data
augmentation produces the best result in both static and temporal
state estimation.

Compared to the high performance of static state estimation,
the accuracy of temporal state estimation is not as high. However,
we want to emphasize that the most threatening error occurs
if MAPE confuses ‘increasing’ with ‘decreasing’. And note

TABLE I
SCORES OF STATIC STATE ESTIMATION WITH AND WITHOUT DATA

AUGMENTATION (DA) AND VISUAL CALIBRATION (VC)

that this does not happen in all cases of this ablation study
using MAPE. When the ground truth label is ‘increasing’ or
‘decreasing’, only the confusion with ‘stable’ occurs, which
can be easily corrected by post-processing techniques such as
filtering or Finite State Machine (FSM). To check how we
used FSM for post-processing, please check our supplementary
material.

To summarize the performance in a better way, we present the
precision, recall, and F1 score of state estimation as shown in
Tables I and II. Even the systems without visual calibration or
data augmentation sometimes perform better than the proposed
system in terms of precision or recall, it is shown that the F1 score
of the proposed system is higher in all cases. Based on this, we
claim auxiliary approaches such as visual calibration and data
augmentation are crucial for improving the generalization ability
of the MAPE.

C. Real-World Demonstrations

We also validate the scalability of our system by applying
the MAPE to the tele-impedance control of a real robot. Our
task is to enable a robot to push the emergency button that
needs high enough stiffness to be successfully pushed. To this
end, our robot uses variable stiffness based on our vision-based
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TABLE II
SCORES OF TEMPORAL STATE ESTIMATION WITH AND WITHOUT DATA

AUGMENTATION(DA) AND VISUAL CALIBRATION(VC)

Fig. 10. Our real demonstration for the task of push-button. While a human
subject is lowering one’s arm by synchronizing to a pre-defined robot’s vertical
downwards motion, our system captures the forearm region of the subject and
estimates its static/temporal states. The estimation result is transferred to the
robot, and the robot generates a proper stiffness profile. Based on this, the robot
successfully executes the task by adapting its end-point stiffness as a human
does to complete the task.

tele-impedance framework. Its end-point stiffness will follow
the human strategy, which increases the stiffness only when
necessary, and otherwise being compliant during a free motion
to reduce the metabolic cost [23]. Fig. 10 shows how our system
works with a real robot. We move the robot’s end-effector to
be located around 20 cm above the button. In the meantime,
the human subject makes a fist with one hand and locates it
to be around 20 cm above another button. Then, we instruct
the subject to successfully push the button by vertically moving
down one’s hand toward the button. As we focus on the muscle
activation estimation part, we simplified the experimental setup
by commanding the robot end-effector with a pre-programmed
vertical downwards motion towards the button, with a velocity
of 5 cm/sec. The subject synchronizes one’s motion by following
the robot’s motion, so that the human can press the button at the
same time as the robot does. In addition, it is required for the
subject to increase one’s grip force properly when the robot’s
end-effector is about to push the button.

The estimated static/temporal state information is transferred
to the robot control loop whenever the MAPE outputs a pre-
diction. To command the robot’s stiffness, we devise a Finite
State Machine (FSM) that acts on the incoming static/temporal

state estimation while also filtering out possible noisy states
predicted by MAPE. Based on the internal state of FSM, the
cartesian robot stiffness in the direction of motion (z axis relative
to the robot base frame) is set. For instance, in Fig. 10, when
MAPE estimates the static/temporal states as ‘activated’ and
‘increasing’, our FSM transits to the ‘increasing’ state, and the
robot starts smoothly increasing its stiffness profile from a low
value to a high value. When the stiffness reaches its maximum,
the FSM transitions to and stays in the ‘high’ state while the static
state is ‘activated’ and the temporal state is ‘stable’. Thereby, the
robot adapts its end-point stiffness to mimic the same human
behavior, allowing it to complete the task, by applying the
necessary force needed to push the button.

Our supplementary video shows more examples of real-world
demonstrations with various subjects, including ones who did
not participate in the data collection process. Our system can be
applied to various humans, thereby we claim the generalization
ability of our system and the feasibility to be deployed in a
real-world scenario is demonstrated.

V. DISCUSSION AND FUTURE WORKS

In this letter, our goal is to transfer the human ability of
end-point stiffness adaptation to the robot solely based on RGB
images. To do this, we introduce a model named muscle ac-
tivation pattern estimator (MAPE). Based on the given image
frames, MAPE can infer (1) whether the muscle is activated or
inactivated (static states), as well as (2) whether the degree of
muscle activation is increasing, stable, or decreasing (temporal
states). To train MAPE, we collect triplets of images, static
states, and temporal states, from six human subjects in various
conditions.

However, since the collected dataset can be biased, we also
suggest visual data augmentation as well as visual calibration.
Visual data augmentation is to randomly apply various image
transform techniques to the input image so that MAPE can
adapt to images with various conditions. The visual calibration
is to reduce the effect of personal factors such as the size or
visibility of individual muscles on the forearm. Our experiment
results show how MAPE works, and how much the visual data
augmentation and visual calibration processes can enhance the
performance of MAPE in a qualitative and quantitative way.
Finally, we show a real-world demonstration that solves the
push-button task, by applying the estimated muscle activation
patterns to adapt the robot’s end-point stiffness.

Our current system has several open challenges to address.
First, it is not able to obtain an exact measure of human stiffness.
But especially for tele-impedance applications, this might not
be of major importance as long the robot is commanded with
adequate impedance. This is the case for instance in EMG-based
tele-impedance where scaling factors are commonly used to map
the human arm stiffness to the cartesian robot stiffness [11]. Sec-
ond, our estimation is limited to only a one-dimensional stiffness
estimation. For our simplified experiment scenarios, this was
sufficient. However, more complex tasks such as screwing would
require more complex stiffness settings where the magnitude and
orientation of the stiffness ellipsoid are specified.

Third, various and distinct individual characteristics such as
limb size, fat, and body hair, may impact the visibility of the
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muscle and subsequently affect the accuracy of our MAPE.
We observed these effects during our experiment, and believe
that including a greater variety of individuals in our training
data could increase the generalization capacity of our network,
making it more robust to these factors. Fourth, the current system
cannot differentiate force from stiffness, while an increase in
muscle activation can be due to an increase in force or stiffness.
To make this differentiation between force and stiffness, [11]
stated that the computation of two decoupled subspaces, namely,
the force- and stiffness-generating subspaces, are required. How-
ever, this differentiation was not the primary focus of our study.
Instead, we simplified the assumption that muscle activation
is highly related to stiffness. Our experimental results show
that this assumption is empirically shown to be feasible for
our purpose, which is to provide a practical and usable method
for vision-based tele-impedance control. We believe the current
limitation would be supplemented by our future work, and would
like to highlight more on how we validate the feasibility of
vision-based muscle activation pattern estimation, as well as
the possibility of using the estimation results for successful
tele-impedance control.

Finally, we would like to emphasize that our system has the
potential to aid existing vision-based learning from demonstra-
tion (LfD) or imitation learning studies, which only considered
the end-effector trajectory in their learning process. It would be
possible for our system to also extract the end-point stiffness
information from the demonstration videos of human, so that
advanced LfD methods can be realized. We believe that our study
would be a baseline for improved research on vision-based skill
transfer to robots, which can also consider how humans adapt
the stiffness when executing a task.

Ethics: In Bavaria, Germany, where the study was
conducted, ethical review and approval from an ethical
committee are waived due to the anonymized data collection
process (https://ethikkommission.blaek.de/studien/sonstige-
studien/antragsunterlagen-ek-primarberatend-15-bo) (Ac-
cessed on 20th June, 2023).
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