menu drop down
menu drop down
KR EN

About AI

Research achievements

You can check the results of graduate school and research.

Optimal Algorithms for Stochastic Multi-Armed Bandits with Heavy Tailed Rewards (Prof. Sungbin Lim, UNIST AIGS Student Hongjun Yang)

[Advances in Neural Information Processing Systems 33 pre-proceedings]

   [34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.]

Optimal Algorithms for Stochastic Multi-Armed Bandits with Heavy Tailed Rewards

In this paper, we consider stochastic multi-armed bandits (MABs) with heavy-tailed rewards, whose p-th moment is bounded by a constant νp for 1<p2. First, we propose a novel robust estimator which does not require νp as prior information, while other existing robust estimators demand prior knowledge about νp. We show that an error probability of the proposed estimator decays exponentially fast. Using this estimator, we propose a perturbation-based exploration strategy and develop a generalized regret analysis scheme that provides upper and lower regret bounds by revealing the relationship between the regret and the cumulative density function of the perturbation. From the proposed analysis scheme, we obtain gap-dependent and gap-independent upper and lower regret bounds of various perturbations. We also find the optimal hyperparameters for each perturbation, which can achieve the minimax optimal regret bound with respect to total rounds. In simulation, the proposed estimator shows favorable performance compared to existing robust estimators for various p values and, for MAB problems, the proposed perturbation strategy outperforms existing exploration methods.