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A B S T R A C T

Tool wear negatively affects machined surfaces and causes surface cracking, therefore increasing manufacturing
costs and degrading product quality. Titanium alloys, which are widely used because of their desirable
mechanical properties, have problems associated with tool wear due to poor thermal properties, such as
specific heat capacity and thermal conductivity. Therefore, the accurate prediction of tool wear is necessary
during the titanium alloy end-milling process to improve product quality and ensure reliability for corrective
decisions like tool replacement. To this end, uncertainty-aware tool-wear prediction should be performed.
In this study, a deep learning-based tool-wear prediction model based on a Bayesian approach was proposed.
First, a convolutional neural network (CNN)-based architecture that integrates multiscale information extracted
from raw sensor measurement data, termed deep multiscale CNN (DMSCNN), was proposed. It used different-
sized convolutional kernels in parallel to enable various receptive field sizes suitable for machining processes.
Second, based on a Bayesian learning approach, DMSCNN was transformed into a probabilistic model that
produced a predictive distribution for estimated tool wear. In particular, a variational inference was applied
to DMSCNN parameters to provide uncertainty awareness. Experiments were conducted with data collected
from an actual end-milling process under three different conditions. The results proved the effectiveness of the
proposed DMSCNN for tool-wear prediction. Bayesian DMSCNN showed promising results, as it outperformed
existing comparative deterministic methods as well as probabilistic methods for tool-wear prediction. The
proposed method is expected to be effectively applied in smart manufacturing as well as other machining
processes that require data-driven digital decisions.
1. Introduction

Titanium alloy is an extraordinary material and is widely used
in various industries, such as aerospace, medical, and automotive in-
dustries, owing to its desirable mechanical properties such as high
strength-to-weight ratio, heat resistance, and corrosion resistance [1].
However, titanium alloy is classified as a difficult-to-cut material be-
cause of its low thermal conductivity and low specific heat, which
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lead to instability at elevated temperatures. High temperatures nega-
tively influence tool wear and machined surface quality by facilitating
chemical interactions and frictional volume losses at the tool–chip and
tool–material interfaces [2]. In addition, poor mechanical properties
cause surface cracks, while high residual stress reduces the fatigue
life and increases the fatigue strength of the machined surface. These
characteristics directly influence the useful life of a tool, which is
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strongly related to the machining cost (i.e., manufacturing cost). There-
fore, the accurate prediction of the continuous wearing of cutting
tools is required not only to prevent unexpected failures but also to
improve productivity and quality by detecting tool breakage. Accurate
prediction can also empower digital decisions and smart manufacturing
like automating tool replacement decisions [3].

Despite the importance of tool-wear prediction for machining pro-
cesses, the development of intelligent tool-wear prediction methods
is a complicated task owing to multiphysics, chemical, and thermo-
mechanical dynamics. However, several attempts have been made to
develop tool-wear prediction methods based on prior knowledge in this
field. The empirical formula for the degree of tool wear was studied
based on the machining conditions, the geometry of the cutting tool,
and material properties. In traditional approaches, tool wear is calcu-
lated based on certain cutting parameters by using a direct relationship.
With the improved power of computerized computations, computer-
aided engineering (CAE)-based methods have been developed, includ-
ing the finite-element method (FEM), finite-difference method (FDM),
and finite-volumetric method (FVM). In these methods, the work ma-
terial and cutting tool are divided into several meshes, and the work
material is defined using the Johnson–Cook plasticity model [4] with
the appropriate material constant. In particular, specific cutting param-
eters, such as cutting force, strain rate, stress, and cutting temperature,
were determined by analyzing chip formation and heat transfer [5]. As
such, in FEM, the tool-wear-rate model is often used for the volumetric
loss of the cutting-tool surface per unit time, and the derived tool-wear
degree is used for further simulation processes.

However, traditional approaches to tool-wear prediction have sig-
nificant limitations. Because the static information for the cutting pa-
rameters is only used to determine the degree of tool wear, the ongoing
tool wear cannot be measured in real-time. Additionally, because the
dynamically changing behavior of the equipment used for the machin-
ing processes is not included in the tool-wear estimation, traditional
approaches cannot accurately predict the degree of tool-wear. To over-
come these limitations, data-driven approaches that utilize online data
collected with multiple sensors during machining processes have been
used to predict tool wear and have become popular in recent years [6].
Data-driven approaches sensitively incorporate sudden changes in the
machining process contained in the data. Therefore, it can better pre-
dict the ongoing tool wear adaptively, even under the same material,
machining conditions, and stiffness of the tool and machine, whereas
other conditions vary over time during the machining processes.

Among the data-driven approaches, those that can properly utilize
multivariate time-series sensor measurement data for tool-wear predic-
tion are the most sensible. In particular, prediction algorithms that can
derive as much information as possible from complex raw data are
required for accurate tool-wear prediction. Therefore, machine learning
(ML)- and deep learning (DL)-based approaches have recently gained
significant interest because they are capable of handling complex mul-
tivariate data with high expressive power. In particular, DL-based
methods, which have shown superior performance in various domains,
including computer vision, natural language processing, healthcare,
and manufacturing [7–9], have been widely adopted. Therefore, this
study proposes a DL-based tool-wear prediction method termed a deep
multiscale convolutional neural network (DMSCNN). Considering the
characteristics of the input data and actual experimental conditions, the
proposed model is designed to be suitable for the end-milling process.
By designing the specific architecture useful for analyzing multiscale
features during machining operations, the proposed method is able to
flexibly incorporate various contextual factors for tool-wear prediction.

Furthermore, this study proposes a novel uncertainty-aware tool-
wear prediction model that has several advantages over the typical
DL-based method. When uncertainty is incorporated during tool-wear
prediction, each prediction result produced by the model is accom-
panied by the level of prediction confidence. This characteristic of
2

uncertainty awareness could improve the prediction method’s inter-
pretability and reliability. To this end, this study adopts Bayesian
learning, one of the most theoretically grounded and practical uncer-
tainty estimation methods [10]. In particular, based on the proposed
DMSCNN architecture, a Bayesian treatment was employed to enable
the Bayesian approach for learning and inference, leading to a proposed
method termed the Bayesian DMSCNN. Due to this uncertainty-aware
wear prediction of high-cost tools, making decisions and corrective
plans, such as when to replace tools based on the DL-based method,
can become more robust.

The proposed data-driven tool-wear prediction method not only
enables uncertainty awareness but also improves the prediction per-
formance. Using sufficient experimental data from actual scenarios,
the effectiveness of the proposed method was thoroughly validated.
It can be further applied to diverse machining processes as well as
decision-making scenarios in smart manufacturing, such as predictive
maintenance and health management. The contributions of this study
to the literature are as follows:

• A deep learning-based tool-wear prediction model (DMSCNN) is
proposed, which is suitable for the end-milling process.

• Using Bayesian learning, the uncertainty-aware tool-wear predic-
tion method is developed, termed the Bayesian DMSCNN.

• The effectiveness of the proposed method, including DMSCNN
and Bayesian DMSCNN, is validated using experimental data col-
lected from actual end-milling processes with different machining
conditions.

• The proposed method shows superior performances compared
to existing deterministic and probabilistic tool-wear prediction
models.

• The efficacy of the proposed uncertainty-aware Bayesian DM-
SCNN in producing reliable confidence intervals and its desirable
characteristics are discussed.

A preliminary version of this study was previously presented [11].
The remainder of this paper is organized as follows. Section 2 presents
existing studies on tool-wear prediction and delineates preliminaries
related to Bayesian learning. The proposed method, including a deep
convolutional neural network (CNN)-based network architecture and
its Bayesian treatment model as well as a theoretical basis, is detailed
in Section 3. Section 4 provides a detailed illustration of the end-
milling process setup, data collection, preprocessing, hyperparameter
tuning, and implementation. In Section 5, experiments are conducted
using deterministic tool-wear prediction models, including the pro-
posed architecture, and their performances are compared. In addition,
experimental results using the proposed Bayesian tool-wear prediction
method and existing probabilistic models are provided. Thereafter, a
post-hoc analysis of the probabilistic models is provided. Finally, in
Section 6 the conclusions and future work are presented.

2. Preliminaries and literature review

This section discusses existing works in the literature related to
tool-wear prediction, including traditional and recent data-driven ap-
proaches. Traditional approaches to tool-wear prediction based on
physical models are reviewed, and their limitations are discussed. In
addition, data-driven approaches, including those based on ML and DL,
which improve not only the computational speed but also the precision
of tool-wear prediction, are reviewed. In addition, Bayesian learn-
ing methods in ML literature are illustrated. Some existing Bayesian
approaches to tool-wear prediction and their limitations are also dis-
cussed.
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2.1. Traditional tool-wear prediction

The tool wear type is defined by its region on the cutting tool
as well as the frictional mechanism. Flank wear occurs on the flank
face and is most likely to occur owing to the abrasive and adhesive
frictional mechanisms. Abrasive wear occurs when two bodies are in
contact with each other by plowing a smoother surface; therefore,
it is commonly generated at the flank face of the cutting tool and
work material interface. Adhesive wear is micro-welded at the tool-
workpiece interface. These two frictional mechanisms are particularly
dominant in areas with low cutting speeds. However, crater wear occurs
on the rake face because of diffusion and chemical wear. In particular,
diffusion and chemical wear are dominant at elevated temperatures
during metal cutting processes.

As mentioned above, the machining process has highly nonlinear
multiphysics and chemical reactions that can be modeled for predicting
tool wear. Therefore, several previous studies have been conducted
to recognize the complexity of tool wear dynamics using mechanistic
modeling [12]. Bjerke et al. presented a thermodynamic modeling
framework for tool wear considering the interaction of chemical, ox-
idational, and diffusional reactions at the tool-chip interface [13].
Muñoz-Escalona et al. proposed an empirical tool-wear model based
on thorough tool-wear analysis during the face-milling process [14].
Huang et al. proposed an analytical tool-wear model using various
frictional coefficients, such as adhesion, abrasion, and diffusion coeffi-
cients [15]. Marksberry et al. developed a mechanistic tool-wear model
under near-dry machining (NDM) conditions [16]. While the mechanis-
tic modeling-based approaches can incorporate existing comprehensive
domain knowledge for predicting tool wear, they are difficult to for-
mulate to achieve a moderate level of accuracy. In addition, it is
challenging to model realistic machining settings that may often vary
in real-world scenarios.

On the other hand, finite-element analysis (FEA) simulation has also
been widely used to predict tool wear owing to its complex interactions,
realistic representations, and parameter sensitivity analyses. Moreover,
FEA-based methods can generate failure mechanisms that lead to tool
wear, therefore providing valuable insights for developing strategies
to mitigate wear and enhance tool life. Yen et al. performed tool-
wear estimation using FEA and geometric updates in an orthogonal
cutting process [17]. Malakizadi et al. developed a three-dimensional
FE simulation by predicting the temperature and tool wear of the
cutting tool [18]. Attanasio et al. simulated tool wear during the
drilling process using a FEM-based method [19]. Many studies in the
literature, along with those mentioned above, suggest that while FEM-
based analysis can overcome the limitations of visualization problems
and experimental saving, its high computational cost and time need to
be improved.

The traditional tool-wear prediction has been developed based on
domain knowledge. This implies that considerable effort is required
to build and adapt existing on-site traditional tool-wear prediction
methods. Further, traditional approaches have several limitations. First,
many empirical and analytical models have strong assumptions, sim-
plifications, and approximations that do not fully represent actual
scenarios. Considering that various factors that change over time con-
tinually affect the generation of tool wear, traditional approaches have
limitations in real-world machining practices. Second, the physics-
based model generally incurs a considerable cost and time to develop
and adjust the appropriate constants in the empirical model [20].
Considering the aforementioned limitations, a data-driven approach to
tool-wear prediction can provide more efficient and adaptable meth-
ods. In particular, the data-driven approach is not only applicable to
any machining process where data can be collected but also requires
much less domain knowledge. Further, dynamically changing the tool
characteristics and related factors that affect the ongoing tool wear can
be efficiently modeled. Therefore, this study proposed a data-driven
3

tool-wear prediction method based on DL techniques.
2.2. Data-driven tool-wear prediction

Unlike traditional methods for tool-wear prediction, data-driven
approaches use data obtained during the manufacturing process to
estimate tool wear. Because data collected from multiple sensor types
during the machining process are often high dimensional and multi-
modal [7,21,22], they carry comprehensive information on the status
of the process. Therefore, it is imperative to use appropriate techniques
to extract a meaningful representation of the features. Data-driven ap-
proaches aim to utilize rich input signals to capture latent features that
help the accurate prediction of ongoing tool wear. Most ML-based tool-
wear prediction methods in the literature use two-stage approaches: (1)
feature extraction/selection and (2) tool-wear prediction.

Statistical dimensionality reduction algorithms, such as singular
value decomposition (SVD) and principal component analysis (PCA),
are often used for feature selection to estimate tool wear [23]. They are
also employed to identify and extract the dominant features in time-
series signals from milling machines [24]. In addition to the selected
features, ML-based prediction models have been used to estimate the
tool wear or classify its status. Zhou et al. identified the dominant
features of acoustic emissions collected by sensors by using PCA [25].
Thereafter, the selected features were used to predict tool wear using
an autoregressive model. Shi and Gindy used PCA and a least-squares
support vector machine (SVM) to extract features from raw signals and
estimate the degree of tool wear, respectively, [26]. However, some
statistical methods for feature extraction and dimensionality reduction
are not suitable for time-series signals and are not scalable to large-scale
data due to their high computational complexity.

Other signal-processing and transformation techniques have also
been used for feature extraction. Kothuru et al. suggested an SVM-
based tool-wear-classification method using a fast Fourier transfor-
mation (FFT) as a feature extraction technique [27]. Zhu and Liu
employed a hidden semi-Markov model (HSMM) with features ex-
tracted using wavelet packet decomposition (WPD) for online tool-wear
monitoring [28]. Zhang et al. used a symmetrized dot pattern (SDP) to
extract features from signals, and a multi-covariance Gaussian process
regression (GPR) to predict tool wear [29].

The second phase of conventional ML-based tool-wear prediction
approaches is rather straightforward, in the sense that ML algorithms
are constructed to estimate tool wear using extracted features as input
variables. Kong et al. presented a whale optimization-algorithm-based
SVM model to predict tool wear [30]. In [31], multiple ML classifiers
were used, such as SVM, random forest, and k-nearest neighbors, based
on acoustic signals. Kong et al. used GPR for a real-time tool-wear-
assessment technique [32]. Geramifard et al. used a hidden Markov
model (HMM)-based tool-wear-monitoring framework for a computer-
ized numerical control (CNC) milling machine [33]. Compared with the
two-stage approaches mentioned above that utilize ML-based predic-
tion algorithms, the method proposed in this study does not require
any handcrafted feature extraction phases, as it is purely based on DL
techniques. Therefore, the proposed method achieves a more succinct
and effective tool-wear prediction performance during the end-milling
process.

2.3. Deep learning-based tool-wear prediction

A DL-based tool-wear prediction that uses various types of DNN
is another branch of data-driven approaches. Compared to traditional
tool-wear prediction approaches and conventional data-driven approa-
ches, DL-based methods that utilize more expressive models had shown
superior performance in using complex sensor data. In particular, con-
sidering the recent advances in sensors (e.g., dynamometer) that gen-
erate high-frequency data with rich information, DL-based methods
were considered more suitable for online data-driven tool-wear pre-
diction [34]. In fact, owing to the rich model capacity and high

performance of DL, various studies have proposed the application of
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DL techniques to tool-wear prediction. Shi et al. developed a tool-wear-
monitoring framework based on a multiple stacked sparse autoencoder
(SSAE) that incorporates features extracted from multiple sensor sig-
nals [35]. He et al. also used SSAE for tool-wear prediction using
temperature signals [36]. Duan et al. developed a DL-based tool-wear
prediction method with explainability based on a principal component
analysis network [37]. Cheng et al. suggested using DL algorithms,
particularly for a multi-step wear prediction of cutting tools [38].

Some types of DNN that are effective for handling multivariate
time-series data from sensor signals, such as recurrent neural networks
(RNN), CNN, and their variants, are widely utilized. Considering that
these models had shown superior performance in challenging tasks
like natural language processing, they are considered compelling in
time-series prediction tasks. Zhang et al. developed an RNN-based
tool-wear prediction method that captures long-term temporal depen-
dencies [39]. Wang et al. used long short-term memory (LSTM) with
features extracted from machining signals based on a stacked autoen-
coder (SAE) to estimate tool wear under variable machining condi-
tions [40]. Shah et al. also proposed using LSTM based on acoustic
emission and vibration signals to monitor tool wear during the face-
milling process [41]. Wang et al. developed a gated recurrent unit
(GRU)-based tool-wear prediction method that captures local temporal
patterns and long-term dependencies using enhanced feature-learning
techniques [42]. There had been several studies that proposed hy-
brid approaches integrating multiple DL models for tool-wear predic-
tion [43]. Despite the wide use of RNN-based methods, they have
inherent limitations for an online prediction of tool wear due to the re-
current operations. Since sequential operations are required for RNNs,
they cannot be parallelized and require longer computational time.
Furthermore, when the input signal is lengthy, the performance of
RNN-based methods showed to decrease [44]. Therefore, these limi-
tations hinder an efficient online application of RNN-based tool-wear
prediction methods in practice.

There are several studies that utilized CNNs for efficient tool-wear
prediction using various types of features. Huang et al. proposed a
deep CNN-based tool-wear prediction method based on multi-domain
feature fusion [45]. Similarly, Huang et al. utilized multisensory signals
with CNN to predict tool wear [46]. Xu et al. developed a CNN-based
method using a channel attention mechanism to capture diverse feature
fusion in the machining process [47]. Due to model flexibility and
capacity, CNNs were widely used for predicting tool wear using various
sensor signals. Yang et al. proposed a CNN-based hybrid approach
that combines manual features with automatic features to perform
tool-wear prediction considering both local features and global depen-
dencies [48]. Xu et al. used CNNs with a dilated operation and residual
connections for efficient feature extraction for tool-wear prediction in
the tapping process [49]. Some works also utilized CNNs for image-
based data, including direct monitoring images of machining processes
and Fourier-transformed signals [50]. The method proposed in this
study also employs a deep CNN-based model that uses multiple kernels
of different sizes to achieve a larger receptive field, while being suitable
for the end-milling process. As mentioned above, the proposed method
utilizes the modeling flexibility of the CNN architecture that provides
adjustable feature extraction capability. Another major contribution of
this study differentiating it from previous studies that use DL-based
approaches is the use of the Bayesian learning approach. Although
DL-based approaches showed efficacy in predicting tool wear, they
lack uncertainty awareness and therefore cannot represent prediction
confidence. The proposed method addressed this inability with the
Bayesian learning-based DL approach to improve prediction reliability
and informed decision-making in practice.

2.4. Bayesian learning

Recently, the most widely used ML and DL algorithms have been
trained based on the frequentist approach. The most widely used learn-
4

ing principle is the maximum likelihood estimation (MLE), in which the
optimal set of parameters of a model is set to maximize the likelihood
𝑝(𝐷|𝒘). For example, minimizing the squared error for the regression
ask and the cross-entropy for the classification task falls under the
LE principle. However, frequentist approaches have limitations be-

ause the trained parameters are deterministic point estimates. This
nduces predictive models to output a deterministic conditional aver-
ge [51], and not to consider uncertainty in prediction. Furthermore,
he unimodal nature of loss functions prohibits the estimation of vari-
nces [52]. These limitations make frequentist approaches susceptible
o reliability problems.

Unlike MLE, the Bayesian learning (i.e., Bayesian inference) ap-
roach seeks to find a posterior distribution 𝑝(𝒘|𝐷) given data 𝐷 that
akes into account the uncertainty of the learning parameters. Based on
ayes’ theorem (i.e., Bayes’ rule), as shown in (1), 𝒘 ∈ R𝑑 , which is the
et of parameters to be estimated, is updated using the given data.

(𝒘|𝐷) =
𝑝(𝐷|𝒘)𝑝(𝒘)

𝑝(𝐷)
=

𝑝(𝐷|𝒘)𝑝(𝒘)
∫ 𝑝(𝐷, �̂�) 𝑑�̂�

=
𝑝(𝐷|𝒘)𝑝(𝒘)

∫ 𝑝(𝐷|�̂�)𝑝(�̂�) 𝑑�̂�
. (1)

One of the most attractive properties of Bayesian learning is infer-
nce (i.e., prediction), in which marginalization occurs as a process of
nductive learning. During Bayesian inference, so called the Bayesian
odel average (BMA), a prediction of a new input 𝑥 is made using the

iven likelihood function and a calculated posterior distribution. In par-
icular, the likelihood 𝑝(𝑦|𝑥,𝒘) weighted by the posterior distribution
s marginalized over model parameters 𝒘 as shown in (2). This can
lso be interpreted as the use of all possible sets of parameters through
arginalization (i.e., Bayesian ensemble), leading to the incorporation

f epistemic uncertainty. In addition, this leads models to produce
redictive distributions instead of deterministic point estimates, unlike
he MLE approach.

(𝑦|𝑥,𝐷) = ∫ 𝑝(𝑦|𝑥,𝒘)𝑝(𝒘|𝐷) 𝑑𝒘. (2)

However, in most cases, the true posterior distribution (shown
n (1)) is intractable or difficult to compute analytically; therefore,
pproximation methods are widely used. For example, sampling-based
ethods such as the Metropolis–Hastings algorithm, Gibbs sampling,

nd Markov Chain Monte Carlo (MCMC) have been widely used. In
ddition, considering the numerous model parameters, more compu-
ationally efficient approximation methods, such as stochastic gradient
escent-based approximation, Laplace approximation, and expectation
ropagation, have been employed. In particular, for DNN, other approx-
mate inference techniques have been proposed, including sampling-
ased, ensemble-based, and bootstrapping-based methods [53]. Vari-
tional inference (VI), which postulates an analytically simpler vari-
tional distribution as a substitute for the true posterior distribution,
as been shown to be effective for DNN [54,55]. This study is also
ased on VI to endow the model parameters with uncertainty to provide
ncertainty-aware tool-wear prediction. A detailed explanation of the
roposed method related to the VI and its derivations is provided in
ection 3.

.5. Bayesian tool-wear prediction

Previous studies have applied Bayesian approaches to tool-wear
rediction tasks. However, most of them have used Bayesian ML
odels that utilize Bayes’ theorem at the algorithmic level, such as
ayesian networks and Bayesian classifiers. Karandikar et al. used
Naive Bayes classifier for tool-condition monitoring based on sen-

or measurements [56]. Shurrab et al. also suggested using Naive
ayes for the classification of cutting tool conditions in milling pro-
esses [57]. McParland et al. proposed a tool-wear prediction method
or each force direction, based on a nonparametric Bayesian hierar-
hical Gaussian process [58]. Sun et al. developed a nonlinear Wiener
rocess-based tool-wear prediction method on the basis of the Bayesian
pproach [59]. Li et al. utilized the Bayesian approach with various
L algorithms in a hybrid manner for tool condition monitoring [60].
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However, these existing Bayesian approaches to tool-wear prediction
are difficult to be applied to DL-based methods, which could limit
prediction performance in practice. Therefore, it is necessary to develop
a Bayesian-based tool-wear prediction method suitable for powerful DL
algorithms.

Existing studies based on stochastic processes (i.e., state space
models) have used the Bayesian inference concept. In particular, the
Bayesian approach was widely employed in updating model parameters
of HMMs and linear dynamical systems. Wang et al. proposed an
enhanced particle filter (PF)-based tool-wear prediction method based
on a Bayesian inference scheme [61]. Hanachi et al. also utilized a reg-
ularized PF to iteratively update the states to predict the tool wear [62].
Zhang et al. used a Bayesian-based updating scheme with particle learn-
ing for online tool-wear prognostics [63]. Wang and Gao proposed a
Bayesian approach to predicting flank wear using the relation between
tool wear and vibration signals [64]. Hao et al. applied a Bayesian
update scheme to fuse real-time quality measurements with tool-wear
rates in multistage manufacturing processes [65]. The aforementioned
approach-based Bayesian tool-wear prediction methods use Bayesian
inference only in part without uncertainty-aware characteristics. In
addition, some limitations exist. For instance, Bayesian-based PF meth-
ods are computationally intensive, as they require a large number
of particles. Furthermore, unlike the proposed method, they lack the
scalability and efficiency required for large-scale online sensor signals
for tool-wear prediction. To the best of our knowledge, there has been
no existing work using the Bayesian approach with DNNs for tool-
wear prediction. Considering this missing link between the Bayesian
approach and the DL-based tool-wear prediction in the literature, as
well as the necessity of uncertainty awareness, this study proposes a
novel uncertainty-aware Bayesian-based method based on multiscale
convolutions. The proposed method combines an expressive DL-based
approach with suitable architecture and Bayesian learning to provide a
novel tool-wear prediction method.

3. Proposed method

The tool-wear prediction method proposed in this study consists
of two parts. First, a deep CNN-based model architecture that uses
multiscale convolutional kernels is proposed. Second, using the pro-
posed architecture, Bayesian learning was applied to transform the
model into a probabilistic DL model that can produce uncertainty-
aware predictions. In this section, not only are the architectural details
of the model illustrated, but also the theoretical basis of the proposed
method.

3.1. Proposed architecture

Considering the nature of the end-milling process, some concerns
must be considered when developing a sensible tool-wear prediction
model. First, compared to other domains where DL algorithms are
used, such as natural language processing and computer vision, data
collection is difficult in terms of time and cost. Furthermore, to collect
labels to develop tool-wear prediction methods, experts in the field
should manually measure the degree of tool wear, leading to increased
annotation costs. Thus, because of the limited size of the data, the size
of the model should also be limited [66]. At the same time, a model
should have a proper receptive field size to pay attention not only to
local temporal patterns but also to long-term dependencies between
signals that are far apart from each other.

This study proposes a simple yet effective DNN architecture that
considers the concerns mentioned above. First, the proposed architec-
ture is purely based on CNN, which is considered more appropriate for
lengthy sequence data, such as that used for tool-wear prediction. In
fact, RNN and their variants (e.g., LSTM and GRU) have limitations in
handling exceedingly long time-series data, as they recurrently update
internal states, and the error should also be backpropagated through
5

many time steps [67]. Although truncated backpropagation through
time (BPTT) solves the issue in part, long-term dependencies are still
not fully considered when using RNN-based algorithms with long se-
quences. However, CNN is free from this problem because it can vary
the size of the receptive field with the manipulation of convolutional
kernels to obtain multiscale features with different context informa-
tion [68]. Furthermore, compared to RNN-based algorithms, CNN is
faster owing to parallelization [44], making it faster in both training
and inference.

Thus, this study presents a DMSCNN that uses different-sized con-
volutional kernels positioned in parallel. In particular, convolutional
kernels with sizes of 3, 5, 7, and 9 are positioned in parallel within
a single convolutional block to attain receptive fields of various sizes.
As the data used to estimate tool wear in the end-milling process are
multivariate time-series data, a one-dimensional (1D) convolution is
used for all convolutional operations. Each input channel is assumed to
be a single signal type (i.e., sensor type). Specifically, input to a single
convolutional block first undergoes multiple convolutional operations
with different-sized kernels. Then, each output of the parallel convolu-
tional operation is concatenated to fuse various contextual information.
Single convolutional operation of input 𝑓 and kernel 𝑘 with size 𝑙 is
alculated as (3). The calculation of a multiscale convolutional block
sing 𝑝 parallel convolutional operations with different kernel sizes of
𝑝 is expressed in (4).

∗ 𝑘(𝑖) =
𝑙

∑

𝑗=1
𝑘(𝑗) 𝑓 (𝑖 − 𝑗 + 1

2
). (3)

𝑔 = [𝑔1,… , 𝑔𝑝] = [𝑓 ∗ 𝑘𝑙1 ,… , 𝑓 ∗ 𝑘𝑙𝑝 ], 𝑤ℎ𝑒𝑟𝑒 |𝑘𝑠𝑖 | = 𝑙𝑖. (4)

The proposed DMSCNN comprises multiple stacks of multiscale con-
volutional blocks with batch normalization [69], dropout [70], and an
average pooling layer. After a series of multiscale convolutional blocks,
a prediction module composed of global average pooling and fully
connected layers is stacked to output the predicted tool wear. Using
a global average pooling layer instead of a flattening layer has shown
empirically better prediction performance. The overall architecture of
the proposed DMSCNN is illustrated in Fig. 1. Detailed hyperparameter
configurations and the tuning process are later illustrated in Section 4.

3.2. Bayesian learning using DMSCNN

The second part of the proposed method is based on the applica-
tion of Bayesian learning using DMSCNN. As mentioned in Section 2,
uncertainty-informed predictions can bring significant benefits in data-
driven tool-wear prediction, especially when coupled with expressive
DL-based methods. However, despite its practical effectiveness, uncer-
tainty awareness is missing in the current literature on DNN-based
tool-wear prediction. Among various uncertainty estimation methods,
the Bayesian approach is deemed the most theoretically grounded and
practical [55,71,72]. Bayesian learning can model uncertainty in pre-
diction models through the posterior distribution computed given data
during both training and inference (as shown in (2)). Therefore, this
study applied a Bayesian learning approach to develop an uncertainty-
aware tool-wear prediction model. There are some benefits to using
the Bayesian approach to estimate tool wear. First, Bayesian inference
enables a model to produce the prediction uncertainty represented
in predictive distributions. In particular, compared with most DNN-
based prediction methods that only provide a deterministic output,
the Bayesian method provides distributions over the predictions. This
not only provides a prediction confidence of the models but also
enables domain experts in the field to selectively decide whether to
use the prediction results [72]. In addition, using the Bayesian learn-
ing approach, improved prediction performance was achieved. In the
following paragraphs, detailed explanations of the Bayesian treatment
of DMSCNN and its theoretical basis are provided.
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Fig. 1. Architecture of proposed deep multiscale convolutional neural network
(DMSCNN).

First, a posterior distribution 𝑝(𝒘|𝐷) must be computed over the
parameters of the DMSCNN. However, because a set of parameters 𝒘 is
high dimensional and the joint distribution is intractable, variational in-
ference (VI) is employed, as [54,73]. As mentioned previously, VI is one
of the most effective and efficient approximate inference approaches in
Bayesian learning. Using VI, a variational distribution 𝑞(𝒘|𝐷), which
is more tractable and easier to evaluate, is postulated to approximate
the true posterior from which the DMSCNN parameters are assumed
to be drawn. In this study, a mean-field VI that assumes a fully fac-
torized variational distribution over parameters is used, as expressed
in (5). This independence assumption has made the mean-field VI
most widely used in Bayesian learning literature for its computational
efficiency and scalability [74]. Recently, several alternative approaches
to VI (e.g., generalized mean-field) that aim to estimate the covariance
structure of parameters have been recently proposed. Nonetheless, con-
sidering the trade-off between scalability and approximation accuracy,
mean-field VI is deemed most appropriate for practical applications.
In addition, for large models, the mean-field VI was shown to better
approximate the true posterior distribution [55].

𝑝(𝒘|𝐷) ≈ 𝑞(𝒘|𝐷) =
𝑚
∏

𝑞(𝑤𝑖|𝐷) (5)
6

𝑖=1
To find an optimal variational distribution, the Kullback–Leibler
divergence (KLD) between the true posterior 𝑝(𝒘|𝐷) and the variational
posterior 𝑞(𝒘|𝐷) is minimized. Because KLD is always nonnegative, its
minimization leads to a lower bound on KLD called the evidence lower
bound (ELBO). The derivation of ELBO from the minimization of KLD is
shown in (6). It leads to an optimization objective of ELBO expressed
in (7). This implies that maximizing the ELBO can be interpreted as
making variational distribution 𝑞(𝒘|𝐷) as close to prior 𝑝(𝒘) while con-
sidering the maximum likelihood objective 𝐸𝑞[𝑙𝑜𝑔 𝑝(𝐷|𝒘)]. The ELBO
can also be derived using a different approach, as shown in (8). By
maximizing the ELBO through training, the variational distribution that
is a surrogate for the true posterior during inference can be determined.
This is identical to the optimization of the variational free energy
(i.e., the Helmholtz free energy) or a minimum description length [75].

𝐾𝐿𝐷 = 𝐷𝐾𝐿(𝑞(𝒘|𝐷)||𝑝(𝒘|𝐷))

= ∫ 𝑞(𝒘|𝐷) 𝑙𝑜𝑔
𝑞(𝒘|𝐷)
𝑝(𝒘|𝐷)

𝑑𝒘

= ∫ 𝑞(𝒘|𝐷)[𝑙𝑜𝑔 𝑞(𝒘|𝐷) − 𝑙𝑜𝑔 𝑝(𝒘|𝐷)] 𝑑𝒘

= −∫ 𝑞(𝒘|𝐷)[𝑙𝑜𝑔
𝑝(𝐷,𝒘)
𝑝(𝐷)

− 𝑙𝑜𝑔 𝑞(𝒘|𝐷)] 𝑑𝒘

= 𝑙𝑜𝑔 𝑝(𝐷) − ∫ 𝑞(𝒘|𝐷)[𝑙𝑜𝑔
𝑝(𝐷,𝒘)
𝑞(𝒘|𝐷)

] 𝑑𝒘

= 𝑙𝑜𝑔 𝑝(𝐷) − ∫ 𝑞(𝒘|𝐷)[𝑙𝑜𝑔
𝑝(𝒘)𝑝(𝐷|𝒘)
𝑞(𝒘|𝐷)

] 𝑑𝒘

= 𝑙𝑜𝑔 𝑝(𝐷) − ∫ 𝑞(𝒘|𝐷)[𝑙𝑜𝑔
𝑝(𝒘)

𝑞(𝒘|𝐷)
+ 𝑙𝑜𝑔 𝑝(𝐷|𝒘)] 𝑑𝒘

= 𝑙𝑜𝑔 𝑝(𝐷) − 𝐸𝐿𝐵𝑂.

(6)

𝐸𝐿𝐵𝑂 = 𝐷𝐾𝐿(𝑞(𝒘|𝐷)||𝑝(𝒘)) − 𝐸𝑞[𝑙𝑜𝑔 𝑝(𝐷|𝒘)]. (7)

𝑝(𝐷) ≃ 𝑙𝑜𝑔 𝑝(𝐷)

= 𝑙𝑜𝑔 ∫ 𝑝(𝐷,𝒘) 𝑑𝒘

= 𝑙𝑜𝑔 ∫ 𝑝(𝐷,𝒘) ⋅
𝑞(𝒘|𝐷)
𝑞(𝒘|𝐷)

𝑑𝒘 = 𝑙𝑜𝑔 𝐸𝑞[
𝑝(𝐷,𝒘)
𝑞(𝒘|𝐷)

]

≥ 𝐸𝑞[𝑙𝑜𝑔
𝑝(𝐷,𝒘)
𝑞(𝒘|𝐷)

] = ∫ 𝑞(𝒘|𝐷) 𝑙𝑜𝑔
𝑝(𝐷,𝒘)
𝑞(𝒘|𝐷)

𝑑𝒘

= ∫ 𝑞(𝒘|𝐷)[𝑙𝑜𝑔 𝑝(𝐷,𝒘) − 𝑙𝑜𝑔 𝑞(𝒘|𝐷)] 𝑑𝒘

= 𝐸𝐿𝐵𝑂.

(8)

In this study, a variational distribution is postulated as a Gaussian
distribution,  (𝜇, 𝜌2) with parameters 𝜇 and 𝜌. In fact, there are other
alternatives for variational distribution, such as Bernoulli, Laplace,
von Mises-Fisher, and various mixture distributions [71]. Although
these alternatives might provide richer expressivity for variational
distributions, Gaussian distribution is most widely employed for sev-
eral reasons. Most importantly, Gaussian-based VI achieves a desirable
balance in trade-off between computational speed, tractability, and
accuracy compared to the alternatives [76]. In addition, Gaussian
distribution enables the analytical evaluation of KLD, which provides
computational efficiency. Furthermore, Gaussian distribution helps to
apply a reparameterization trick [73] for Bayesian DNNs, as it provides
efficient gradient calculation. Therefore, although using other types
of variational distributions might affect the prediction performance,
the considerable advantages brought by using Gaussian variational
distribution will be lost. For the aforementioned reasons, this model
employs a Gaussian variational distribution with a reparameterization
trick to ensure flawless backpropagation. Therefore, each parameter of
DMSCNN 𝑤 is drawn by sampling with Gaussian noise 𝜖, as shown in
(9). In other words, during the training of DMSCNN, optimal values for
𝜇 and 𝜌 were sought rather than the exact model parameter 𝑤.

𝑤 = 𝜇 + 𝜌 ⋅ 𝜖 𝑤ℎ𝑒𝑟𝑒 𝜖 ∼  (0, 1). (9)
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Fig. 2. Bayesian treatment of DMSCNN parameters.

Because the DMSCNN parameter 𝑤 can now be drawn by sampling,
the ELBO (7) is also approximated by Monte Carlo (MC) sampling, as
shown in (10). ELBO optimization during training is trivial as both
𝜇 and 𝜌 are linear with respect to 𝑤, hence any stochastic gradient
algorithm can be employed. The prior distribution was set to Gaussian
as  (0, 1). It is still worth noting that setting proper prior distributions
over the network weights is an open challenge [77].

̃𝐸𝐿𝐵𝑂 = 1
𝑛

𝑛
∑

𝑖=1
[𝑙𝑜𝑔 𝑞(𝒘(𝑖)|𝐷) − 𝑙𝑜𝑔 𝑝(𝒘(𝑖)) − 𝑙𝑜𝑔 𝑝(𝐷|𝒘(𝑖))]. (10)

Based on the aforementioned arguments, parameters of DMSCNN
are converted into probability distributions that can be sampled during
the inference. In the proposed Bayesian DMSCNN, all parameters,
including those of convolutional layers and fully connected layers, were
set under Bayesian treatment. A visualization of the Bayesian treatment
on the parameters of DMSCNN is provided in Fig. 2.

After training, the proposed Bayesian DMSCNN was assumed to be
uncertainty-aware. The uncertainty of the prediction of the model using
the proposed method is represented in the sample variance of multiple
stochastic passes during inference. Given a new input 𝑥 whose tool-
wear degree 𝑦 is to be estimated, the predictive distribution can be
obtained using (11). Each set of DMSCNN parameters 𝒘 was drawn
from 𝑞(𝒘|𝐷).

𝑝(𝑦|𝑥,𝐷) = ∫ 𝑝(𝑦|𝑥,𝒘)𝑝(𝒘|𝐷) 𝑑𝒘 ≈ 1
𝑇

𝑇
∑

𝑡=1
𝑝(𝑦|𝑥,𝒘(𝑡)). (11)

4. Experiments

4.1. Data collection

The end-milling process in this study was conducted using a conven-
tional cutting fluid. Through a straight machining path, the material
was machined with a milling type of down milling. A diameter of
the cutting tool with 16 mm was used, and specific parameters of the
cutting tool (F1200-8024775, Walter Corp.) are shown in Table 1. The
𝑧-axis length of the cutting tool was calibrated, and the origin was
aligned with the surface of the work material. For the end-milling
processes, Ti-6Al-4V was used as the work material, whose width,
depth, and height were 100 mm, 100 mm, and 100 mm, respectively.
Moreover, the work material was composed of 89.93% of titanium,
6.02% of aluminum, and 3.85% of vanadium [78]. The five-axis CNC
machine of the horizontal type (HTC-1000, HNK Corp.) was used. A
dynamometer (9257B, Kistler Corp.) was used to acquire the cutting
force data at a sampling rate of 20 kHz. The machining pass was defined
as a machining length of 100 mm. To accurately measure the relia-
bility of the performance of the proposed method, experiments were
performed under three types of machining conditions. Each experiment
had a different material removal rate (MRR), which affected the degree
of tool wear. Therefore, different machining passes were set to identify
7

Table 1
Cutting tool parameters.

Parameter Value

Cooling condition Conventional cutting fluids
Tool diameter 16 mm
Hone radius 0.012 mm
Nose radius 0.5 mm
Clearance angle 1st 9◦, 2nd 20◦

Rake angle 13◦

Helix angle 44◦

Fig. 3. The experimental setup for the end-milling process of Ti-6Al-4V.

obvious tool wear. The number of machining passes for the experiments
was set to 94, 25, and 20 for Conditions 1, 2, and 3 respectively. The
different machining conditions and machining lengths range from low
to high MRR, as shown in Table 2. The experimental setup is shown in
Fig. 3.

Three variables are used to predict tool wear: the forces on each
axis, denoted as 𝐹𝑥, 𝐹𝑦, and 𝐹𝑧. The descriptive statistics for each set
of experimental data are shown in Table 4, Table 3, and Table 5.

4.2. Tool-wear calculation

Tool wear was measured under all experimental conditions with
specific machining distances. A digital microscope with laser con-
focal scanning capability (VHX-7000; Keyence Corp.) was used to
measure tool flank wear with a magnification of 100x. Fig. 4 shows
the measurement of the continuing tool wear with various machining
distances.

Ideally, tool wear should be measured as frequently as possible
during the machining process. However, this was not possible for
several reasons. First, the removal and replacement of cutting tools
for measurement of tool wear can cause a repetition of cooling and
heating, leading to a surface crack in the cutting tool. Considering
that the material properties of the cutting tool change rapidly during
the machining process owing to the high temperature at the tool-
workpiece interface, this is not feasible in an actual setting. Moreover,
during cutting tool replacement, even minor adjustments to the cutting
tool and its holder settings can potentially lead to alterations in the
structural safety (e.g., tool stiffness) of the overall machining process.

Despite the limitations mentioned above, for tool wear to be pre-
dicted in real-time, continuous tool-wear data are essential for the
development of a data-driven prediction model. To this end, this study
uses a tool-wear equation based on Usui’s tool-wear model [79]. The
empirical tool-wear model was later extended by several researchers
and is considered one of the most reliable tool-wear equations in the
literature [80–82]. Several assumptions were required for using the
tool-wear model; the variation of friction and wear mechanism is zero,
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Table 2
Experiment conditions.

Experiment number Cutting speed
(mm/min)

Feed per tooth
(mm/rev)

Axial depth
(mm)

Radial depth
(mm)

Machining distance
(mm)

Material removal rate
(mm3/min)

1 60 0.08 5 1 9400 2860
2 100 0.1 5 1 2500 5970
3 120 0.1 5 1 2000 7160
Fig. 4. Tool-wear measurement of Experiment 3 at (a) 4 passes, (b) 8 passes, (c) 12 passes, (d) 16 passes, and (e) 20 passes.
Table 3
Descriptive statistics of Dataset 1.

Variable Mean SD Min Max

𝐹𝑥 141.4716 97.1282 −170.0590 518.4570
𝐹𝑦 82.6874 80.5770 −190.9270 425.3610
𝐹𝑧 −50.6475 46.8159 −248.7230 96.2546

Table 4
Descriptive statistics of Dataset 2.

Variable Mean SD Min Max

𝐹𝑥 109.3085 125.6230 −504.0830 667.6810
𝐹𝑦 110.7568 111.7301 −388.0790 533.6870
𝐹𝑧 −59.3887 57.3354 −324.5350 127.1210

Table 5
Descriptive statistics of Dataset 3.

Variable Mean SD Min Max

𝐹𝑥 225.7884 236.2957 −572.4660 944.2870
𝐹𝑦 90.7225 139.4700 −258.7080 562.4460
𝐹𝑧 −73.6629 88.2275 −459.3040 134.3950

and the chatter or tool vibration is neglected. While the cutting tool’s
geometry and dependence on empirical constants to express its material
properties and wear mechanism remain limitations, Usui’s tool-wear
equation provides efficient and robust estimation. The tool-wear equa-
tion used in this study (shown in (12)) estimates the degree of tool
wear between the machining distances at which tool wear is measured.
In this study, the Levenberg–Marquardt (LM) method [83] was used
to approximate the experimental tool-wear-measurement data. The LM
algorithm aims to minimize the difference between experimental data
and model predictions by adjusting the model parameters. It is impera-
tive to use well-organized data to optimize the LM parameters. In other
words, the quality and representativeness of experimental data must be
ensured. To this end, this study uses the average tool-wear values from
five time measurements to ensure data quality. In addition, every tool
wear measurement was carried out at the same position to minimize the
effects of outliers and measurement noise. Furthermore, a sonication
process was conducted to remove the impurities on the cutting tool’s
surface. The equations used for the LM method are (13), (14), and
(15). The estimated parameter values of the tool-wear equation for each
dataset are listed in Table 6.

𝑉 𝐵 = 𝑑(𝑎 + 𝑏𝑇 𝑐 )−1. (12)

𝐩 = 𝐩 − (𝐽𝑇 𝐽 + 𝜇 𝑑𝑖𝑎𝑔(𝐽𝑇 𝐽 ))−1𝐽𝑇 𝐫(𝐩 ), 𝑘 ≥ 0 (13)
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𝑘+1 𝑘 𝐫 𝐫 𝑘 𝐫 𝐫 𝐫 𝑘
Table 6
Estimated parameter values of the tool-wear equation.

Experiment number a b c d

1 −0.0397 0.2491 −0.3517 1.9717
2 0.0041 2.0200 −1.9975 1.5545
3 −0.2373 0.3837 −0.1391 2.2207

𝐽𝐫 (𝐩) =
⎡

⎢

⎢

⎢

⎣

𝜕𝑟1(𝐩)
𝜕𝑝1

… 𝜕𝑟1(𝐩)
𝜕𝑝𝑚

⋮ ⋱ ⋮
𝜕𝑟𝑛(𝐩)
𝜕𝑝1

… 𝜕𝑟𝑛(𝐩)
𝜕𝑝𝑚

⎤

⎥

⎥

⎥

⎦

(14)

𝐫(𝐩) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑟1(𝐩)
𝑟2(𝐩)
⋮

𝑟𝑛(𝐩)

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑦1 − 𝑓 (𝑥1,𝐩)
𝑦2 − 𝑓 (𝑥2,𝐩)

⋮
𝑦𝑛 − 𝑓 (𝑥𝑛,𝐩)

⎤

⎥

⎥

⎥

⎥

⎦

(15)

4.3. Data preprocessing

All the data used in the experiments were centered and normalized
using standardization, as shown in (16). For the experiments, all data
were initially separated into a training and test set with ratios of
80% and 20%. To prevent information leakage (i.e., data snooping)
and overfitting, the statistics used for standardization (i.e., �̄�, 𝑠) are
calculated only using the holdout training set. Later, the initial training
set is used in hyperparameter tuning.

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑥 − �̄�
𝑠

, (16)

where:

𝑥: original independent variable
�̄�: mean
𝑠: standard deviation
𝑥𝑠𝑐𝑎𝑙𝑒𝑑 : scaled independent variable

As mentioned above, the data used in this study collected from
the end-milling experiments are thus long multivariate time-series
consisting of synchronous sensor measurements. To change the raw
data to a proper shape for use in prediction models, sliding-window
(i.e., rolling window) data preprocessing was applied. With a stride
of 1, all data were cropped into multiple sub-sequences with identical
lengths (i.e., 132 time steps). This preprocessing step is required not
only to reshape the data into a proper format but also to predict the
wear of the tool in real-time during inference [84]. The sliding-window
preprocessing is shown in Fig. 5.
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Fig. 5. Sliding-window preprocessing.

4.4. Evaluation metrics

As the target of prediction in this study was a continuous variable
(i.e., degree of tool wear), evaluation metrics for regression tasks
were used to assess the prediction performance. First, the mean abso-
lute error (MAE) was used. In addition, the root-mean-squared error
(RMSE), mean-absolute-percentage error (MAPE), and 𝑅2 (coefficient
of determination) were used. The evaluation metrics used were defined
as follows:

𝑀𝐴𝐸 = 1
𝑁

𝑁
∑

𝑖=1
|𝑦𝑖 − 𝑦𝑖|. (17)

𝑅𝑀𝑆𝐸 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑦𝑖 − 𝑦𝑖)2. (18)

𝑀𝐴𝑃𝐸 = 100
𝑁

𝑁
∑

𝑖=1

|𝑦𝑖 − 𝑦𝑖|
|𝑦𝑖|

. (19)

𝑅2 = 1 −
∑𝑁

𝑖=1(𝑦𝑖 − 𝑦𝑖)2
∑𝑁

𝑖=1(𝑦𝑖 − 𝑦𝑖)2
, (20)

where:

𝑦: actual target value
�̂�: predicted target value
𝑁 : number of data

4.5. Hyperparameter tuning

The detailed architecture of the proposed DMSCNN used in the
experiments is determined by various hyperparameters, including the
number of convolutional blocks, the size of kernels, the number of
kernels, the type of activation functions, etc. In addition, there are
hyperparameters associated with training protocols, such as the batch
size and the learning rate. The hyperparameters and the search space
are provided in detail in Table 7. In this study, every hyperparameter
of DMSCNN was tuned using a random search [85] based on a 10-
fold cross-validation (CV), as shown in Fig. 6. First, the entire data
was split into holdout training and test data. Then, using the training
set, a 10-fold CV was performed, in which a hyperparameter search
was conducted in each CV trial. The hyperparameter configuration that
showed the highest performance on the CV validation fold was selected.
During hyperparameter tuning, several hyperparameters, including the
number of convolutional blocks, pooling strategy, and the type of
activation functions, had shown to have greater effects on performance
on the validation set than others.
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Table 7
Hyperparameter tuning of DMSCNN.

Hyperparameter Search space

Number of convolutional blocks [2,10]
Number of kernels {4,6,8,12,16,32,64}
Dropout rate {0.1,0.2,0.3,0.4,0.5}
Pooling strategy {average,max}
Pool size {2,3}
Activation function {Linear,tanh,ReLU,LeakyReLU}
Batch size {16,32,64,128,256,512}
Learning rate [0.0001,0.1]

4.6. Architecture details

Based on the hyperparameter tuning results, the obtained architec-
tural details of DMSCNN are illustrated in Table 8. The unlisted values
in the table are identical to the setting of the preceding convolutional
block. For multiscale convolutional blocks, leaky ReLU was used as
an activation function, and average pooling was employed. In terms
of model complexity, the proposed DMSCNN has 138,753 trainable
parameters, which is a moderate level of model complexity compared
to existing conventional CNN architectures (e.g., VGG, ResNet) [86].
By employing the Bayesian learning approach, the proposed Bayesian
DMSCNN has nearly twice as many trainable parameters as the naive
DMSCNN. For computational complexity, DMSCNN requires 139.06
kFLOPs.

4.7. Implementation details

Using the optimal hyperparameter configuration obtained from the
CV-based hyperparameter tuning, the training was performed on dif-
ferent CV trials as shown in Fig. 6. Since each CV trial has different CV
folds, the model was trained on different training and validation sets
for each time. Then, the evaluation was also performed independently
10 times to obtain the error bars (i.e., standard errors) for the results.

The experiments in this study were conducted using an Intel Xeon
Gold 5220 CPU and an NVIDIA Tesla V100 GPU. For the implementa-
tion of DNN-based models, Python was used with TensorFlow (version
2.4.0) and TensorFlow Probability (version 0.16.0) [87]. During the
training of the proposed method, negative log likelihood (NLL) was
also used as a loss function. The Adam optimizer [88] was used as an
optimization algorithm with a learning rate of 0.001 and a batch size
of 256 based on the hyperparameter tuning results. Additionally, batch
normalization [69] and early stopping with a patience of 100 epochs
are used to prevent overfitting. During experiments, models are trained
for a maximum of 50,000 epochs, where the best models are usually
saved earlier. The training time for a single epoch took around 0.9 and
1.6 s on average for the DMSCNN and the Bayesian DMSCNN, respec-
tively. During inference, the naive DMSCNN took 0.19 ms, whereas the
Bayesian DMSCNN took 0.28 ms for each prediction.

𝑀𝑆𝐸 = 1
𝑁

𝑁
∑

𝑖=1
(𝑦𝑖 − 𝑦𝑖)2, (21)

where:

𝑦: actual target value
�̂�: predicted target value
𝑁 : number of data

5. Results and discussion

In this section, the performance of the proposed tool-wear predic-
tion method is validated in a two-stage setting. First, the effectiveness of
the proposed DMSCNN in predicting the tool wear was verified. There-
after, a Bayesian learning-based DMSCNN’s performance is presented.
In terms of training the two types of methods, the latter typically



Applied Soft Computing 148 (2023) 110922G. Kim et al.
Fig. 6. Cross-validation performed in the experiments.
Table 8
The detailed architecture of the proposed DMSCNN.

Stack Layer Size of kernels Number of kernels Activation

MSConv block 1

Conv 1–1 3 8 LeakyReLU
Conv 1–2 3 8 LeakyReLU
Conv 2–1 5 8 LeakyReLU
Conv 2–2 5 8 LeakyReLU
Conv 3–1 7 8 LeakyReLU
Conv 3–2 7 8 LeakyReLU
Conv 4–1 9 8 LeakyReLU
Conv 4–2 9 8 LeakyReLU
Concatenate / / /
Batch norm / / /
Dropout (0.3) / / /
Average Pooling 2 (pool size) / /

MSConv block 2 – – – –

MSConv block 3

Conv 1–1 3 16 LeakyReLU
Conv 1–2 3 16 LeakyReLU
Conv 2–1 5 16 LeakyReLU
Conv 2–2 5 16 LeakyReLU
Conv 3–1 7 16 LeakyReLU
Conv 3–2 7 16 LeakyReLU
Conv 4–1 9 16 LeakyReLU
Conv 4–2 9 16 LeakyReLU
Concatenate / / /
Batch norm / / /
Dropout (0.3) / / /
Average pooling 2 (pool size) / /

MSConv block 4 – – – –

MSConv block 5

Conv 1–1 3 32 LeakyReLU
Conv 1–2 3 32 LeakyReLU
Conv 2–1 5 32 LeakyReLU
Conv 2–2 5 32 LeakyReLU
Conv 3–1 7 32 LeakyReLU
Conv 3–2 7 32 LeakyReLU
Conv 4–1 9 32 LeakyReLU
Conv 4–2 9 32 LeakyReLU
Concatenate / / /
Batch norm / / /

Prediction module

Global average pooling / / /
FC 1 32 / LeakyReLU
FC 2 16 / Linear
Dropout (0.3) / / /
FC 3 8 / Linear
Output 1 / Linear
10
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Fig. 7. Convergence analysis of DMSCNN training.

Fig. 8. Convergence analysis of Bayesian DMSCNN training.

requires a longer training time because it employs a Bayesian learning
setting, which includes the sampling procedure and contains more pa-
rameters to estimate. The learning curves of the training and validation
losses obtained from DMSCNN are shown in Fig. 7. In the case of the
Bayesian DMSCNN, although the curves seem more fluctuating, both
the training and validation losses decrease moderately, as shown in
Fig. 8.

5.1. DMSCNN and deterministic tool-wear prediction

In this study, three types of data collected from different experimen-
tal setups were used, as mentioned in Section 4. First, the tool-wear
prediction performance of the proposed DMSCNN was evaluated using
the datasets. In particular, for performance comparison, other tool-
wear prediction models that produce deterministic outputs were used.
Comparative models include ML- and DL-based-prediction models that
can handle time-series inputs, such as time-series forest (TSF) [89],
GRU [90], LSTM [91], and 1D-CNN. In particular, 1D-CNN models with
various kernel sizes (3, 5, 7, and 9) were used for comparison.

The prediction performances of the deterministic tool-wear pre-
diction models, including the proposed DMSCNN on each different
dataset used in this study, are provided in Table 9, Table 10, and
Table 11, respectively. First, for Dataset 1, most DL-based prediction
models, except TSF, showed similar performances in terms of the four
evaluation metrics, as depicted in Table 9. However, the performance
of the proposed DMSCNN was superior to that of all other prediction
models by a large margin. For Dataset 2, as shown in Table 10,
RNN-based prediction models, such as GRU and LSTM, exhibit better
performance than 1D-CNN models. Moreover, the proposed DMSCNN
11
Table 9
Performance comparison of deterministic tool-wear prediction models on Dataset 1.

Model Metric

MAE RMSE MAPE 𝑅2

TSF 7.7813
(± 0.0101)

11.7798
(± 0.0111)

0.3043
(± 0.0016)

0.5255
(± 0.0008)

GRU 3.6248
(± 0.7324)

4.6265
(± 0.8914)

0.1077
(± 0.0189)

0.9229
(± 0.0279)

LSTM 3.9679
(± 0.2120)

5.0976
(± 0.2693)

0.1246
(± 0.0200)

0.9090
(± 0.0097)

1D-CNN
(kernel_size = 3)

3.7913
(± 0.3624)

4.8126
(± 0.4432)

0.1219
(± 0.0146)

0.9182
(± 0.0146)

1D-CNN
(kernel_size = 5)

3.6828
(± 0.7401)

4.6403
(± 0.8424)

0.1137
(± 0.0192)

0.9222
(± 0.0292)

1D-CNN
(kernel_size = 7)

3.6379
(± 0.4657)

4.5613
(± 0.6206)

0.1121
(± 0.0166)

0.9257
(± 0.0196)

1D-CNN
(kernel_size = 9)

3.4687
(± 0.6429)

4.2148
(± 0.7455)

0.1089
(± 0.0262)

0.9342
(± 0.0264)

DMSCNN
(proposed)

3.1394
(± 0.3892)

3.9776
(± 0.4681)

0.1002
(± 0.0091)

0.9442
(± 0.0137)

Table 10
Performance comparison of deterministic tool-wear prediction models on Dataset 2.

Model Metric

MAE RMSE MAPE 𝑅2

TSF 13.1047
(± 0.2720)

22.8500
(± 0.7443)

229.7708
(± 305.1545)

0.8513
(± 0.0100)

GRU 6.5810
(± 0.4025)

10.2392
(± 0.4280)

283.6626
(± 116.6763)

0.9698
(± 0.0025)

LSTM 6.5340
(± 0.7912)

10.1571
(± 1.0522)

500.1723
(± 318.6876)

0.9703
(± 0.0062)

1D-CNN
(kernel_size = 3)

8.3762
(± 1.3030)

12.1755
(± 1.5131)

157.6921
(± 160.2621)

0.9572
(± 0.0105)

1D-CNN
(kernel_size = 5)

7.0196
(± 1.2387)

10.3567
(± 1.4657)

124.3978
(± 170.0191)

0.9685
(± 0.0089)

1D-CNN
(kernel_size = 7)

7.2237
(± 0.8353)

10.3698
(± 1.0951)

118.9289
(± 133.1617)

0.9682
(± 0.0057)

1D-CNN
(kernel_size = 9)

6.8805
(± 1.0069)

9.9445
(± 0.9736)

72.3878
(± 33.8884)

0.9694
(± 0.0102)

DMSCNN
(proposed)

5.9349
(± 1.2047)

8.8442
(± 1.5927)

41.2545
(± 30.9068)

0.9766
(± 0.0094)

showed higher performance than the other models for all evaluation
metrics. For Dataset 3, the proposed DMSCNN confirmed its efficacy
for tool-wear prediction, showing outperforming scores, as shown in
Table 11.

Based on the observation that the proposed DMSCNN outperforms
existing deterministic prediction methods in tool-wear prediction per-
formance, the prediction results of DMSCNN on each dataset were
visualized. The prediction results for the three datasets are presented
in Figs. 9, 10, and 11, respectively. Compared to the ground-truth
tool-wear degree denoted by the blue line, the prediction results of
DMSCNN, shown as red points, indicate that DMSCNN can accurately
predict the ongoing tool wear in the end-milling process. It is also
observed that as the machining distance increases, the prediction error
of DMSCNN also tends to show an increasing trend.

5.2. Bayesian DMSCNN and probabilistic tool-wear prediction

Given the previous results, the proposed DMSCNN exhibited su-
perior performance over existing deterministic methods for tool-wear
prediction. Subsequently, experiments were performed to verify the
effectiveness of the DMSCNN with a Bayesian treatment, the so-called
Bayesian DMSCNN. Because it provides probabilistic predictions, its
performance is compared with existing probabilistic DL-based models,



Applied Soft Computing 148 (2023) 110922G. Kim et al.
Table 11
Performance comparison of deterministic tool-wear prediction models on Dataset 3.

Model Metric

MAE RMSE MAPE 𝑅2

TSF 13.6732
(± 0.6169)

22.2633
(± 0.9599)

0.3116
(± 0.0186)

0.5881
(± 0.0392)

GRU 6.1292
(± 0.6965)

8.5532
(± 0.8459)

0.1288
(± 0.0202)

0.9359
(± 0.0108)

LSTM 7.1809
(± 0.8232)

10.0629
(± 0.9418)

0.1481
(± 0.0223)

0.9153
(± 0.0156)

1D-CNN
(kernel_size = 3)

7.6203
(± 1.5108)

10.4687
(± 1.8086)

0.1509
(± 0.0309)

0.9027
(± 0.0339)

1D-CNN
(kernel_size = 5)

7.7751
(± 1.6708)

10.4070
(± 1.6899)

0.1743
(± 0.0542)

0.9053
(± 0.0335)

1D-CNN
(kernel_size = 7)

6.8475
(± 2.1101)

9.9393
(± 2.6305)

0.1372
(± 0.0416)

0.9100
(± 0.0505)

1D-CNN
(kernel_size = 9)

7.5749
(± 1.6546)

13.2689
(± 8.5889)

0.1548
(± 0.0307)

0.9010
(± 0.0306)

DMSCNN
(proposed)

4.9355
(± 0.3681)

6.9913
(± 0.5502)

0.0956
(± 0.0164)

0.9579
(± 0.0085)

Fig. 9. Prediction results of DMSCNN on Dataset 1.

Fig. 10. Prediction results of DMSCNN on Dataset 2.

such as the Bayesian neural network (BNN), MC dropout-based LSTM,
and CNN [10,54,71]. For the inference phase of all probabilistic mod-
els, including the Bayesian DMSCNN, MC estimation is used to produce
the final prediction, as expressed in (2).

The tool-wear prediction performance of Bayesian DMSCNN and
the comparative models on three datasets are provided in Table 12,
Table 13, and Table 14, respectively. Although BNN is also able to
consider predictive uncertainty via Bayesian learning, because it is not
12
Fig. 11. Prediction results of DMSCNN on Dataset 3.

Table 12
Performance comparison of probabilistic tool-wear prediction models on Dataset 1.

Model Metric

MAE RMSE MAPE 𝑅2

BNN 6.7235
(± 0.3380)

8.4677
(± 0.4005)

0.2113
(± 0.0131)

0.7482
(± 0.0235)

MC dropout
LSTM

6.7012
(± 0.3741)

8.6475
(± 0.4824)

0.1748
(± 0.0067)

0.7390
(± 0.0274)

MC dropout
CNN

4.7723
(± 0.1949)

6.0033
(± 0.2224)

0.1585
(± 0.0111)

0.8742
(± 0.0094)

Bayesian
DMSCNN
(proposed)

2.3398
(± 0.1945)

2.9862
(± 0.2430)

0.0796
(± 0.0072)

0.9737
(± 0.0069)

Table 13
Performance comparison of probabilistic tool-wear prediction models on Dataset 2.

Model Metric

MAE RMSE MAPE 𝑅2

BNN 23.1017
(± 2.0104)

31.8812
(± 2.5667)

272.6718
(± 202.3328)

0.7139
(± 0.0476)

MC dropout
LSTM

20.0668
(± 8.1623)

28.0024
(± 9.5189)

210.5684
(± 264.9961)

0.8225
(± 0.0369)

MC dropout
CNN

12.2674
(± 1.3735)

17.3275
(± 2.2475)

250.3129
(± 219.4896)

0.9137
(± 0.0250)

Bayesian
DMSCNN
(proposed)

5.3151
(± 0.5271)

7.8672
(± 0.7653)

29.8444
(± 32.9993)

0.9839
(± 0.0037)

Table 14
Performance comparison of probabilistic tool-wear prediction models on Dataset 3.

Model Metric

MAE RMSE MAPE 𝑅2

BNN 12.8891
(± 0.6742)

17.4075
(± 1.0464)

0.2540
(± 0.0227)

0.7431
(± 0.0341)

MC dropout
LSTM

9.6906
(± 1.0792)

14.0705
(± 1.5207)

0.1680
(± 0.0165)

0.8367
(± 0.0328)

MC dropout
CNN

7.6299
(± 0.6430)

10.4113
(± 0.6269)

0.1700
(± 0.0183)

0.9101
(± 0.0108)

Bayesian
DMSCNN
(proposed)

4.1002
(± 0.3595)

5.7841
(± 0.3797)

0.0890
(± 0.0194)

0.9731
(± 0.0043)

able to deal with time-series input data, it exhibited inferior perfor-
mance to other methods in all datasets. MC dropout CNN exhibited
better performance than MC dropout LSTM for all three datasets. More-
over, the proposed Bayesian DMSCNN outperformed other probabilistic
DL-based prediction models in terms of all evaluation metrics.
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Fig. 12. Prediction results of proposed Bayesian DMSCNN on Dataset 1.

Fig. 13. Prediction results of proposed Bayesian DMSCNN on Dataset 2.

Fig. 14. Prediction results of proposed Bayesian DMSCNN on Dataset 3.

The prediction results of the proposed Bayesian DMSCNN for each
dataset are shown in Figs. 12, 13, and 14. As the machining distance
increased, the Bayesian DMSCNN continued to accurately predict tool
wear, showing a trend similar to that of the naïve DMSCNN, as dis-
cussed previously. Furthermore, compared to DMSCNN, Bayesian DM-
SCNN not only shows a relatively smaller prediction error throughout
every range of machining distance, but also exhibits a more consistent
magnitude of the prediction error as the milling process proceeds.
The results indicate that the proposed Bayesian DMSCNN is capable
of accurately predicting the ongoing tool wear in various end-milling
setups.

Compared to deterministic tool-wear prediction models, including
naïve DMSCNN, probabilistic models can produce uncertainty-aware
13
Table 15
Inference time comparison of probabilistic models.

Model Inference time (ms)

BNN 0.1632 ± 0.2237
MC dropout LSTM 3.4933 ± 0.1807
MC dropout CNN 0.2855 ± 0.4220
Bayesian DMSCNN (proposed) 0.2875 ± 0.2336

predictions. In particular, a predictive distribution can be obtained
based on the probabilistic inference procedure using the constructed
models. As discussed previously, when reasonable predictive uncer-
tainty is derived from probabilistic models, it can be used effectively
for digital decision-making scenarios, especially in risk-intolerant ap-
plications. For the three datasets, the predictive distributions generated
using the comparative probabilistic models (i.e., BNN, MC dropout
LSTM, and MC dropout CNN) and the proposed Bayesian DMSCNN are
provided in Figs. 15, 16, and 17, respectively. The 95% confidence
interval for each prediction output is shown with the mean prediction
value and ± two standard deviations. For all three datasets, the pre-
dictive distributions of BNN exhibited unstable results, with inaccurate
mean predictions and unreliable confidence intervals. For MC dropout
LSTM, although the generated confidence intervals seem more reason-
able at a glance, the range of confidence intervals is extremely large,
indicating that the uncertainty is not properly captured. MC dropout
CNN shows similar behavior of confidence intervals for datasets 1 and 2
as MC dropout LSTM; however, it shows more reasonable confidence in-
tervals for Dataset 3. Finally, the proposed Bayesian DMSCNN exhibited
the most reasonable range of confidence intervals for all three datasets.
In most prediction cases, the Bayesian DMSCNN not only predicted the
actual tool-wear degree well, but also provided moderate confidence in-
tervals that were reliable. This result implies that the proposed method
can be practical for end-users (e.g., domain experts) when performing
tool replacement or maintenance, as it provides uncertainty estimates
that provide the reliability of predictions. In practice, domain experts
can utilize the predictions of the proposed method in controlling the
conservativeness of tool replacement decisions.

5.3. Post-hoc analysis of the proposed Bayesian DMSCNN

Using three datasets obtained from an actual end-milling process of
titanium, the effectiveness of the proposed DMSCNN was validated. In
addition, using a Bayesian treatment of DMSCNN, Bayesian DMSCNN
produced outperforming tool-wear prediction results. Compared to the
naïve DMSCNN, the proposed Bayesian DMSCNN has been shown to
improve the prediction performance for the three datasets in terms of
all evaluation metrics. Fig. 18 visualizes the improvement in tool-wear
prediction performance by applying Bayesian treatment to DMSCNN in
terms of MAE. In case of Dataset 2, the MAE has shown to be relatively
high for both DMSCNN and Bayesian DMSCNN. This could be due to
a rapid increase in tool-wear degree, leading to the vibration of the
cutting tool [92].

In addition to comparing the prediction performance of the prob-
abilistic models with that of the proposed Bayesian DMSCNN, which
indicates the efficacy of the proposed method, the inference times
of the probabilistic models were compared. However, the inference
times of the deterministic models were not compared because they
do not require a sampling procedure for MC estimation to yield pre-
dictive distributions. As shown in Table 15, the proposed Bayesian
DMSCNN takes approximately 0.28 ms for each prediction, which is
not only applicable to real-time prediction, but is also comparable to
other probabilistic models. In particular, CNN-based models, including
the Bayesian DMSCNN, show a much faster inference speed than the
RNN-based model (i.e., MC dropout LSTM).

Finally, because the probabilistic models used in this study and the
proposed Bayesian DMSCNN construct the variational distribution from
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Fig. 15. Visualization of 95% prediction intervals of: (a) BNN, (b) MC dropout LSTM, (c) MC dropout CNN, and (d) proposed Bayesian DMSCNN on Dataset 1.

Fig. 16. Visualization of 95% prediction intervals of: (a) BNN, (b) MC dropout LSTM, (c) MC dropout CNN, and (d) proposed Bayesian DMSCNN on Dataset 2.
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Fig. 17. Visualization of 95% prediction intervals of: (a) BNN, (b) MC dropout LSTM, (c) MC dropout CNN, and (d) proposed Bayesian DMSCNN on Dataset 3.
Fig. 18. Performance comparison of DMSCNN and Bayesian DMSCNN.

which the model parameters are sampled, the densities of the trained
parameters are compared. Histograms of the trained parameters from
the BNN, MC dropout LSTM, MC dropout CNN, and proposed Bayesian
DMSCNN, as shown in Fig. 19. The trained parameter distribution of
the proposed Bayesian DMSCNN was much wider than that of the
comparative probabilistic tool-wear prediction models. This not only
shows that the trained parameters are more diverse, but also pro-
vides a rationale for more reliable confidence intervals of the Bayesian
DMSCNN.

6. Conclusion and future studies

This study addressed the problem of tool-wear prediction in the end-
milling process of titanium using a data-driven approach based on DL
15
Fig. 19. Histogram of trained parameters from probabilistic models.

and Bayesian learning. As tool-wear generated during the machining
process of titanium alloy leads to detrimental effects on the overall
process, accurate tool-wear prediction is imperative for improving the
productivity and quality of machining products. Furthermore, because
the cost of the tool itself and that required to replace machining tools
are high, data-driven prediction results should be reliable for use in
actual scenarios. To this end, this study proposes a Bayesian-learning-
based tool-wear prediction method using a DL-based model that is
suitable for the end-milling process. The effectiveness of the proposed
DL-based model and its Bayesian-treated version were validated using
data collected from three different end-milling processes.

The proposal for this study is twofold. First, based on the constraints
of the tool-wear prediction problem in the end-milling process, an
appropriate DL-based architecture termed multiscale CNN (DMSCNN)
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was proposed. Using convolutional kernels of varied sizes that en-
able the adaptability of convolutional operations, the DMSCNN can
accurately predict ongoing tool wear based on lengthy multivariate
time-series input data. Second, based on the DMSCNN, a VI-based
Bayesian learning technique was applied such that the prediction model
could incorporate uncertainty for tool-wear predictions. The effective-
ness of the proposed DMSCNN and Bayesian DMSCNN was validated
using experimental data from actual applications. Compared with ex-
isting ML- and DL-based deterministic tool-wear prediction methods,
the proposed DMSCNN outperformed conventional methods in all eval-
uation metrics (i.e., MAE, RMSE, MAPE, and 𝑅2) in every dataset. In
ddition, the Bayesian DMSCNN showed superior tool-wear prediction
erformance compared with existing comparative probabilistic models
or all datasets. The Bayesian DMSCNN has also shown more reliable
nd consistent confidence intervals for every dataset compared with
omparative probabilistic models.

When comparing the naïve and Bayesian DMSCNN, the tool-wear
rediction performance improved when Bayesian treatment was ap-
lied, with an additional ability to generate confidence intervals and
redictive distributions. The Bayesian DMSCNN has also shown a sensi-
le inference time while providing a greater diversity of trained model
arameters, which further reinforces its verified efficacy observed in
he experimental results.

The proposed method demonstrates the effectiveness of employ-
ng a Bayesian approach that considers uncertainty. In particular, the
roposed method not only provided uncertainty awareness, but also
mproved the tool-wear prediction performance in the end-milling pro-
ess. From a machining perspective, the range of effects on tool wear
s wide; for instance, abrupt changes in the physical phenomenon
e.g., cutting force, temperature, vibration, etc.) at an early phase of
achining can considerably affect the progress of tool wear at later
hases. Thus, the Bayesian DMSCNN that can handle a wide range
f multivariate time-series data and uncertainty during prediction is
uitable for tool-wear prediction in the end-milling process. Addition-
lly, with multiple stacks of multiscale convolutional operations and a
ariety of trained model parameters, the proposed Bayesian DMSCNN
eems to have a higher expressive power. The reasonable uncertainty
stimates, including predictive uncertainty obtained from the Bayesian
MSCNN, can be effectively used in various real-world applications.
aking uncertainty-aware tool-wear predictions can help domain ex-

erts make informed decisions by taking into account reliability and
otential risks. In addition, more accurate and reliable prediction re-
ults would lead to improved product quality, therefore enhancing
ustomer satisfaction. From a more comprehensive perspective, for
igh-tech industries, where decision-making often accompanies consid-
rable costs and time, uncertainty estimates can be useful in providing
isk-informed decisions. For instance, considering not only the pre-
icted values but also the uncertainty estimates can help cautious
ecision-making in practice where wrong decisions based on a single
alse prediction can bring significant loss. For other smart manufac-
uring domains where data-driven systems are used, uncertainty-aware
redictions can also help make multifaceted decisions. Specifically,
n-site domain experts can utilize predictive uncertainty as well as tool-
ear prediction results obtained from the proposed Bayesian DMSCNN

o control the conservativeness of the tool replacement.
The results of this study, which indicate the effectiveness of using

ultiscale features and uncertainty-aware prediction based on Bayesian
earning, can be generalized to other areas as well. In fact, as the
roposed method does not require prior domain knowledge about the
achining dynamics and material characteristics for model training,

t has high generalizability. In addition, the sensor signals inherently
nclude the material properties and characteristics of the manufacturing
rocess, since the sensors are constructed based on physical principles
hat govern how signals respond to changes in the properties of ma-
erial and process. This enables the undemanding application of the
16

roposed method that uses a solely data-driven approach. Therefore,
when predicting using different work materials in the milling process,
similar results are expected to be yielded for the proposed method
when proper retraining and hyperparameter tuning are performed. This
is also applied when the manufacturing process is changed because
the predictive model can only be aligned with the changes in sensor
signals that encapsulate material properties and process information.
Furthermore, the results of this study can be generalized to related
domains like other types of machining processes, such as subtractive
manufacturing (e.g., turning, grinding, drilling) and additive manufac-
turing (i.e., 3D printing). Given data availability and proper training,
the proposed method can be easily applied in the same data-driven
fashion as this study [93]. When applying the proposed method to
different scenarios, the degree and type of uncertainty should be taken
into account, because some modifications to the model architecture
might be required. In addition, input data specification, including the
sampling rate and sequence length, should be taken into account for
adopting the proposed method. This research has various implications
in the field of applied soft computing. First, the development of data-
driven soft computing techniques with suitable model architectures
that consider practical settings is supported. In addition, this study
exemplifies a thorough data-centric approach in terms of model de-
sign (i.e., DMSCNN) and operation (i.e., prediction) for applying soft
computing techniques. Moreover, as empirical results validated the
effectiveness and practical usefulness of uncertainty-aware predictions,
this study promotes the application of uncertainty estimates in soft
computing techniques to real-world problems. As the proposed method,
employing uncertainty-aware DL-based models with Bayesian learn-
ing in other multidisciplinary soft computing tasks would also bring
improved performances. Therefore, from an application perspective,
this study implies that soft computing developments should have un-
certainty awareness for the aforementioned reasons. In addition, this
study highlights the importance of utilizing predictive uncertainty in
risk-intolerant application domains to empower digital decisions with
a richer data-driven basis. Similar approaches to this study can also
have a greater impact by developing uncertainty-aware predictions for
other machining prognostics and predictive maintenance tasks.

One of the limitations of the proposed method is that because it is
based on Bayesian learning and VI, it requires higher computational
complexity compared to the standard DNN with the same architectural
form. Another limitation is that the ground-truth tool-wear degree was
derived from the traditional tool-wear-calculation method. However,
the proposed method is more applicable in the sense that multivariate
time-series data collected during the end-milling process can be used
to predict the degree of continuing tool wear online while provid-
ing uncertainty for each tool-wear prediction. Another limitation that
should be considered, especially when applying the proposed method
in other domains, is that the proposed method lacks the capability of
multi-domain feature learning. Therefore, when machining conditions
vary, learned features may have lower generalizability. Future studies
will include the development of a sampling-free tool-wear prediction
method with uncertainty awareness. Furthermore, the development of
an interactive human–computer framework based on active learning for
the intelligent prediction of tool wear remains a prospective extension
of this study. Additionally, the application of the proposed method is
planned in areas where uncertainty awareness is gaining importance,
such as fault diagnosis and predictive maintenance [94].
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