"SparTANN: Sparse Training Accelerator for Neural Networks with Threshold-based Sparsification" (Prof. Jongeun Lee)
While sparsity has been exploited in many inference accelerators, not much work is done for training accelerators. Exploiting sparsity in training accelerators involves multiple issues, including where to find sparsity, how to exploit sparsity, and how to create more sparsity. In this paper we present a novel sparse training architecture that can exploit sparsity in gradient tensors in both back propagation and weight update computation. We also propose a single-pass sparsification algorithm, which is a hardware-friendly version of a recently proposed sparse training algorithm, that can create additional sparsity aggressively during training. Our experimental results using large networks such as AlexNet and GoogleNet demonstrate that our sparse training architecture can accelerate convolution layer training time by 4.20~8.88× over baseline dense training without accuracy loss, and further increase the training speed by 7.30~11.87× over the baseline with minimal accuracy loss.